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Abstract: Two-dimensional quantum dots have received a lot of attention in recent years due to their
fascinating properties and widespread applications in sensors, batteries, white light-emitting diodes,
photodetectors, phototransistors, etc. Atomically thin two-dimensional quantum dots derived from
graphene, layered transition metal dichalcogenide, and phosphorene have sparked researchers’
interest with their unique optical and electronic properties, such as a tunable energy bandgap,
efficient electronic transport, and semiconducting characteristics. In this review, we provide in-depth
analysis of the characteristics of two-dimensional quantum dots materials, their synthesis methods,
and opportunities and challenges for novel device applications. This analysis will serve as a tipping
point for learning about the recent breakthroughs in two-dimensional quantum dots and motivate
more scientists and engineers to grasp two-dimensional quantum dots materials by incorporating
them into a variety of electrical and optical fields.

Keywords: two-dimensional quantum dots; transition metal dichalcogenide; sensors; white light-
emitting diodes; photodetectors; phototransistors

1. Introduction

The field of material science and technology is evolving rapidly and currently provides
a major contribution to research in nanoscale science, motivated by the need for novel ma-
terials with fascinating properties. The number of dimensions outside the nanoscale range
(100 nm) in which particles are confined determines how a material is categorized. Nano-
materials, in general, are exceptionally tiny, with at least one dimension of 100 nanometers
or less. Nanomaterials can have several confinement directions, such as one-dimensional
confinement (e.g., surface films), two-dimensional confinement (e.g., strands or fibres),
or three-dimensional confinement (e.g., particles). Quantum dots (QDs) are the artificial
nanocrystals having confinement in all three dimensions with nanometer size that can
transport electrons. By changing their sizes, the optical and electrical properties of quan-
tum dots can be effectively tuned, resulting in the emission of specific wavelengths of
light [1,2]. Smaller QDs with a diameter of 2–3 nm emit shorter wavelengths, generating
colors such as blue and green, whereas larger QDs with a diameter of 5–6 nm emit longer
wavelengths, such as orange or red [3,4]. The emission color and wavelength of QDs
corresponding to their sizes are shown in Figure 1a; it can be seen that with increasing
size, the emission wavelength increases. QDs are mainly composed of groups II-VI, III-
V, and IV-VI materials in which the electron-hole pairs (excitons) are spatially confined
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in three dimensions (i.e., zero degree of freedom) owing to quantum confinement effect
(QCE) [5,6]. The zero-dimensional QDs structures of InP QDs are shown in Figure 1b and
InP/ZnSe/ZnS core-shell QDs in Figure 1c [7]. In core-shell QDs, the core and shell are
usually made up of form II–VI, IV–VI, and III–V semiconductors in CdS/ZnS, CdSe/ZnS,
CdSe/CdS, and InAs/CdSe configurations [8–10]. Core-shell QDs can mitigate the issue
of low fluorescence quantum yield in originally passivated QDs by utilizing the shell to
passivate the surface trap states. In addition, the shell protects against environmental
changes and photo-oxidative degradation, and provides a second path for modularity.
The size, shape, and composition of both the core and the shell can be precisely regulated,
allowing the emission wavelength to be tuned over a broader range of wavelengths than
for either individual semiconductor.

Figure 1. (a) Emission color and wavelength of QDs corresponding to their sizes (b) InP QDs;
(c) InP/ZnSe/ZnS core-shell QDs [7]. Figure reproduced with permission from ACS Publications.

Quantum wires are electrically conducting wires with the quantum effects in two
dimensions influencing their transport characteristics. Since this phenomenon only hap-
pens in the nanometer scale, they are often known as nanowires (NWs). For a specific
material, the significance of quantization is inversely proportional to the diameter of the
nanowire [11]. It varies depending on the electronic properties of the material, especially
the effective mass of the electrons. This means that it will be determined by how conduction
electrons interact with the atoms in a particular material. Figure 2a shows CdSSe NWs
dispersed on a low-index MgF2 substrate illuminated with a 405 nm laser emitting various
colors from green to red along the length of the NWs [12]. Nanowires have a number of
unique properties that cannot be found in bulk or three-dimensional materials. This is
due to the fact that electrons in nanowires are quantum confined laterally and therefore
occupy energy levels that are different from the traditional continuum of energy levels or
bands found in bulk materials. Figure 2b shows the red illumination of CdSe-CdS quantum
rods (QRs) upon excitation in the ultraviolet (UV) region [13]. The efficient overlap of
electron and hole wave functions in CdSe-CdS QRs with a spherical seed embedded in an
elongated shell contributes to the reduction of nonradiactive decay due to excitons trapped
in surface defects, resulting in a high quantum efficiency of emission. Furthermore, the
quasi-cylindrical symmetry of the CdS shell and the crystal field effect on the radiative
charge recombination within the rods would also result in strongly linearly polarized
luminescence along their axis.
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Figure 2. (a) CdSSe nanowires dispersed on a low-index MgF2 substrate [12]. (b) CdSe-CdS quantum rods [13]. Figure
reproduced with permission from ACS Publications and Wiley Online Library.

In two-dimensional nanomaterials (2D), quantum confinement occurs in one direction
exhibiting plate-like shapes and includes graphene, nanofilms, nanolayers, and nanocoat-
ings. However, in bulk or 3D materials, there is no confinement in any dimension. When
compared to bulk materials, layered 2D materials have a variety of unique features, in-
cluding a high aspect ratio (surface-area-to-volume ratio) that is strongly related to the
number of layers. From a scientific and technological standpoint, 2D materials such as
graphene have a number of benefits over bulk 3D materials because their properties may
be dynamically tuned via electrical, chemical, electrochemical, and other methods. In-
creased relative surface area and quantum effects are two major characteristics that cause
the properties of 2D materials to differ dramatically from those of other materials such
as 3D materials. These factors can change or improve the optoelectrical and mechanical
properties of the materials. When a particle gets smaller, the surface has a higher proportion
of atoms than the inside. As a result, when compared to bigger particles, nanoparticles
have a substantially higher surface area per unit mass. Even with crystalline solids, as the
size of their structural components shrinks, the material’s interface area expands, affecting
both mechanical and electrical properties significantly. When matter’s size is reduced to the
nanoscale, quantum effects can begin to dominate its properties. These can have an impact
on a material’s optical, electrical, and magnetic properties, especially when the particle size
gets closer to the nanoscale. Quantum dots and quantum well lasers for optoelectronics are
examples of materials that take advantage of these features.

Although Cd-based zero-dimensional QDs exhibit excellent properties, 2D-QDs have
recently emerged as a paradigm with new possibilities and features with improved ap-
plicability due to their planar confinement [14–16]. Two-dimensional QDs are QDs or
nanoparticles made out of layered inorganic materials or 2D sheets that have a unique
luminescence and chemical capabilities due to their inherent 2D structure. The majority of
2D-QDs retain their 2D shape or lattices from their bulk form, but with improved solution
dispersibility and surface functionalization capabilities. Two-dimensional QDs are typically
made up of only a few layers or even a single layer of material having lateral dimensions of
less than or equal to 10 nm. The bandgap of 2D-QDs can be tuned by optimizing their lat-
eral dimension and number of layers. Two-dimensional QDs are very attractive for various
applications such as sensing [17,18], catalysis [19–21], batteries [22,23], and biological ap-
plications [24] owing to their superficial functionalization and better solution processibility.
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In essence, 2D-QDs can be considered as QDs originating from the structure of 2D sheets
with unique luminosity and chemical properties. There are different types of 2D-QDs,
consisting of 2D-QDs with a single component, 2D-QDs with two elements, and 2D-QDs
containing multiple components. Under 2D-QDs with a single element category, there
exists carbon dots [25], phosphorene dots [26], and quasi 2D-QDs [27–29]. Carbon dots
(CDs) are zero-dimensional carbon-based materials with significant amount of attention
owing to their various advantages such as low toxicity, chemically inert, tunability, good
water solubility, and physiochemical properties [30,31]. Only the CDs with 2D structure
can be considered as 2D-QDs as they exhibit similar characteristics to that of semiconduc-
tor QDs in terms of photophysics and quantum effects. Phosphorene dots are a direct
bandgap semiconductor material, primarily black phosphorous with a bandgap lying in
between 0.3 and 2 eV and thickness less than 7 nm in its 2D form [32]. Quasi 2D-QDs are
those elements of group IV and V such as Si, Ge, B, Pb, and Sn that can be formed in the
form of nano-sheets, so they can serve as materials for 2D-QDs. However, there are no
experimental studies on 2D-QDs with these materials so far, so there is still an unexplored
promise and endless possibilities in the 2D-QDs family domain. Two-dimensional QDs
containing two elements consist of Silicon Carbide (SiC) dots, C3N4 dots, Boron Nitride
(BN) dots, transition metal dichalcogenides (TMDs) QDs, and transition metal oxides
(TMOs) QDs. SiC dots are wide bandgap semiconductor QDs, which is very attractive for
biomedical applications with advanced photoluminescence and long fluorescence lifetime
due to efficient quantum confinement [33]. The g-C3N4 monolayer may be considered
to be a graphene sheet containing units of tri-s-triazine connected by the amino group
and may serve as another type of 2D-QDs [34]. BN quantum dots are analogous to C3N4
except carbon (C) is replaced by boron (B), resulting in honeycomb-free structure unlike in
g-C3N4. BN dots show great potential for biological and optoelectronic applications owing
to its wide bandgap of 5–6 eV and high quantum yield. TMDs dots are heavy metal-free
quantum dots with a general formula of MX2, where M can be Mo, In, Pt, Cd, Ti, W, V,
Nb, Ni, Re, Rb, Pb, Bi, Ta, Zr, Fe, and Hf; and X can include S, Se, and Te [35–37]. MoS2
QDs, which display remarkable metallic and other optical properties with the potential
to drive significant developments in 2D material-based research, are the most common
TMDs QDs. TMOs QDs are typically semiconductor QDs with a larger bandgap than that
of TMDs with a general formula of MOx, where M can be Mo, Cr, Sc, W, etc., of which
MoOx (x < 3) and WO3-x are the most investigated QDs [25,38,39]. Figure 3a represents
the crystal structure of TMDs QDs that is composed of three atomic planes and often two
atomic species: a metal and two chalcogens [40]. The honeycomb hexagonal lattice has
three fold symmetry and can be used to establish mirror plane and inversion symmetry.
At submicron scales, 3D materials no longer behave like their 2D counterparts, which can
be advantageous. TMD monolayers are structurally stable, have a specific bandgap, and
electron mobilities that are comparable to those of silicon, allowing them to be used in the
fabrication of transistors [41]. Figure 3b shows representative scheme of the section of a
field effect transistor based on a monolayer of MoS2. TMD monolayers are also particularly
promising for optoelectronics applications due to their direct bandgap. Atomic layers of
MoS2 have been used as a photodetector and multilayer MoS2 can be used to fabricate
an ultrasensitive detector to be with a photoresponsivity reaching 880 AW−1, which is
106 times higher than the first graphene photodetectors [42]. Figure 3c shows a typical
scheme of the section of ultrasensitive photodetector based on a monolayer of MoS2.
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Figure 3. (a) Structure of 2-D Quantum dots. (b) Field effect transistor based on monolayer of MoS2. (c) Photodetector
based on a monolayer of MoS2 [40].

Under 2D-QDs with multiple components, there are MXene-type QDs and other
2D-QDs prepared from MXene-type materials. MXene-type QDs are the two-dimensional
transition metal carbides, carbonitrides, and nitrides-based QDs with a general formula of
Mn+1XnTx (n = 1–3), where M represents the transition metals, X represents the C or N ele-
ments, and Tx represents the surface termination groups such as –O, –F, or –OH [43]. Other
2D-QDs derived from MXene material include ternary 2D materials such as h-BNC [44],
which is a hybridized boron nitride and graphene domains, doped TMDs [45], lamellar
metal hydroxides [46], heterostructured TMDs [47], etc. Moreover, two-dimensional (2D)
graphene has recently emerged as graphene quantum dots (GQDs) with impressive proper-
ties, the bandgap of which can easily be tuned to transform into zero-dimensional quantum
dots. By allowing greater surface area, higher solubility, and flexibility of doping with
other nanomaterials, the dimensions of GQDs can be modified to provide higher stability
characteristics [48,49]. As the family of 2D materials continues to grow and the photolumi-
nescence (PL) of the 2D-QDs is controlled by certain variables such as QCE, surface states,
defects, doping, etc., it is essential to study the 2D-QDs PL. QCE is size-dependent and
comes to existence in semiconductors when the sizes become comparable to the Bohr radius,
resulting in the formation of low-dimensional materials with more advanced features as
compared to bulk materials. The PL phenomenon in 2D-QDs can be explained by taking ex-
amples of two classes of CDs, one with graphitized carbon core (class 1) and the other with
disordered carbon core (class 2). For the class 1 CDs, the energy gap between the highest
occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LOMO)
decreases with increasing size; however, a contrasting behavior for energy gap dependence
on size has been observed for class 2 CDs. This inverse trend is due to the increased strain
experienced by the excited state triggered by the disordered carbon core when the QD size
is decreased. Hence, as the size of the QDs changes, the trend in the energy bandgap of
2D-QDs would influence the PL. The interaction between the 2D-QDs and the solvents
also affects the characteristics of the PL as a strong surface interaction can lead to the lumi-
nescence and polarization properties being improved. It has been previously stated that
the emission from surface energy traps will lead to the blue PL, while the red PL emission
will result from the intrinsic emission from the QCE [50]. In addition, a significant amount
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of oxidation could generate more surface defects that serve as recombination centers for
the excitons, which can influence the PL characteristics, resulting in a narrowing energy
gap [51]. Besides oxygen-based groups, carboxyl or amine-based functional groups could
cause major surface distortions by acting as non-radiative electron-hole recombination
centers, thus affecting the PL characteristics [52]. The fluorescence characteristics of the
2D-QDs also rely on the difference in energy between the intrinsic state and the edge state,
creating a significant influence on the 2D material properties [53]. Another important
factor affecting the PL characteristics is the doping effect as sulfur or nitrogen doping could
lead to a blue-shift, whereas the PL emission peak may experience a red-shift if boron or
fluoride is used for doping. Two-dimensional QDs of graphenes and other materials, as
well as optoelectronic devices based on them, have attracted a lot of attention in recent
years. Many researches have claimed that MoS2 2D-QDs have strong photoresponsivity
and detectivity due to outstanding light absorption and a decent PL quantum yield [54,55].
Photodetectors were expected to perform better with a hybrid technique that combined
a high light absorption layer with a 2D layer structure. Phototransistors with a hybrid
structure of PbS QDs and 2D WeS2 have been reported with outstanding performance
and broadband photodetection [56]. Another hybrid structure integrating core-shell QDs
and WS2 nanowalls exhibits great nonradiative energy transfer and excellent No2 gas
sensing performance [57]. Through plasmonic enhanced photoluminescence, hybrid zero-
dimensional core–shell CdSe/ZnS QD/two-dimensional monolayer WSe2 semiconductors
with an Ag nanodisk (ND) can achieve a high color conversion efficiency of 53% [58]. A
detailed explanation of these recent advances is provided in the following sections.

With all these features in various aspects, 2D-QDs have started to have significant
interest in a wide range of applications in recent years, such as sensors, batteries, white light
emitting diodes (WLEDs), supercapacitors, photocatalysis, photodetectors, etc. While great
advancements have been made, there are some missing remnants that are still struggling
to be explored. In addition, in terms of material synthesis, the current growth, efficiency,
and productivity of 2D-QDs are far from the criteria necessary for high output and mass
production to be met for commercialization in different industries. Figure 4 gives an
overview of the organization of the present 2D-QDs review. In this review, we discuss in
detail the characteristics, synthesis of 2D-QDs in terms of recent development in various
applications, and the challenges faced in terms of device applications.

Figure 4. Overview of the present 2-D quantum dots review.



Nanomaterials 2021, 11, 1549 7 of 30

2. Characteristics of 2D-QDs

The properties of 2D-QDs are quite fascinating in terms of broad emissions rang-
ing from the deep UV to near-infrared (NIR) wavelengths that mainly depend on the
size-dependent QCE, surface interaction with solvents, defects from ligands, synthesis tem-
perature, etc. Two-dimensional QDs suspensions can emit blue or green light or sometimes
red under UV irradiation, but they are transparent and colorless or light yellow and brown
under daylight. As we have already mentioned, the size and the surface chemistry are
critical factors for determining the PL of 2D-QDs. To mention a few examples, the green
light emission from GQDs is attributed to the defect centers originated from ligands such
as oxygenous functional groups, while the blue emission is due to intrinsic states in the
highly crystalline structure. In addition, solvent types play an important role in deciding
the PL color as green emissions will result from methanol, yellow from ethanol, and orange
from hexanol. The explanation behind this is due to the fact that the size of QDs varies
with the change in solvents and hence the emission wavelengths change. The following
section describes the structural and optical characteristics of 2D-QDs in particular.

2.1. Excitons in Monolayer TMDs

Excitons in most semiconductors have a small binding energy, usually about 10 meV,
and a broad radius, which encompasses several atoms, making them Wannier–Mott type
excitons. They are so-called “free” excitons, which are delocalized states that are free to
move around the crystal as a single entity. Since the binding energies of excitons in most
conventional semiconductors are usually in the same order or lower than thermal energy
at room temperature, the excitons are easily dissociated by interactions with phonons. As a
result, observing excitonic effects in conventional semiconductors at room temperature is
challenging. TMD crystals, on the other hand, have a poor van der Waals layered structure
and a large effective mass of valence/conduction bands, resulting in a high exciton binding
energy and prominent excitonic effects in transitions at room temperature [59]. The more
evident excitonic effects in TMD monolayer is attributed to substantial enhancement
of Coulomb interactions in the 2D limit due to spatial confinement and poor dielectric
screening [60,61]. This can lead to interesting many-particle phenomena including the
creation of various forms of excitons, such as optically allowed and forbidden dark excitons,
as well as spatially distributed interlayer excitons states. Figure 1a represents a schematic
diagram of exciton, trion, and biexciton generation in TMDs through photoexcitation [62].
The valence and conduction band peaks of the monolayer TMDs are localized at the
corners (K and K’ points) of the 2D hexagonal Brillouin zone, resulting in having a direct
bandgap. Similar to graphene, this leads to the formation of two inequivalent valleys at the
K and K’ points in momentum space. The lack of inversion symmetry causes spin–orbit
coupling in monolayers, which induces valence band splitting, and seems to have no effect
on conduction bands. As a result, two exciton peaks, A and B, will form owing to the
existence of two possible vertical transitions from two spin-orbit split valence bands to a
doubly degenerate conduction band. Figure 5b shows the photoluminescence (PL) and
differential reflectance spectra of monolayer TMDs flakes on quartz substrate where A and
B represent the resonance peaks corresponding to excitonic transitions [62]. For ultrathin
samples, differential reflectance is an important indicator of absorbance. Because of the
fast intra-valence-band relaxation processes leading to dominant formation of A excitons,
the emission of A excitons is much more intense than that of B excitons. Near-degenerate
exciton states induce strong absorption at higher energies (C peak). The monolayer TMDs
allow the formation of excitons from both same and multi-valleys in the Brillouin zone
by coupling between electron and hole in different valleys, as shown in Figure 5c [62].
The former exciton is considered a bright exciton since it normally recombines radiatively,
while the latter exciton is called a dark exciton since direct recombination to emit a photon
is prohibited as only cross recombination is allowed [63]. Excitons in monolayer TMDs are
of Wannier type, which have localized wave functions and can move freely throughout
the crystal despite their extremely high binding energy. The energy dispersion curves of
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exciton, trion, and biexciton have a parabolic shape, as shown in Figure 5d, reflecting the
exciton’s freely translational motion [62]. However, because of their heavier masses, trion
and biexciton have a smaller curvature than that of exciton. The increase in exciton energy
caused by the addition of one more charge carrier characterizes the trion binding energy,
Eb,T while biexciton binding energy, Eb,xx can be defined as the decrease of two isolated
excitons after formation of a bound state. Hence, the trion binding energy Eb,T can be
defined as the subtraction of exciton state energy, Ex from trionic state energy, ET and the
biexciton binding energy, Eb,T can be defined as Exx-2Ex [64], where Exx is the biexcitonic
state energy. In PL or absorption/reflection spectra, the trion (biexciton) binding energy is
typically derived by separating exciton resonance energy from trion (biexciton) resonance
energy [65–68]. Unlike exciton binding, which is strongly influenced by the electron-to-hole
effective mass ratio, the energy of trion and biexciton binding is hugely affected by the
electron-to-hole effective mass ratio.

Figure 5. (a) Schematic of exciton, trion, biexciton generation in TMDs by photoexcitation. (b) PL and differential reflectance
spectra of monolayer TMDs flakes on quartz substrate. (c) The four possible exciton formations in K and K′ valleys. (d) The
bound electron-hole pair in exciton picture. [62] Figure reproduced with permission from Elsevier.

2.2. Structural and Optical Characteristics of Graphene Quantum Dots (GQDs)

Graphene quantum dots (GQDs) have attracted a lot of attention as one of the most
important issues in graphene-based electronics due to the QCE at the nanometer scale,
which enables researchers to investigate new structural, optical, and electrical phenomena
not seen in other materials [69–72]. Because of its size-controllable characteristics, graphene
may generate tunable light in the visible range at the nanoscale level, which is ideal for
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optoelectronic device applications. The bandgap of GQDs is proportional to 1/L, where L
is the average size of GQDs, and can be regulated up to about 3 eV [73]. The electrons in
graphene behave like massless Dirac fermions because their valence and conduction bands
overlap at two inequivalent Dirac points and exhibit linear spectra near these points. With
significant innovations, different sizes and shapes of graphene, such as hexagonal zigzag,
hexagonal armchair, triangular zigzag, and triangular armchair, can now be obtained from
bulk material [74]. GQDs’ electronic properties are highly influenced by their size and
shape as their bandgaps decrease tediously with increase in number of atoms [75]. Since
the absorption edges of GQDs can be configured by varying their sizes, they are especially
interesting for light harvesting in photovoltaic devices. Figure 6a shows the HRTEM images
of GQDs for their major shapes for a given size (d) of GQDs in percentage (p), where p is
defined as the ratio of GQDs with a major shape at each average size [76]. Average sizes of
GQDs are being shown using parenthesis in Figure 6a. At d = 5 and 10 nm, circular and
elliptical GQDs with average sizes of 5 and 12 nm, respectively, are obtained. At each d,
circular GQDs account for more than half of the total number of GQDs in these samples.
Circular GQDs disappear at d = 15 nm, leaving only elliptical GQDs with one-third of
them deformed. Most GQDs are hexagon-shaped at d = 20 nm, but about a quarter of them
are distorted with curved sides. The majority of GQDs are hexagon-shaped at d = 25 nm,
with small, irregular-shaped GQDs. Most QDs have rounded vertices and are formed like
parallelograms with rectangular shape at d = 35 nm.

Figure 6. (a) HRTEM images of GQDs for their major shapes and corresponding populations (p) with increasing average size
of GQDs. (b) Size-dependent PL spectra excited at 325 nm for GQDs of 5–35 nm average sizes in DI water. (c) Dependence of
PL peak shifts on the excitation wavelength from 300 to 470 nm for GQDs of 5–35 nm average sizes. [76] Figure reproduced
with permission from ACS Publications.
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The photoluminescence (PL) characteristics of GQDs have been extensively studied
because of their potential applications in optoelectronics field. The PL seen in GQDs is
caused by electron-hole pair recombination in quantum-confined GQDs, with the peak
energy and shape of the PL spectra highly influenced by the size of the GQDs. Figure 6b
shows size-dependent PL spectra excited at 325 nm for GQDs of 5–35 nm average sizes in
DI water [76]. The sharp PL peak at 365 nm corresponds to PL generated by DI water [77].
The inset of Figure 6b displays various PL colors for different sizes of GQDs. Regardless of
the excitation wavelength, the PL spectra of GQDs with an average size of 17 and 22 nm
are resolved in two PL bands, presumably due to the integration of GQDs with various
sizes/shapes. In addition, as the excitation wavelength is increased from 300 to 470 nm,
the PL peak shifts to longer wavelengths consecutively for all GQD sizes. Figure 6c shows
the dependence of PL peak shifts on the excitation wavelength from 300 to 470 nm for
GQDs having average size in the rage of 5–35 nm [76]. With the exception of 470 nm, all PL
spectra display identical size-dependent peak shifts, regardless of excitation wavelength.
As the average size increases up to 17 nm, the PL peak energy drops, confirming the QCE.
However, the QCE is no longer relevant for average sizes greater than 17 nm, so the PL peak
energy increases with increasing size. As long as GQDs maintain their circular/elliptical
form for average sizes less than 17 nm, the PL peak energy decreases with increasing size;
however, when the shape of GQDs becomes polygons for average sizes greater than 17 nm,
the PL peak energy increases with increasing size as shown in Figure 6a. The development
of an excited-state relaxation channel resulting in inelastic light scattering or the alleviation
of thermalization due to electron–phonon scattering by using an ultrafast high-power light
source have been proposed as explanations for the visible PL contained in graphene sheets.
In order to investigate the light emission phenomenon in GQDs, the electronic transitions
can be controlled by varying the size/shape of the GQDs while producing strong visible PL
emissions. Fast carrier-carrier scattering dominates electron–phonon scattering in GQDs,
allowing for direct recombination of excited electron-hole pairs, resulting in high-energy
PL in GQDs.

3. Synthesis of 2D-QDs

Synthesis of 2D-QDs can be accomplished using one of the two main approaches, top-
down and bottom-up approaches. Top-down approaches involve use of physical, chemical
electrochemical, and even mechanical methods in order to exfoliate, scale, and decompose
bulk materials in well-managed experimental environments for obtaining 2D-QDs. This
approach may incorporate intense conditions such as elevated temperatures and chemical
reagents such as concentrated acids and strong oxidizing agents. Methods comprising
the top-down synthesis approach can sometimes be simpler and cheaper, but it is quite
challenging to control the size and shape of 2D-QDs synthesized using these approaches.
Bottom-up approaches, on the contrary, implicate synthesis of 2D-QDs with the help of
atomic as well as molecular precursors. Bottom-up approaches usually offer better control
over size as well as morphology of the 2D-QDs and facilitate efficient utilization of the
precursors atoms or molecules. Specific examples on top-down and bottom-up synthesis
of 2D-QDs are presented in the following sub-sections.

3.1. Top-down Approaches

Many practical demonstrations of top-down synthesis of 2D-QDs can be found in the
literature. Qiao et al. prepared 2D-QDs from monolayer molybdenum disulfide (MoS2)
using an effective multi-exfoliation method depending on lithium (Li) intercalation [78].
As per the reported demonstration, the monolayer MoS2 was made to undergo the first
intercalation by dipping of pristine 2H-MoS2 powder in n-butyl lithium solution in hexane.
Filtration and repeated washing with hexane were performed in order to remove excess
lithium as well as organic residues and to retrieve the resultant chemical specie, LixMoS2.
First, exfoliation was performed immediately after the first inculcation by stirring LixMoS2
in water in an ultrasonic stirrer. Adding hydrochloric acid reduced the pH value of
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the solution to 2, which made flocculation occur rapidly. The resultant mixture was
washed with the water and centrifuged a few times to attain a solution with a pH value
of 7 corresponding to the neutral flocculation. The dried, re-stacked MoS2 nanosheets
were then made to undergo the second and third exfoliation with Li-intercalation by
reiterating the same procedure as mentioned above. Un-exfoliated material was removed
by centrifuging the resulting mixture and purification of the mixture was accomplished
by removing lithium hydroxide (LiOH) with the help of a dialysis bag. Finally, MoS2 QDs
were collected by further centrifuging the mixture and then annealed to obtain enhanced
photoluminescence. The complete process to extract 2D-QDs from MoS2 is summarized
in Figure 7.

Figure 7. Schematic illustration of the preparation of monolayer MoS2 QDs using multiple exfoliation with Li intercala-
tion [78]. Figure reproduced with permission from Elsevier.

Another top-down approach of synthesizing 2D-QDs is reported by Gopalakrishnan et al.
who demonstrated synthesis of MoS2 quantum dots interspersed in few-layered sheets of
MoS2 [79]. Heterodimensional MoS2 QDs were prepared by incorporating a liquid exfolia-
tion technique in various organic solvents. To briefly describe the experimental approach,
MoS2 powder was mixed with 1-methyl-2-pyrrolidone in a container and sonicated with
the help of an ultrasonic bath uninterruptedly for a few hours. Then, the resulting disper-
sion was sonicated with a sonic tip for a few more hours. The dispersion was centrifuged
again after keeping undisturbed for a whole night. Temperature was maintained below
277 K by placing the sample in an ice bath. A step-by-step description of the procedure is
depicted schematically in Figure 8.
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Figure 8. Schematic representation of the synthesis procedure to obtain MoS2 quantum dots interspersed in MoS2 nanosheets
using a liquid exfoliation approach. (A) MoS2 QDs formed through sonication bath. (B) MoS2 QDs interspersed in the
exfoliated MoS2 nanosheets. [79] Figure reproduced with permission from ACS Publications.

3.2. Bottom-up Approaches

Top-down synthesis approaches, discussed in the previous sub-section, suffer from
a few major limitations. These approaches are usually affected by environmental condi-
tions, require expensive and hazardous organic solvents, and ask for intense pretreatment
measures. Moreover, it is challenging to precisely control the characteristics and mor-
phology of the 2D-QDs produced using top-down approaches. An alternative method to
synthesize 2D-QDs, a so-called bottom-up approach, makes use of atomic or molecular
precursors to form the 2D-QDs with desired characteristics. Ideally, bottom-up growth of
2D-QDs (or other low-dimensional nanomaterials) can be prepared with almost infinite
number of possible precursors but the challenge in this regard is to develop sufficient
understanding of the reaction energetics and precisely control the reaction dynamics [80].
Figure 9a shows schematically how a nanosheet can be grown from molecular precursors,
incorporating a bottom-up synthesis approach [81]. Wang et al. report on preparation of
MoS2 QDs under hydrothermal conditions by incorporating sodium molybdate and cys-
teine as precursors [82]. The steps to accomplish the synthesis are summarized as follows:
Na2MoO4·2H2O was dissolved in water, pH of the solution was attuned to pH 6.5 with the
help of 0.1 M HCl after ultra-sonication, water and L-cysteine were added to the solution
followed by a few minutes of sonication, the resulting mixture was then transferred into
Teflon-lined stainless steel autoclave and made to react while maintaining the temperature
at 200 ◦C, the solution was cooled in ambient environment, and supernatant containing
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MoS2 QDs was gathered after a few minutes of centrifugation. The process preparing
2D MoS2 QDs and their use as a sensor for trinitrophenol (TNP) detection is depicted
schematically in Figure 9b [82].

Figure 9. (a) Schematic representation of the growth of a nanosheet from molecular precursors [81]. (b) Hydrothermal route
for the synthesis of photoluminescent MoS2 quantum dots (QDs) by using sodium molybdate and cysteine as precursors [82].
Figure reproduced with permission from Elsevier and ACS Publications.

In summary, 2D-QDs can be prepared using both top-down and bottom-up approaches
while being mindful of the pros and cons of each individual approach. Top-down ap-
proaches usually offer the benefit of inexpensive exfoliation targets while bottom-up
approaches have potential to create 2D-QDs with well-controlled characteristics. Top-
down approaches require intense reaction conditions and strong chemical reagents while
bottom-up methods are relatively less mature and more sensitive as well as challenging.

4. Hybrid 2D Quantum Dots Materials and Their Applications

Two-dimensional QDs such TMDs, GDQs, and others have recently sparked a lot
of interest due to their peculiar optical and electronic properties such as tunable energy
gaps, effective electronic transport, and semiconducting characteristics [37,83–85]. These
2D-QDs have received considerable attention since the advent of graphene and tunable
size/shape GQDs and have become a cutting-edge research subject. Owing to their ease of
functionalization, 2D-QDs such as TMDs have piqued researchers’ interest for a variety
of applications, including transistors, optoelectronic devices, catalysis, energy conversion,
batteries, and sensing [41,86–97]. Conversely, atomically thin TMDs have low light ab-
sorption, so researchers are working on possible strategies to increase the performance of
photodetectors based on TMDs. Subsequently, many researchers proposed various nanos-
tructures such as nanobelts, nanorods, and vertically aligned layers to improve the aspect
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ratio and light-harvesting abilities of TMDs [98–102]. Another important technique for
improving photodetection efficiency is to use heterostructure design or nanoparticle deco-
rations [103,104]. Hybridization of colloidal QDs with TMDs has also been investigated by
many researchers to improve optical sensing properties [105–108]. More specifically, if the
emission of donor (QDs) and acceptor (TMDs) have spectral overlap during hybridization,
a strong dipole–dipole coupling mechanism, NRET (non-radiative energy transfer), will be
triggered between them [109,110]. The magnitude of spectral overlap and the separation
between donor and acceptor are the two most important factors for determining NRET
efficiency. This NRET efficiency implies an increase in energy transfer rate, which explains
why QDs/TMD hybrid devices have better photoelectrical performance [111,112].

In this regard, Tang et al. proposed a hybrid 3D nanostructure for optical sensing and
NO2 gas-sensing by integrating colloidal CdS/ZnS or CdSe/ZnS core-shell QDs with 3D
WS2 nanowalls [57]. This method transforms a WOx thin film into vertically standing WS2
nanowalls using a quick synthesis method with high heating and cooling rates. Figure 10a
depicts an illustration of the WS2 nanowalls synthesis process using the chemical vapor
reduction method in a horizontal quartz tube furnace. The sulfurization process started
with the WO3/SiO2/Si substrate and sulfur powder as the precursors. After rapid heating
to 65 °C and rapid cooling at a rate of approximately 25 °C/min, a high crystal quality
WS2 film with 3D nanowall structures was developed, which is confirmed by a series of
material characterization. The hybrid structures of QDs and TMDs have already been
discussed as a way to improve their individual performance, and it is believed that the
QDs/TMDs hybrid device will be a good candidate for various optoelectronic applications.
Tang et al. demonstrated an innovative design of a core-shell QDs/WS2 hybrid device for
gas sensing applications. The device is assembled in a gas delivery chamber after being
bonded to the electrodes on a printed board circuit (PCB) with silver wires to investigate
the sensing application. To facilitate effective NO2 gas desorption, a 365 nm UV LED
light was installed in the chamber and was continuously switched on and irradiated on
the device during measurement. They used a graphene CdSe QDs/WS2 hybrid device
in this study because it has the best non-radiative energy transfer efficiency. Figure 10b
demonstrates the structural model and p–n junction model of CdSe-ZnS QDs on 3D WS2
nanowalls. During the gas sensing mechanism, the electrons from n-type CdSe-ZnS QDs
near the surface tend to diffuse into p-type WS2, while holes from WS2 near the interface
diffuse into the surface of CdSe-ZnS QDs. As a result, a space charge carrier diffusion
region is formed at the p–n interface as a potential barrier, as shown in the second panel
of Figure 10b. When the hybrid device is exposed to NO2, the NO2 molecules interact
with the 3D WS2 nanowalls, causing electrons to be extracted from the surface. This
will cause the equilibrium in the space charge region to be disrupted, causing electrons
from the n-type CdSe-ZnS QDs side to diffuse through the space charge region before
a new equilibrium is established [113,114]. As a consequence, the potential barrier’s
width would be reduced, increasing the conductivity of the hybrid device and resulting in
improved sensing efficiency. For monitoring the gas-sensing properties, the gas delivery
chamber was pumped to vacuum and the pumping operation was suspended when NO2
gas was injected into the chamber during the measurements. Figure 10c represents the
time-resolved response measurement of NO2 for different concentrations showing the
corresponding dynamic NO2-sensing curves. As shown in Figure 10d, the hybrid device
demonstrates substantial responses ranging from 40.4% to 95.7% at varying concentrations
ranging from 50 parts per billion (ppb) to 1 part per million (ppm), respectively. At an
exceptionally low concentration of 50 ppb NO2, the G-CdSe QDs/WS2 device performed
admirably. Figure 10e shows the device’s sensing test in a concentration of 50 ppb NO2
gas, which confirmed the device’s strong cycling stability at such a low gas concentration.
Figure 10f shows the response and recovery times of the G-CdSe QDs/WS2 gas sensor
at a concentration of 1 ppm NO2, suggesting a remarkably quick response time of 26.8 s
to achieve the outstanding gas response efficiency of 95.7% and just 187.9 s to return to
the restored state. The G-CdSe QDs/WS2 device’s overall gas sensing characteristics are
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equivalent or even better than those recorded in previous studies for TMD-based and
heterostructured gas sensors. In comparison to previously described QDs/TMD thin film
device configurations, this hybrid system facilitates the integration of a high-aspect-ratio
3D nanowall structure with the characteristics of nanosized QDs, resulting in a much
larger contact area between QDs and TMDs, which can also expedite detecting behaviors.
Furthermore, the scalability of this hybrid structure enables the indicated device to have a
much wider range of applications in advanced sensing.

In addition to sensing applications, ultrathin monolayer TMDs have significant poten-
tial for use in the development of flexible light-emitting devices of mini-scale [115–117].
The strong spatial confinement and weak dielectric screening in monolayer TMDs would
lead to strong Coulomb interaction and exciton formation with exciton binding energy
of about 0.32–0.72 eV [65,118,119]. This high binding energy is responsible for making
the excitons effects stable at room temperature, which is favorable for delivering strong
light–matter coupling. Plasmonic materials have already been shown to improve lumines-
cence in a number of applications by enabling intense light–matter interactions [120,121].
Plasmonic nanostructures are known to enable high electric field confinement, so they can
easily be coupled with 2D TMDs to enhance light absorption and emission. When plas-
monic nanostructures and TMDC materials are coupled, a plasmon–exciton coupling effect
occurs, resulting in a plexciton that can be used to boost photoluminescence (PL) [122–124].
In addition, the plasmonic nanostructures can strengthen the absorption mechanisms of
TMD materials as the plasmonic resonance spectrum matches the absorption spectrum of
TMDs [125,126]. Chang et al. studied the plasmonic-enhanced PL and color conversion ef-
ficiency of a plasmonic nanostructure containing a hybrid 0D core-shell CdSe/ZnS QD/2D
monolayer tungsten diselenide (WSe2) semiconductor with an Ag nanodisk (ND) [58].
Plasmonic nanostructure of an Ag ND array was used to enhance the emission from the
monolayer WSe2 and improve color conversion from QDs to WSe2. Figure 11a shows the
schematic of the QD-Ag-WSe2 hybrid structure with Ag ND patterned on a monolayer
WSe2 film that had previously been pre-transferred, and then CdSe QDs were sprayed
on top of it. A 5 nm thick alumina (Al2O3) spacer layer was deposited on the interlayers
between QD and WSe2 to prevent from PL quenching of the monolayer WSe2 due to
charge transfer between WSe2 and Ag ND. The PL intensity of the QD-Ag plasmonic
nanostructure was found to be significantly higher than that of CdSe QDs without the
Ag ND. The emergence of exciton–plasmon interactions to improve exciton absorption
is credited with this PL boost. Furthermore, since the local surface plasmonic resonance
(LSPR) spectrum overlapped with the exciton absorption and emission peak of monolayer
WSe2, the PL spectrum of Ag-WSe2 hybrid structure was found to be enhanced by an
enhancement factor of 1.8. To investigate the light color conversion mechanism from the
emission of CdSe QDs to monolayer WSe2, the CdSe QDs and monolayer WSe2 with Ag
ND were integrated on a SiO2 substrate. Figure 11b illustrates the PL spectra of the three
nanostructure samples with an Ag ND array with a diameter of 123 nm. The orange, red,
and green solid lines correspond to the QD-Ag, WSe2-Ag, and QD-Ag-WSe2 nanostruc-
tures, respectively. The QD-induced emission from the QD-Ag-WSe2 nanostructure had
a considerably lower PL intensity than the QD-Ag nanostructure. The PL intensity of
the WSe2 emission in the AgWSe2 nanostructure, on the other hand, was increased after
QDs were added. The energy conversion from the QD emission to the WSe2 emission was
most likely the cause of this enhancement. The color conversion efficiency (η) from QDs
emission to WSe2 emission was estimated for various LSPR wavelength of the Ag ND
plasmonic nanostructures as shown in Figure 11c. The coupling of the Ag ND plasmonic
nanostructure and the fine-tuning of the Ag nanostructure plasmonic resonant wavelength
resulted in a 53% color conversion efficiency from QDs to WSe2. The efficiency was found
to decrease with increase in resonant wavelength reaching <1% corresponding to an ab-
sorption wavelength of 800 nm. The energy transfer efficiency of bare QD, QD-Ag, and
QD-Ag-WSe2 nanostructures was investigated using time-resolved PL with varying Ag
ND absorption wavelengths from 500 to 850 nm. Figure 11d illustrates the PL decay curves
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for the QD peak with Ag ND in the QD, QD-Ag, and QD-Ag-WeS2 structures fitted by a
tri-exponential decay at a resonant wavelength of 650 nm. The QDs in the QD-Ag-WSe2
structure have a faster PL decay rate than those in the QD-Ag structure. This faster decay
rate of the QDs is attributed to exciton–plasmon coupling effect and PCRET mechanism
in the QD-Ag-WSe2 structure. The PL decay rates for QDs in the QD, QD-Ag, and QD-
Ag-WSe2 structures were estimated from the TRPL analysis and found to be 0.99 ± 0.03,
1.78 ± 0.05, and 2.38 ± 0.09 ns−1, respectively. The energy transfer rates of the QDs in
the QD-Ag-WeS2 structure were obtained using the PL decay rates values and plotted in
Figure 11e as a function of the plasmon resonance wavelength of Ag NDs. The energy
transfer rate of QDs is found to be dependent on the plasmon resonance wavelength of Ag
NDs. Furthermore, the energy transfer rate curves exhibit a similar behavior to the color
conversion efficiency curve from QD to WSe2 emission. The energy transfer rate reaches a
maximum of 0.16 ns−1, which corresponds to a plasmon resonance wavelength of 650 nm.
Subsequently, hybrid QD/TMD light emitters can be coupled with GaN-based white LEDs
to improve color temperature and broaden the color gamut of a miniature white LED.

Figure 10. (a) Schematic of the synthesis process of WS2 nanowalls by the horizontal furnace. (b) Structural model and p–n
junction model of the QDs/WS2 device before and after exposure to NO2 gas. (c) Time-resolved response measurement
of NO2. (d) Response of the G-CdSe QDs-WS2 gas sensor as the function of NO2 concentrations. (e) Stability test of the
NO2-gas-sensing properties. (f) Rise time and fall time fitting of the G-CdSe QDs-WS2 gas sensor. [57] Figure reproduced
with permission from ACS Publications.

It has previously been stated that combining QDs and TMDs would result in improved
photoelectrical performance due to the coupling mechanism and high energy transfer rate.
Two-dimensional TMDs have been opted for photodetector or phototransistor due to its suit-
able bandgap and high carrier transport mobility [42,127]. As a result, it is anticipated that
combining QDs and 2D materials would dramatically improve photodetectors’ performance.
Hybrid QDs/graphene phototransistors have been demonstrated to have high responsivity
owing to the photogating effect caused by capacitive coupling [128]. Most graphene-based
devices, on the other hand, have a high dark current and a slow response time due to the
presence of semimetal channels [129–132]. To address these issues, a 2D MoS2 channel has
been used to develop a QDs/MoS2 hybrid phototransistor, which suppressed dark current
and improved response time [133]. Because of its proper bandgap values (direct bandgap
of 1.6 eV in single layer form and indirect bandgap of 1.3 eV in bulk form), large surface-
to-volume ratio, and high mobility, WSe2 is ideal for optoelectronic applications. Hu et al.
designed hybrid phototransistors for high performance and broadband detection using
high transport mobility p-type 2D WSe2 and PbS QDs [56]. Figure 12a depicts the device
structure of the PbS QD-capped hybrid back-gate WSe2 phototransistor. The transistor
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channel, which has a width of about 10 m, is made of monolayer WSe2 grown by chemical
vapor deposition. A thermal evaporation method with a shadow mask has been used to
deposit gold (Au) electrodes (source and drain) of about 100 nm. Colloidal PbS QDs were
spin-coated on a WSe2 nanosheet device to create the hybrid device, and the coated QDs
ligands had to be replaced later with tetrabutylammonium iodide (TBAI). The photocarrier
transport mechanism in the hybrid photodetector under infrared (IR) illumination is shown
in Figure 12b. Under illumination, photoexcited carriers are generated at the PbS QDs
layer and the built-in potential between the PbS QDs and WeS2 monolayer separates the
carriers at the p–n junction. The photogenerated holes will be moved from PbS QDs to WSe2
monolayer under an applied electric field, VDS, while electrons will remain accumulated in
the PbS QDs layer. These electrons can efficiently gate the WSe2 nanosheet by functioning
as a photogating component through capacitive coupling and help in regulating device
conduction. The hybrid phototransistor’s system output has been investigated, and it has
been discovered that it inherited the wide spectral detection due to the broad absorption of
PbS QDs. Figure 12c represents the wavelength dependence response curve of the hybrid
phototransistor with under-applied voltage of 1 V at back-gate voltage (VGS = 0 V). The
response peak at 970 nm corresponds to the first exciton peak. By varying the size of
PbS QDs, it is possible to achieve wavelength selectivity and a wide photoresponse for
UV–vis–NIR detection. The specific detectivity (D*) of the hybrid phototransistor has also
been investigated and plotted in Figure 12d as a function of back-gate voltage under 970 nm
illumination. At all back-gate voltage ranges, the specific detectivity could reach 1013 Jones,
regardless of whether the back-gate was in the ON or OFF state. Figure 12e shows the
responsivity and specific detectivity curves as a function of VDS at VGS = 0 V. The high
responsivity of the hybrid photodetector is attributed to the superior detectivity properties.
The responsivity as well as the specific detectivity increase with increasing applied field at
VGS = 0 V with an estimated maximum value of about 7 × 105 AW−1 and 7 × 1013 Jones,
respectively, which is superior to other TMDs-based photodetectors. Future optoelectronic
devices may benefit from this current device construction strategy, improved photogating
performance, and stable device operating conditions.

Figure 11. (a) Hybrid zero-dimensional core–shell CdSe/ZnS quantum dot (QD)/two-dimensional monolayer WSe2 semicon-
ductors with an Ag nanodisk (ND). (b) PL spectra of the three samples. (c) Energy conversion efficiency from the CdSe QD
to WSe2. (d) PL decay curves of the QD peak (630 nm) in the QD, QD−Ag, and QD−Ag−WSe2 structures with an Ag ND.
(e) Energy transfer rate of QD in the QD−Ag−WSe2 structure [58]. Figure reproduced with permission from ACS Publications.
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Figure 12. (a) Schematic diagram of back-gate WSe2 phototransistor device capped by PbS QDs. (b) Schematic description
for the photocarrier transport in hybrid phototransistor under illumination. (c) Wavelength dependence response curve of
the hybrid phototransistors with VDS = 1 V. (d) Specific detectivity as a function of gate voltage at VDS = 1 V. (e) Responsivity
and detectivity as a function of VDS (VGS = 0 V). [56] Figure reproduced with permission from John Wiley and Sons.

Aside from TMDs, graphene QDs has shown to have unique properties for ultrafast
photodetectors due to its high charge carrier mobility, thin profile, tunable optical proper-
ties, wavelength-dependent absorption, and strong absorption spectrum [134–136]. The ul-
trafast conversion of photons to currents in ultrafast photodetectors is specifically driven by
high carrier mobility. Previous research has shown that the most sensitive graphene-based
photodetectors require the inclusion of an electrically passive sensitizing layer made up of
colloidal QDs (CQDs), perovskites, carbon nanotubes, or 2D materials [128,129,137,138].
Since graphene has zero bandgap, it can generate charge carriers by light absorption across a
broad energy spectrum. Furthermore, graphene enables wafer-scale integration by low-cost
manufacturing based on complementary metal-oxide-semiconductor (CMOS) fabrication
processes. The graphene photodetectors have the advantage of being compatible with
standard photonic integrated circuits in terms of the manufacturing process. Unfortunately,
graphene photodetectors have low sensitivity and broad dark currents due to biasing of the
graphene channel or fabrication method [139–144]. As a result, developing a better pho-
todetector configuration that can fully exploit graphene’s properties is a top priority. In this
regard, Nikitskiy et al. addressed the challenges by demonstrating a hybrid photodetector
device by integrating a CQD photodiode atop a high-gain graphene phototransistor [145].
The carrier drift in the photodiode due to electric field can dramatically increase charge
collection by altering the electrically passive sensitizing layer to an active one. Figure 13a
illustrates the optical image of the hybrid graphene transistor–CQD photodiode detector, as
well as the electrodes used. The device is made up of a graphene channel on top of which
is deposited a patterned 300 nm thick CQD film, which is then overcoated with an ITO
electrode’s top-contact. In the region where the three layers overlap, the photodetector’s
active area is created. The CQD layer is patterned to prevent charge carriers from escaping
to the drain contacts, thus obviating the need for graphene. This four-terminal sensing
device is being designed to eliminate the contact resistance and isolate measurement only
over the photodetector’s active region. Figure 13b shows the phototransistor operation
as well as the illustration of the electronic circuit. When light is incident on the device,
electron-hole pairs are generated in the CQD layer drifted by the built-in electric field at
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the interface and by the bias applied across the diode. Electrons will continue to remain
in the CQD, while holes will diffuse to the graphene channel, changing its resistance due
to depletion at the interface. A voltage drop is estimated between V+ and V− electrodes,
while a constant current is driven between source and drain electrodes. Without account-
ing for the resistance of the metal and graphene contacts, the photo-induced change in
resistance or voltage drop can be measured with the highest accuracy. The responsivity
and EQE of the indicated device were measured and plotted in Figure 13c as a function of
applied top-contact bias (VTD). The responsivity of the phototransistor is measured to be
5 × 108 VW−1 at VTD of 1.2 V corresponding to bias current of 100 µA. The EQE is found to
be dependent on VTD as shown in Figure 13c, where it increases and saturates after certain
VTD value. Without any bias, EQE is about 10%, and it increases with VTD to about 75%
at 1.2 V reverse bias, where it saturates. This is due to the fact that as VTD increases, the
depletion region expands, improving charge collection efficiency. The carrier lifetime of
the hybrid photodetector has been estimated from the photoresponse bandwidth shown in
Figure 13d. The electrical 3dB bandwidth of the photodetector can reach a maximum value
of 1.5 kHz and was found to be increasing with increasing VTD, as shown in the inset of
Figure 13d. The extracted effective lifetime of the photodetector is 106 µs corresponding
to 1.5 kHz bandwidth. In addition, the photoconductive gain has been estimated using
decay components and found to be on the order of 105, with a gain-bandwidth product
of >1.5 × 108 Hz. Figure 13e illustrates the photoresponse of the photodetector expressed
in terms of ∆V as a function of incident irradiance. The lowest observable irradiance was
estimated to be 10−5 Wm−2 at a VTD of 1.2 V, with the detector’s linear dynamic range
increasing as VTD values increased. The inset of Figure 13e demonstrates the linearity of
photoresponse for high irradiance values. The photoresponse is observed to increase as
the incident irradiance value increases, being saturated at a power density of 0.5 Wm−2.
Figure 13f shows the measured responsivity of the detector in terms of VW−1 and AW−1

as a function of incident irradiance. The high linear dynamic range achieved by using
a photodiode rather than a passive sensitizer is demonstrated by the flat responsivity
responses over a broad range of power density. Using a photodiode instead of a pas-
sive sensitizing layer allows for a much wider range of output parameters. Finally, this
hybrid design demonstrates graphene’s and other two-dimensional materials’ ability to
be effectively combined with other optoelectronic materials, paving the way for hybrid
2D/0D optoelectronics.

Min et al. reported another hybrid structure comprising zero-dimensional (0D) GQDs
and semiconducting 2D MoS2 that exhibits remarkable properties for optoelectronic de-
vices, outperforming MoS2 photodetectors [146]. GQDs exhibit unique optoelectronic
features such as long carrier lifetimes and rapid electron extraction due to enormous transi-
tion energies and weak coupling to excitonic states. When GQDs interact with 2D materials,
quantum effects can influence charge carrier dynamics, allowing for charge transfer, carrier
separation, and collection. The hybrid GQD/MoS2 photodetectors were made by drop-
casting the GQDs solution over bulk mechanically exfoliated MoS2 membranes on SiO2/Si
substrates, as shown in Figure 14a. The insets of Figure 14a depict the corresponding molec-
ular structures of GQDs (top view) and MoS2 (side view). The photoelectrical mechanism
of this device consists of different photo-physical steps—photoexcitation, re-absorption,
tunneling, and thermal excitation. When the energy of the incoming photon source exceeds
the bandgap of GQDs, photoexcitation occurs in MoS2 and GQDs. A re-absorption process
of emitted photons from GQDs by MoS2 is then detected, thereby increasing the photocur-
rent by generating more electron-hole pairs. Following that, photoexcited electrons in the
conduction band of GQDs are injected into MoS2 to initiate a tunneling process. Similarly,
holes from MoS2’s valence band will be transferred to GQDs, resulting in a higher rate of
recombination. Finally, the Schottky barrier formation at the interface of GDQs and MoS2
leads to thermal excitation of higher-energy electrons from GQDs to MoS2. As a result of the
multiple charge carrier amplification processes, the photoresponse of hybrid GQD/MoS2
devices will be higher than bare MoS2 devices. Using a tunable laser source for optical
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illumination, the photoresponse of the hybrid GQD/MoS2 and bare MoS2 devices as a
function of wavelength has been analyzed, as shown in Figure 14b. The photoresponsivity
of the hybrid GQDs/MoS2 was found to be 775 AW–1 at a laser wavelength of 400 nm,
whereas the photoresponsivity of bare MoS2 was found to be 44.8 AW−1. In comparison
to previous photodetector studies based on other material systems such as CuPc and
CdTe, the experimentally determined photoresponsivity is over 300 times higher [147,148].
Furthermore, the GQD/MoS2 hybrid device exhibits a detectivity of 2.33 × 1012 Jones and
an EQE (~241%) of almost 17 times higher than that of the bare MoS2 device (~14%).

Figure 13. (a) Optical image of the hybrid graphene transistor-CQD photodiode detector. (b) Schematic of phototransistor
operation. (c) Responsivity and EQE of the visible/near-infrared phototransistor. (d) Normalized photoresponse as a function of
light modulation frequency. Inset: extracted 3 dB bandwidth values. (e) Photo-induced signal as a function of incident irradiance,
inset demonstrates the linearity of photoresponse for high irradiance values. (f) Measured responsivity of the detector in VW−1

(left axis) and responsivity converted in AW−1 (right axis). [145] Figure reproduced with permission from Springer Nature.

Figure 14. (a) Schematic of the hybrid GQD/MoS2 device under optical illumination. (b) Photoresponsivity of hybrid
GQD/MoS2 and the bare MoS2 devices. [146] Figure reproduced with permission from ACS Publications.



Nanomaterials 2021, 11, 1549 21 of 30

Two-dimensional TMDs with substantial spin–valley coupling, which introduce a
significant coupling between the spin and valley degrees of freedom, have recently attracted
a lot of attention for prospective applications in spintronics, valleytronics, and other fields.
Furthermore, earlier research has revealed that the lack of interlayer interaction causes
an indirect-to-direct bandgap transition in monolayered WS2 sheets [149,150]. Because
of the strong spin–valley coupling and the presence of a direct bandgap in monolayered
WS2 sheets, they can be used in optoelectronics, spintronics, valleytronics, and other
fields [151–153]. Due to the strong quantum confinement effect, monolayered WS2 QDs
can display more remarkable features than monolayered sheets, which strengthens the
spin–valley coupling and widens the bandgap. Zhang et al. demonstrated ultrasmall and
monolayered WS2 QDs with giant spin–valley coupling and purple luminescence [154].
Three absorption peaks are observed on monolayered WS2 sheets: 625 nm, 550 nm, and
450 nm. The absorption peaks at 625 and 550 nm are due to transition from the spin-
splitting valence band to the conduction band at the K point of the Brillouin zone while
the optical transition between the density-of-state peaks in the valence and conduction
bands causes the absorption peak at 450 nm. However, for annealed WS2 QDs, three
exciton absorption peaks at A (379 nm), B (303 nm), and C (269 nm) are observed. The large
energy differential between the A and B excitonic absorption peaks in annealed WS2 QDs
is discovered to be up to 821 meV, implying the presence of a huge spin–valley coupling.
The annealed WS2 QDs have two unique emission peaks at 416 and 342 nm, corresponding
to A and B emission peaks. It is obvious that the significant quantum confinement effect
will undoubtedly enhance the spin–valley coupling and increase the bandgap of QDs. As
a result, the ultrasmall lateral size could be responsible for both the enormous energy
difference between the two absorption peaks and the purple PL in annealed WS2 QDs.
Moreover, there is no spin–orbit splitting in WS2 QDs and this suppression in the intervalley
scattering is also responsible for the giant spin–valley coupling.

Table 1 summarizes the performance of 2D-QDs-based devices used in this review.

Table 1. Performance of 2D-QDs-based devices.

Device Structure Performance References

Core-shell QDs/WS2 hybrid device
for gas sensing

The hybrid device demonstrates an outstanding NO2 gas-sensing performance
with a remarkably quick response time of 26.8 s to achieve the outstanding gas

response efficiency of 95.7%.
[57]

CdSe/ZnS QD-Ag-WSe2

The Ag ND was combined with CdSe QDs and monolayer WSe2 to enhance the
monolayer WSe2 emission and convert the light from QDs to WSe2 with the

highest efficiency of 53%.
[58]

Hybrid PbS QDs/WSe2
The hybrid device demonstrated a high responsivity up to 2 × 105 A W–1 and a

high specific detectivity of 7 × 1013 Jones.
[56]

PbS QDs photodiode atop a high-gain
graphene phototransistor

The device demonstrated quantum efficiencies in excess of 70%, gain of 105, and
3 dB bandwidth of 1.5 kHz with a measured detectivity of 1 × 1013 Jones.

[145]

GQD/MoS2 hybrid photodetector The device exhibits a photoresponsivity 775 AW–1 at a laser wavelength of
400 nm, a detectivity of 2.33 × 1012 Jones, and an EQE of about 241%.

[146]

WS2 QDs for spintronics
and valleytronics

Ultrasmall and monolayered tungsten dichalcogenide QDs with giant
spin–valley coupling and purple luminescence for various applications in

spintronics and valleytronics.
[154]

There are numerous pros and cons to employing 2D-QDs in several electrical and
optical systems. Two-dimensional materials have been extensively explored as channel
materials for future electronic device applications due to their atomically thin structure
and superior electrostatic control, which enhances immunity to short channel effects and
the loss of band-edge sharpness. With the number of stacked layers and the amount of
strain, the bandgap and mobility of these materials changes. On the one hand, being able
to tune channel attributes makes many circuit design challenges easier to solve. However,
uncontrolled variation might lead to catastrophic yield consequences. Two-dimensional
materials are excellent choices for optoelectronic devices owing to their unique features,
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such as a wide response spectrum, exceptional flexibility, and strong light–matter inter-
action. Additionally, 2D heterostructure-based optoelectronic memory device capable of
accumulating and releasing photo-generated carriers under the influence of an electric
field and light irradiation can be developed. Because of the emergence of 2D materials,
miniature, flexible, and low-energy optoelectronic storage systems are now possible. Due
to their strong charge mobility and moderate bandgaps, field-effect transistors (FETs)
have been made from a range of semiconducting 2D materials such as TMDs and black
phosphorus, making them suitable candidates for this application. The intrinsic flexi-
bility of 2D materials is an advantage, as they may be used to produce flexible circuits
when combined with suitable substrates. Many TMDCs (such as MoS2, MoSe2, WS2, and
WSe2) and black phosphorus have a bandgap in the optical or near-infrared range and
good charge transport properties, making them ideal for high-efficiency photodetectors.
Two-dimensional materials have exceptional spin-valley characteristics, allowing for spin
injection, manipulation, and detection in a single integrated device, resulting in scalable
and ultrafast nonvolatile logic circuits with extremely low energy dissipation. TMDs with
a direct bandgap allow circularly polarized light to excite carriers preferentially within
a given valley with a specified valley pseudospin. Unfortunately, there are a number of
challenges that limit the use of single 2D materials. When metal electrodes are directly
deposited on 2D semiconductors during device manufacturing, a Schottky barrier comes
into existence, resulting in high contact resistance. Furthermore, due to their short lifetime,
intralayer excitons formed in single 2D semiconductor materials are challenging to handle,
limiting their use in exciton devices. Most insulated 2D materials, including hBN, are not
acceptable for use in devices on their own, and BP is readily oxidized when exposed to air.
In the following section, we go over these problems in greater detail.

5. Challenges Faced by 2D-QDs Materials

Despite recent accomplishment in this fascinating research area, there are several
crucial challenges to be taken into consideration.

5.1. Synthesis/Deposition of 2D-QDs Materials

The first challenge concerns the synthesis of crystalline 2D materials, including the
control of their crystalline phases, grain size, grain boundaries, and morphology. The
structure characteristics play a very prominent role in the chemical and physical prop-
erties of 2D materials. Therefore, a sagacious structure of interface layer synthesis is
vital. Consequently, the structure of 2D materials extremely depends on the physical
and chemical properties of the precursors, such as solubility, thermal stability, sensitivity,
catalytic activity. For a better understanding of the crystal growth mechanism, the structure
characterization at the atomic level is a critical challenge. Several in situ characterization
techniques such as in situ XRD and TEM have been developed in the past few years.
However, expeditiously observing the growth of 2D materials using these techniques is not
quite facile. For exemplification, the formation of 2D materials at the interfaces due to the
assemblage of the precursor is still inconclusive by TEM caused by sensitivity to electron
irradiation [155]. Moreover, the adequately low mechanical and chemical stability causes
the defect during the transfer process of 2D materials. Furthermore, some air-sensitive 2D
materials in the ambient atmosphere cause possible oxidation, which leads to the structure
rottenness. Additionally, it is very difficult to transfer the 2D materials synthesized on the
solid substrates [156].

5.2. Transfer Process

The chemical vapor deposition technique is tremendously used to grow high surface
area and the controlled layer of 2D materials on donor substrate, which is a promising
functional material for conductors, semiconductors, and insulators in the photodetector,
RRAM, gas sensors, flexible, and transparent devices [35]. In several cases, 2D materials
must be transferred from a donor substrate to a target substrate; however, there are high
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possibilities of damaging 2D materials during the transfer process and as a consequence
of chemical doping, contamination, and tearing. For the high-performance commercial
application, 2D materials should have a high surface area, damage-free structure, and high
mechanical and chemical stability. However, a transfer process to overcome all challenges
and has still not been developed. Despite this, the transfer process is classified into four
parts: wet transfer, dry transfer, mechanical transfer, and electro-chemical transfer [157].
However, the wet transfer process is the most common and widely used process to transfer
2D materials [158]. This process uses polymethyl methacrylate (PMMA) as a transfer
film. PMMA plays an extremely significant role in protecting the material from physical
damage. It was reported that large surface area 2D material with 4-inch wafer size could
be transferred onto desired target substrate using the wet transfer process [159]. After
the transfer process, PMMA is difficult to completely remove from the target substrate,
which can cause degenerateness of electrical and optical properties of the photodetector
fabrication with 2D material. To overcome this challenge and completely remove the
PMMA from the material and improve the electrical and optical properties, additional
etching and high-temperature annealing have been suggested [160].

5.3. The Schottky Barrier

One of the biggest issues confronting 2D materials-based devices is the presence
of a Schottky barrier (SB) at the interface between the material and the contact metal
electrode. However, the potential energy barrier for electrons formed at the Schottky
junction, known as the Schottky barrier height, blocks the flow of charge carriers into the
device channel [161]. Subsequently, this prominent Schottky barrier height led to large
contact resistance and performance degradation in two-terminal devices [162]. It has been
suggested to tune the Schottky barrier by reducing fermi level pinning leads for better
performance of devices. Zhou et al. reported the use of graphene as the metal electrode,
which comes into contact with single layer of the SnSe sheet to form a van der Waals (vdW)
heterojunction. After theoretical calculations, they found that the fermi level pinning is
reduced because of the interaction between the SnSe layer and graphene and intrinsic
properties of SnSe sheet are protected. Usually, charge carriers move from the source to the
channel zone, then they conflict with two energy barriers, one of being the Schottky barrier
(ΦSB⊥), which can be found at the vertical interface of the contact and used to transport
the charge carrier across the interface of the SnSe/G heterojunction, and the other one
arises at the lateral interface contact and the channel part characterized by band bending,
∆EF. These parameters are extremely prominent and inconclusive to the performance of
transistors [163].

6. Conclusions and Future Outlook

Two-dimensional QDs are increasingly being touted as promising materials due
to their fascinating properties (such as full color PL spectrum, high solubility, bandgap
tunability, high selectivity to special molecules, and ease of surface functionalization) and
widespread applications in sensors, batteries, WLEDs, photodetectors, phototransistors, etc.
Despite their great potential for optoelectronics applications, as described in this review
article, they encounter a series of daunting obstacles that must be overcome before their
commercialization. The emergence of double element QDs, as well as their heteroatom-
doped variants, has yet to be thoroughly investigated, both in terms of synthesis and
fundamental property evaluation. Several mechanisms in terms of PL improvement,
surface passivation, structure optimization, manufacturing aspects, and so on have yet to be
established. To fulfill the standards for industrial-scale applications or commercialization,
the current output, performance, quantity, and productivity of 2D-QDs must be monitored.
Furthermore, energy conversion and storage based on 2D-QDs materials are still in the
early stages of development. Because of their relatively low physical and chemical stability,
most 2D-QDs currently suffer from long-term stability and durability problems, which
must be addressed in the future for practical applications. When 2D-QDs are used as
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fluorescent active materials, their low quantum yield and wide emission band can pose a
problem when compared to conventional fluorophores.
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