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ABSTRACT

The accumulation of somatic genomic alterations
that enables cells to gradually acquire growth advan-
tage contributes to tumor development. This has the
important implication of the widespread existence
of cooperative genomic alterations in the accumu-
lation process. Here, we proposed a computational
method HCOC that simultaneously consider genetic
context and downstream functional effects on cancer
hallmarks to uncover somatic cooperative events in
human cancers. Applying our method to 12 TCGA
cancer types, we totally identified 1199 cooperative
events with high heterogeneity across human can-
cers, and then constructed a pan-cancer coopera-
tive alteration network. These cooperative events are
associated with genomic alterations of some high-
confident cancer drivers, and can trigger the dys-
function of hallmark associated pathways in a co-
defect way rather than single alterations. We found
that these cooperative events can be used to produce
a prognostic classification that can provide comple-
mentary information with tissue-of-origin. In a fur-
ther case study of glioblastoma, using 23 cooperative
events identified, we stratified patients into molecu-
larly relevant subtypes with a prognostic significance
independent of the Glioma-CpG Island Methylator
Phenotype (GCIMP). In summary, our method can be
effectively used to discover cancer-driving coopera-
tive events that can be valuable clinical markers for
patient stratification.

INTRODUCTION

Cancer is a complex and multistep disease derived from
a process analogous to Darwinian evolution (1). During
the process, a series of successive genetic alterations pro-
vide cells a significant fitness advantage and in turn dis-

rupt the homeostasis of cells. Such an accumulation process
can promote clonal expansion of cancer cells, resulting in
multiple tumor entities linked with distinctive histological
patterns and different clinical behaviors (2). Importantly,
these accumulating genetic alterations do not occur at ran-
dom, but mutually depend on each other (3,4). A number
of co-occurring events were frequently observed in different
types of cancers by using high-throughput microarray and
sequencing data (5,6). And combinational alterations be-
tween cancer driver genes have already been confirmed in
vitro and vivo. For example, for mice with oncogenic Kras
mutation, further mutation of Scrib was more likely to de-
velop higher grade lesions (7). What’s more, some coop-
erative events have been reported to be clinically relevant.
The 1p/19q co-deletion was associated with histological
type, improved prognosis and chemosensitivity in gliomas
(8,9). Thus, it is necessary to comprehensively identify and
analyze cooperative events of genetic alterations so as to
enhance our understanding of tumorigenesis and improve
treatment strategies for precision medicine.

Many previous studies identified co-occurring pairs of so-
matic events in cancer genomes through classical statisti-
cal tests (6,10–12). Using Fisher’s exact test, Cui et al. con-
structed a network of co-occurring and anti-co-occurring
cancer gene mutations (13). Based hypergeometric test and
Gaussian mixture model, Yeang exploited combinations of
mutations from Catalog of Somatic Mutations in Cancer
(COSMIC), and revealed co-occurrence and mutual exclu-
sivity across and within pathways (5). Wang et al. proposed
a stratified FDR control approach which combined with the
traditional statistical test for identifying co-mutated gene
pairs in cancer genome (14). Furthermore, by considering
biological pathways, some studies focused on co-occurring
pairs between/within pathways (15,16).

However, statistical co-occurrence is insufficient to indi-
cate key ‘driver’ roles of these cooperation of somatic events
in cancer. Several evidences support that genetic alterations
are highly associated with each other. For example, a set
of genes exhibit a mutually exclusive pattern because of
functional redundancy or synthetic lethality (17,18). While
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some genes tend to co-occur, due to complementary func-
tion or epistasis interaction (15,19). Moreover, simulation
trials based on the life history trade-off theory demon-
strated that fitness provided by genetic alteration depended
on prior mutational history (3,4). These high associations
reflect that clonal evolution in cancer favors specific combi-
nations of genetic alterations and the series of genetic al-
terations driving the development of tumors are context-
dependent. The selective sweep process of cancer genome
evolution indicated that co-occurring events are highly de-
pendent on specific genetic contexts (20). In addition, gene
cooperation in tumorigenesis usually contributes to various
cancer hallmark-related functions. For example, coopera-
tion of Myc and Kras in transgenic mouse model of breast
cancer could increase proliferation and prevent cell apopto-
sis (21). Medulloblastomas with combined TP53 and MYC
defects were enriched in relapse cases and showed locally
aggressive behavior (22). It is thus reasonable to suppose
that effective cooperative events should be associated with
specific genomic patterns and have the functional effects on
cancer hallmarks.

At present, large-scale genomic projects such as The Can-
cer Genome Atlas (TCGA) (23) are providing unprece-
dented cancer genomic data, which allows us to comprehen-
sively explore and investigate somatic cooperative events in
cancer. Here, we proposed a new and integrated method,
HCOC (hallmark associated cooperation under specific ge-
netic context), to identify cooperative events in human can-
cers. HCOC used ‘omics’ data sets to identify cooperative
events that are associated with specific genetic contexts and
contribute to cancer hallmark-associated pathways. The
method consists of two components: (i) using the idea of
motif matching from mapping of transcription factor bind-
ing sites to characterize the recurrent gene-dependent ge-
nomic patterns of candidate cooperative pairs (24); (ii) char-
acterizing downstream functional effects of candidate pairs
on cancer hallmarks.

Applying HCOC to somatic mutation and copy num-
ber alteration (CNA) data sets from 12 TCGA cancer
types referring to >3000 samples, we totally identified 1199
cooperative events and constructed cooperative networks
within and across cancers. The gene cooperative events dis-
played significant associations with some key drivers and
could severely disturb cancer hallmark pathways. Besides,
the pan-cancer cooperative network provided complemen-
tary information with tissue-of-origin to predict clinical
outcome. As a case study, cooperative events in glioblas-
toma (GBM) were useful to characterize a clinically effec-
tive prognostic stratification of GBM patients, suggesting
the clinical importance of cooperative events.

MATERIALS AND METHODS

Data source

We obtained copy number data (level 3), mutation data
(level 2) and gene expression data (level 3) as well as clin-
ical data of 3753 patients from 12 cancer types in TCGA.
The detail information was shown in Supplementary Table
S1. By assessing batch effects for the expression data and
copy number data of 12 cancers, we observed that no data

showed major effects (see Supplementary Methods for de-
tails).

Binary matrix of somatic genetic alteration. For log-
transformed expression data from RNAseqV2 and
RNAseq, genes with no expression in >20% of samples
were filtered. For DNA copy number, we only retained
high-level amplification and homozygous deletion dis-
cretized by GISTICv2. For mutations, silent mutations
were discarded. Then, we removed hyper-altered patients
as mentioned in (25), that is, the patients with >1000
genetic alterations were excluded, and 3049 patients were
remained. For each cancer type, we integrated somatic copy
number and mutation profiles to build a binary genetic
alteration matrix.

HCOC (hallmark associated cooperation under specific ge-
netic context)

Tumorigenesis is accompanied by a series of genetic alter-
ation events. A single alteration is insufficient to make nor-
mal cells cancerous (26,27). These driver alterations are gen-
erally not independent. They can cooperate with each other
and thus form a cooperative network, ultimately impair-
ing normal cellular functions and allowing cells to acquire
important cancer hallmarks (21,22). To identify coopera-
tive events and build cooperative networks in human can-
cers, we proposed a computational method based on asso-
ciations with specific genetic contexts and effects on cancer
hallmarks by integrating multiple ‘omics’ data.

Identification of candidate cooperative gene pairs. To iden-
tifying candidate cooperative gene pairs, the genes satisfy-
ing the following requirements were remained: (i) genes with
copy number alteration (CNA) have a dominant alteration
type (amplification or deletion). In detail, for a given gene,
let N be the number of patients with CNA. A and D repre-
sent the numbers of amplification and deletion, respectively
(N = A + D). We modeled the number of the dominant al-
teration type as a binomial distribution with N trials with
success probability p, and then inferred whether the domi-
nant alteration type was over-presented by testing the null
hypothesis H0: P = 0.5 against the alternative hypothesis
H1: P > 0.5. Let L = |A – D|, then we sought to determine
the rejection region L ≥ l where l is a given threshold. Since
L = A – (N – A) = 2*A – N, we have

Pr(L ≥ l) = Pr
(

A ≥ N + l
2

)
=

N∑
k=

⌈
N+l

2

⌉
(

N
k

)
pk(1 − p)N−k

At a significant level α = 0.05, we calculated the least inte-
ger l under the null hypothesis. Only genes above the thresh-
old l were kept and their dominant alteration types were
recorded. For each of these genes, patients with the dom-
inant alteration type were used, and those with the other
type were regarded as noise. (ii) Genes with CNA should
have concordant mRNA expression. We used a one-tailed
Wilcoxon signed rank test. For a given gene with CNA,
the gene expression in the amplification (or deletion) sam-
ples should be significantly higher (or lower) than wild-type
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samples. (iii) Genes with amplification, deletion or mutation
in <3% of samples were discarded.

We enumerated all possible gene pairs from the gene set,
and then selected those pairs with co-occurrence frequency
>3%. Since a copy number event can refer to numerous
genes (28), we filtered the gene pairs located within the same
chromosome arm.

Identification of cooperative pairs with specific genetic con-
texts. Some important driver genes, at present, were found
to contribute to the development and progression of can-
cer. They generally harbor high alteration frequencies and
are crucial for decision making in the neoplastic transfor-
mation of various cell types. Different combinations of de-
fects of these driver genes represent different ways of ma-
lignant transformation. We assumed that cooperative al-
terations are highly associated with specific alteration pat-
terns of these driver genes when compared to wild-type and
single-altered cases. To characterize the genomic patterns
in each cancer type, we selected the high-confident can-
cer drivers according to the following criteria: (i) known
cancer genes recorded in at least one public database (in-
cluding OMIM (29), GAD (30) and CGC (31)); (ii) lo-
cated in the wide peak regions identified by GISTICv2 (32)
(for genes with CNA); (iii) recurrently mutated genes down-
loaded from http://www.tumorportal.org/ and identified by
MutSigCV/MutSigCL/MutSigFN (33) (for genes with mu-
tations); (iv) genes with alteration frequency >10% (5%
for LAML). These driver genes were termed marker genes
(Supplementary Table S2). If the overall alteration status
of marker genes were similar within co-altered patients but
significantly different from the others, the genomic pattern
was regarded as a specific genetic context.

Inspired by the motif enrichment analysis of transcrip-
tion factors (24), we utilized marker Position Frequency
Matrix (mPFM) to characterize the genetic context. Let k
denoted the total number of marker genes identified as de-
scribed above, and {m1, m2, . . . mk} represents the marker
gene sequence representing the alteration status of these
marker genes in a specific cancer sample. For each candi-
date cooperative pair, to evaluate whether the gene pair is
highly associated with a specific genetic context, we first ex-
tracted all co-altered patients. Then using the idea of leave-
one-out, we left one patient in this co-altered group and
used the others to build a mPFM. The mPFM model was
constructed from a matrix, where each row represented the
alteration status (alteration or wild-type) in a given sam-
ple and each column represented a marker gene. The final
mPFM was a matrix which consists of frequencies of two
possible alteration status of each marker gene (Supplemen-
tary Figure S1). Then a Log-Likelihood Ratio (LLR) scor-
ing function was used to quantify the matching degree be-
tween the marker sequence in a particular sample and the
mPFM model (Supplementary Figure S1).

LLRscore = log
(

P(marker sequence|mPF M)
P(marker sequence|backgound)

)
=

log

( ∏k
i=1 (p(mi |mPF M) + e)∏k

i=1 (p(mi |backgound) + e)

)

where marker sequence was the alteration status of
marker genes in a given sample, e was a constant
(0.00001), p(mi|mPFM) represented the frequency of the
alteration status of marker i in the mPFM model and
p(mi|background) was the frequency in background PFM
model. A high LLRscore indicated the given sample had
a similar genomic alteration pattern of marker genes with
the co-altered samples. Notably, when calculating the LLR
score, we excluded the genes that (i) was included in the co-
operative pair, or (ii) affected by CNA events and shared the
same chromosome arm locations with one of the genes in
the pair, from the corresponding marker sequence. We cal-
culated the LLR scores for the left co-altered patient and the
other wild-type and single-altered patients (Supplementary
Figure S1). By employing the area under the ROC curve
(AUC), we could assess the difference of the LLR scores be-
tween the left one co-altered patient and the other patients.
After leaving the different co-altered patient out, an average
AUC for each candidate cooperative pair was computed. By
choosing a high cutoff of 0.75, cooperative pairs that were
associated with specific genetic contexts were identified.

Identification of cooperative pairs with differential activities
of hallmark pathways. To characterize whether coopera-
tive pairs can affect cancer hallmarks, we developed a new
strategy to identify pathways associated with cooperative al-
terations by combining expression and genomic alteration
status. First, we identified biological pathways that could
reflect each cancer hallmark based on sematic similarity of
GO terms (Supplementary Figure S2 and Table S3). Sec-
ond, activities of hallmark-associated pathways in each pa-
tient (Zsj) were assessed according to the function (34):

Zs j = X̄s j − X̄j

σ j

√
|r |

where |r| is the number of genes in the pathway s, and
X̄s j represents the mean expression level over the member
genes in the pathway s in sample j. X̄j represents the mean
expression level of all genes detected in sample j, and σ j is
the standard deviation of over all the genes in sample j.

Next, we constructed a logistic regression model that
related activities of each pathway to cooperative alter-
ation status for determining whether activities of hallmark-
associated pathway are significantly different between co-
altered patients and the others. The significance of each re-
gression model was calculated. We retained candidate coop-
erative pairs that markedly influenced at least one hallmark-
associated pathway at a false discovery rate (FDR) of 0.25.

Ultimately, we considered candidate pairs to be coopera-
tive if they were associated with specific genetic contexts and
affected at least one cancer hallmark-associated pathway.
More detailed information on the methods can be found in
the Supplementary Methods.

Construction of cooperative network

The genes affected by a shared copy number event across
cancer patients were combined into a ‘meta’ gene (35) (see
Supplementary Methods, Supplementary Table S4). Then,
for each cancer, a cooperative network was constructed by

http://www.tumorportal.org/
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connecting all cooperative gene pairs identified above. The
cooperative networks can reflect all cooperative events oc-
curred in the corresponding cancer types.

RESULTS

The landscape of somatic cooperative alteration networks in
human cancers

We developed a systematic method, HCOC, based on as-
sociations with specific genetic contexts and effects on can-
cer hallmarks to identify somatic cooperative events in hu-
man cancers (Figure 1). Briefly, given a pair of somatic al-
terations, we distinguished patients into two groups accord-
ing to co-occurrence of these two aberrations, and assessed
the difference in the genomic alteration patterns of some
highly recurrent genes and the activities of cancer hallmark-
associated pathways between the two groups. The pairs as-
sociated with specific genomic alteration patterns and sig-
nificant effects on cancer hallmarks were identified as co-
operative alterations (for details, see Methods and Sup-
plementary Methods). Also, we developed an online web-
server (available at http://biocc.hrbmu.edu.cn/HCOC/) for
our method. It provides a user-friendly interface, allowing
researchers to identify somatic cooperative events.

Applying our method to 12 tumor types in TCGA refer-
ring to more than 3,000 samples, we identified numerous co-
operative somatic alteration events (Supplementary Figure
S3). The average number of cooperative events per cancer
type was 108 (ranging from 1 to 622) (Supplementary Fig-
ure S4). Only two and one cooperative events were identi-
fied in LAML and BRCA, respectively. The LAML patients
had a relatively stable genome (25), which results in much
fewer candidate cooperative pairs (co-alteration > 3%) than
other cancers. For BRCA, high heterogeneity may be a po-
tential reason why only a few cooperative pairs were iden-
tified (36,37). There are few common cooperative events
were shared by any two cancer types (Figure 2G). The co-
operative alterations identified in each type of cancer were
listed in Supplementary Table S5. We compared the results
of HCOC with another three methods––Classical hyperge-
ometric test, Gaussian mixture model (GMM) used in (5),
CDCOCA proposed by Kumar et al. (38). Using the same
pre-processing steps and thresholds as HCOC, we applied
the three methods to identify recurrently co-occurring so-
matic events in 12 cancer types. As a result, we found that
a total of 344 cooperative events that were missed by all of
the three methods were uniquely identified by HCOC (Sup-
plementary Table S12). Notably, among these cooperative
events, some have been reported to have oncogenic roles in
the malignant transformation of cells, such as TP53-MYC
in UCEC and CDK4-TP53 in GBM (39,40). The compari-
son results suggested that our method HCOC provided new
insights for into current research of somatic alteration com-
bination.

All cooperative events identified in each cancer type
formed a cooperative alteration network, which could re-
flect the landscape of cooperative events in that cancer
(Supplementary Figure S5). Some cooperative events have
been confirmed in previous works. For example, in mouse
model of high-grade astrocytoma (HGA) combined mu-
tation of Pten, p53 and Rb1 significantly reduced the la-

tency of tumor development and time to morbidity, com-
pared to HGA induced by p53 and Pten (41), which was
consistent with RB1-TP53 and RB1-PTEN identified in
GBM. De novo AML patients with concurrent DNMT3A
and FLT3 had a higher percentage of bone marrow blasts
and extremely poor prognosis compared with single alter-
ations (42,43). Cooperative events including TP53-ERBB2
(44) and PIK3CA-MYC (45) were also validated to be asso-
ciated with tumorigenesis and clinical prognosis. Through
assessing the overlap with known cancer genes recorded in
CGC, we found that genes in cooperative events were en-
riched for cancer genes in almost all cancers (Figure 2A).
Moreover, gene pairs in cooperative events were highly con-
nected in protein-protein interaction (PPI) network (Fig-
ure 2B), more likely to be co-expressed (Figure 2C) and
co-occurred in PubMed abstracts (Figure 2D), suggesting
functional links of cooperative alterations (see Supplemen-
tary Methods).

In addition, we constructed a pan-cancer cooperative al-
teration network by merging the networks built in individ-
ual cancers (Figure 2E and F). The pan-cancer network fol-
lowing a power law distribution was composed of 535 genes,
whose alterations covered 76% (2303/3049) of patients in 12
cancers. Genes with high degree showed a significant enrich-
ment for known cancer-related genes (Figure 2H). In partic-
ular, all of the top ten genes with the highest degree were key
genes in tumorigenesis (Figure 2I). TP53, for example, that
has been widely reported to be dysregulated in various can-
cers (25) was identified in nine cancer types and showed the
highest degree in the network, indicating a wide variety of
cooperative partners. Interestingly, TP53 cooperated with
completely different genes in different cancer types (Fig-
ure 2J). One reason for such substantial but heterogeneous
cooperative partners was the extremely high alteration fre-
quency of TP53 across cancers. Another possible explana-
tion, from the aspect of cancer evolution, could be that
TP53 mutation was an early clonal event in many cancers,
with subsequently subclonal genomic changes selected by
different tissue-specific environmental factors (46,47).

Dissecting specific genomic patterns and cancer hallmarks
associated with cooperative events

It should be pointed out that the cooperative events iden-
tified using our method were associated with specific ge-
nomic patterns of some recurrent genes, thus allowing to
characterize the links of cooperative pairs with these highly
altered genes. Taking PTEN-KRAS identified in UCEC as
an example, the patients with PTEN-KRAS co-alterations
displayed a specific genomic pattern––increased mutation
rates in ARID1A, RPL22 and MUC5B and decreased in
FGFR2––relative to all patients (Figure 3A, P < 0.05, one-
sided binomial test). PTEN and KRAS together with these
recurrent genes having increased alteration frequencies ap-
peared to form a cooperative module (Supplementary Fig-
ure S6). Indeed, PTEN and KRAS have been found to result
in transformation of ovarian surface epithelial cells to low-
grade adenocarcinomas (48), and PTEN could induce au-
tocrine FGF signaling to promote tumorigenesis (49), thus,
further alteration of FGFR2 was unnecessary, which was
consistent with the mutual exclusive between PTEN-KRAS

http://biocc.hrbmu.edu.cn/HCOC/
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Figure 1. The overview of HCOC.

and FGFR2. Such specific genomic contexts thus suggested
the high dependence of cooperative events on some highly
recurrent genes. Subsequently, we examined all genomic
patterns in different cancer types (Supplementary Figures
S7 and S8) and found majority of the cooperative events
significantly linking with at least one recurrent gene (Fig-
ure 3B and Supplementary Table S6). Notably, many recur-
rent genes, such as CDKN2A and PIK3CA, were associated

with multiple cooperative events (Figure 3C) across cancers,
implying that they were subjected to multiple selective pres-
sures in tumor evolution.

In parallel, our method required that the cooperative
alterations had remarkable effects on the activities of
cancer hallmarks, thus enabling us to characterize can-
cer hallmark-associated pathways affected by cooperative
events. We identified many pathways whose activities were
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Figure 2. Networks of somatic cooperative alterations across 12 cancer types. (A-D) The distribution of the fraction of cancer genes (A), the average
shortest distance in PPI network (B), the average expression correlation (C), average grail similarity rank (D) for random gene pairs in 1000 permutations.
The red point indicates the average value of all cooperative events for each cancer, an empirical P value is calculated by permutation test. (E) Pan-cancer
cooperative network merged from individual cancers. The different colors of edges represent different cancers. (F) Circos plot for all cooperative events in
pan-cancer. The different colors of links represent different cancers. (G) The cooperative events in each cancer show few overlap. (H) The fraction of top
genes ranked by the degree in pan-cancer network that are included in the CGC (red) and CGC/GAD/OMIM (blue). (I) The degree distribution of top
10 genes in pan-cancer network for each cancer and pan-cancer. (J) The cooperative partners of TP53 across 9 cancer types.

significantly affected by the cooperative events in each can-
cer type (Figure 3G and Supplementary Table S7, and see
Methods section for details). These hallmark-associated
pathways in co-altered patients presented extreme activity
relative to those in single-altered patients (Figure 3D), sug-
gesting possible changes in phenotype. In LUAD, for exam-
ple, cooperation of TP53 mutation and MLL amplification
resulted in the dramatic increase of activities of hallmark-
associated pathways including unwinding of DNA (Figure
3E) and regulation of cell cycle progression by PLK3 path-
way, consistent with a recent report that p53 mutation binds

to and upregulates the chromatin regulatory gene MLL,
which promotes cancer proliferation and growth (50). Im-
portantly, these cooperative events identified could account
for >5 cancer hallmarks per cancer type (Figure 3F and G).
In LAML, for example, eight of the ten cancer hallmarks,
such as self-sufficiency in growth signals, were associated
with the cooperative events.

Genomic instability, one of the most pervasive hall-
marks of tumorigenesis (51), correlated well with seven
pathways based on functional associations (see Supplemen-
tary Table S3). Nucleotide metabolism pathway harbor-
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Figure 3. Characterization of genomic patterns and functional effects for gene cooperative events across 12 cancers. (A) The specific genomic pattern for
PTEN-KRAS in UCEC. P value for frequency change of a marker gene is indicated by concentric circles (one concentric circle: P < 0.1, two: P < 0.05, three:
P < 0.01, one-sided binomial test). (B) The summary of the number of marker genes associated with cooperative pairs (P < 0.1). (C) Marker genes associated
with multiple gene cooperative events in each cancer. The number in each rectangle represents the count of associated cooperative pairs for corresponding
marker gene. (D) The distribution of the average scaled activity of pathways affected by cooperative pairs in each cancer. The scaled activity of pathway
s in sample j is calculated as (Zsj – Zs,min)/(Zs,max – Zs,min), where Zs,min and Zs,max represent the minimum and maximum activity scores of pathway
s across all cancer samples, respectively. (E) The hallmark associated pathway activities of different sample groups for MLL-TP53 in LUAD. P value is
calculated by one-sided Wilcoxon rank sum test. (F) CircleMap display of hallmark associated pathways, each track shows the fraction of cooperative
events which affect a specific pathway in one cancer type. The outlayer Arabic and Roman numerals correspond to pathways and cancer hallmarks in (G),
respectively. (G) The hallmark associated pathways affected by cooperative events. (H) Cooperation of PIK3CA-EIF3H in BRCA, RSRC1-CDKN2B in
ESCA, TP53-TM2D2 in LUAD and TP53-MYC in UCEC are associated with elevated activity of nucleotide metabolism pathway.

ing the strongest correlation with this hallmark was in-
fluenced by several cooperative events in multiple cancers
(Figure 3h). PIK3CA-EIF3H, RSRC1-CDKN2B, TP53-
TM2D2 and TP53-MYC represent the most significant co-
operative events increasing the activity of this pathway in
BRCA, ESCA, LUAD and UCEC, respectively (P < 0.05,
Kolmogorov–Smirnoff test, Supplementary Figure S9A).
To examine whether these cooperative events can affect
genome instability, we assumed that patients with these co-
operative events could have an increased rate of genetic
alterations (including mutation and CNA). By using the
sample set enrichment analysis (SSEA) method, we found
that co-altered patients harbored more genetic alterations
(FDR < 0.05, Supplementary Figure S9b, see Supplemen-
tary Methods). Furthermore, we analyzed the types of
DNA lesion events. Interestingly, more amplification events,
rather than deletions or mutations, were observed in co-

altered patients relative to the other patients (Supplemen-
tary Figure S9C). A plausible explanation is that these co-
operative events can lead to the increased activity of nu-
cleotide metabolism pathway, which in turn facilitates DNA
synthesis and produces more DNA for gene amplification
during replication (52).

Cooperative networks contribute to prognosis in human can-
cers

Next, we wondered whether the cooperative events identi-
fied had clinical implications. For each cancer type, we clas-
sified patients based on the occurrence of cooperative events
by using consensus clustering (see Supplementary Meth-
ods), and then performed Kaplan–Meier survival analysis.
As a result, in nine of the eleven cancers, the cooperative
events significantly correlated with overall survival (P <
0.05, log-rank test, Figure 4). To assess whether or not genes
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Figure 4. Kaplan-Meier plot of cancer-specific survival for subtypes in each cancer. Co-clustering matrices (top) and Kaplan-Meier survival plots (bottom)
were shown for ten cancer patients. For BRCA, only one cooperative event was identified, so samples were classified based on co-occurrence of this gene
pair. Kaplan-Meier plot for BRCA is shown in Supplementary Figure S12D.

in the cooperative events were enough to predict progno-
sis, we conducted a similar classification and survival anal-
ysis, but using genes involved in cooperative events. In this
case, no significant effect on overall survival was observed
in any cancer type (Supplementary Figure S10). These find-
ings suggested the importance of cooperative events in tu-
morigenesis and their prognostic value in clinical practice.

Furthermore, we performed k-means clustering based on
all cooperative events in the pan-cancer cooperative net-
work referring to 2303 samples (see Supplementary Meth-
ods). Seventeen clusters were identified by maximizing the
average silhouette coefficient (Figure 5A). We found that
most of these clusters correlated well with the cancer tissue
of origin (P < 0.0001, Chi-square test) (Supplementary Ta-
ble S8). For example, C3, C6, C9 and C17 were significantly
enriched for patients in HNSC, UCEC, CR and LAML,
respectively (P < 0.0001, hypergeometric test). Some clus-
ters, in contrast, contained a mixture of different cancer
types, such as C15, which was highly associated with the
cooperative alteration of TP53-MYC (P < 0.0001, hyperge-
ometric test) that has been reported in multiple cancer types

(22,53). Importantly, the 17 clusters exhibited significantly
different clinical outcomes through Kaplan–Meier analysis
(P < 0.0001, log-rank test, Figure 5B). However, it is not
yet clear whether they can provide additional prognostic
power beyond cancer types and clinical features. Thus, we
performed a multivariate Cox proportional hazards analy-
sis. In the model, we included age at diagnosis, sex and race
as clinical covariates, as well as cancer types. A likelihood
ratio test conditioning first on the clinical features was per-
formed; after the addition of either cancer types or clusters
to the model, we observed a large increase in the predictive
fit (P < 0.0001 and P = 0.0082, Chi-square test, Figure 5C),
further supporting the clinical value of cooperative events in
prognosis of human cancers.

Notably, among the 17 clusters, C10 exhibited the best
prognosis. PTEN-PIK3CA was found to be enriched in this
cluster (P < 0.0001, hypergeometric test). It has been re-
ported that PTEN mutation could promote phosphoryla-
tion of Akt in the context of PIK3CA mutation, and in turn
provide additive effect on the activation of PI3K pathway
(54). We thus wondered whether the cooperation of PTEN-
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Figure 5. Pan-cancer cooperative network contributes to prognosis in human cancers. (A) Clustering heatmap based on all the cooperative events in 12
cancers reveals 17 groups. The groups are identified by number and color in the second bar, while the tissue of origin specified in the top bar. The cooperative
event that are most significantly enriched in each cluster, are shown on the right of the heatmap. (B) Overall survival of 17 groups by Kaplan-Meier plot.
(C) The estimated log-likelihood ratio statistic of a Cox proportional hazards model. The change of LR statistic as features were added to the model was
assessed for significance by chi-square analysis. (D and E) Kaplan-Meier curve estimates of overall survival for PTEN-PIK3CA and DNMT3A-FLT3,
which are the most significantly enriched in group C10 and group C17, respectively.
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PIK3CA was associated with better survival in pan-cancer.
Our results showed that patients with this cooperative event
had better outcomes (P = 0.0043, log-rank test, Figure 5D)
compared to those without this event (i.e. single-altered
or wild-type). Interestingly, in another group C6 with the
second-best prognosis, the cooperative alteration of PTEN-
PIK3R1 was enriched (P < 0.0001, hypergeometric test).
PIK3CA and PIK3R1 encode the subunits of PI3K com-
plex, corresponding a catalytically active protein (p110�)
and a regulatory protein (p85�) respectively (55), suggest-
ing that the combined defect of PTEN and PI3K complex
is a favorable prognostic factor across multiple cancers. Op-
posite to C10, C17 was associated with the poorest prog-
nosis. DNMT3A-FLT3 was significantly enriched in this
group (P < 0.0001, hypergeometric test). Patients harbor-
ing the cooperative event showed significantly poorer prog-
nosis when compared with single alterations (P < 0.0001,
log-rank test, Figure 5E). Among the identified cooperative
pairs, we found some key cooperative events with potential
diagnostic values in seven cancer types (Supplementary Ta-
ble S9) by adopting the EdgeBiomarker method proposed
by Zhang et al. (56).

Case study: cooperative events in glioblastoma

Diverse genomic patterns underlie glioblastoma. Glioblas-
toma multiforme (GBM) is the most common and deadly
primary brain tumor with extremely poor prognosis (57–
59). A total of 23 cooperative events referring to many
known GBM-related genes (such as IDH1, TP53, PDGFRA
and EGFR) were identified. These cooperative events
could be classified into five groups based on their corre-
sponding genomic patterns (Figure 6A, see Supplemen-
tary Methods). For example, TP53-RB1 and PTEN-RB1
were grouped together, consistently showing significantly
decreased alteration frequencies of EGFR, CDKN2A and
CDK4 (Figure 6A). TP53, RB1 and PTEN were core mem-
bers of P53 signaling, RB signaling and RTK/RAS/PI3K
signaling pathways, respectively, the co-disruption of which
has been demonstrated to be a general trait for GBM
pathogenesis (55). These five groups with distinct genomic
patterns seemed to destroy different cancer hallmark-
associated pathways (Figure 6B and Supplementary Fig-
ure S11). Especially, one of the groups was composed of
only one cooperative event IDH1-TP53. IDH1 mutation
is highly associated with the glioma-CpG island methy-
lator phenotype (GCIMP) subtype, which presents a hy-
permethylator phenotype and improved outcome (60). The
IDH-mutant GCIMP subtype has been found to frequently
carry TP53 mutation (61). Our analysis showed a unique
genomic pattern of IDH1-TP53, consistent with previous
finding that the GCIMP subtype has a significantly differ-
ent biological behaviors relative to non-GCIMP (62). No-
tably, both IDH1 and RB1 could cooperate with TP53,
while these two cooperative events showed obviously differ-
ent genomic patterns (Figure 6C). PTEN mutation was ab-
solutely mutually exclusive with IDH1-TP53, yet appeared
to co-occur with TP53-RB1 (Figure 6D). The same situa-
tion could be seen for CDK4 and PIK3R1. In fact, strong
mutual exclusivity between IDH1-TP53 and TP53-RB1 was
observed (P < 0.0001, fisher exact test, Figure 6D). More-

over, IDH1-TP53 and TP53-RB1 affected different hall-
marks, such as sustained angiogenesis of IDH1-TP53 and
genome instability of TP53-RB1 (Figure 6B and E). Taken
together, these cooperative events could characterize diverse
genomic contexts in GBM and reflect different molecular
mechanisms underlie GBM, consistent with the high het-
erogeneity of GBM (63).

Cooperative events revealed molecular classification of GBM.
To investigate whether the cooperative events could divide
a heterogeneous population of GBM tumors into clinically
meaningful molecular subtypes, we classified GBM patients
into six clusters (C1–C6) on the basis of the presence or ab-
sence of these 23 cooperative events using consensus clus-
tering (Figure 7A, see Supplementary Methods). Kaplan-
Meier analysis of overall survival showed that these sub-
groups had distinct clinical outcomes (P < 0.0001, log-
rank test, Figure 7B). Meanwhile, we utilized the five best-
characterized GBM subtypes (including classical, proneu-
ral, mesenchymal, neural, and GCIMP) determined by ex-
pression and DNA methylation (60,64), which were also
associated with overall survival (P = 0.0052, Figure 7C).
As a comparison, C1 and C2 were primarily composed
of classical and mesenchymal, respectively; C4 was signifi-
cantly enriched for GCIMP, and, as expected, both of them
had the best prognosis. Intriguingly, when all GCIMP pa-
tients were removed, our subgroups still had a significant
association with survival (P = 0.0049, log-rank test, Figure
7d), whereas the pre-defined subtypes were not predictive
of survival (P = 0.5236, log-rank test, Figure 7E). Further-
more, multivariate Cox proportional hazards analysis was
performed by considering age, gender, race, and Karnof-
sky performance score as clinical covariates. The five best-
characterized subtypes and our subgroups were added to
the Cox proportional hazards model in turn. We found that
the predictive fits of the model showed significant improve-
ments (P = 0.0002 and P = 0.0002, Chi-square test, Fig-
ure 7F), which revealed additional survival benefit of our
subgroups. All these results suggested that the cooperative
events identified could provide useful insights for cancer
classification and had GCIMP-independent prognostic ef-
fect in GBM.

In particular, our clustering result revealed a very high-
risk subgroup C5 (Figure 7B and D). SPTA1-METTL1 was
the most significantly enriched cooperative event in this sub-
group (P < 0.0001, hypergeometric test). To our knowledge,
few studies reported the roles of SPTA1 and METTL1 in
GBM (65). We observed that GBM patients with SPTA1-
METTL1 were associated with a poor survival (P = 0.0103,
log-rank test, Figure 8A), while individual alterations of ei-
ther SPTA1 or METTL1 did not correlate with poor prog-
nosis (P = 0.7142, and P = 0.9589, log-rank test, Figure
8B). Moreover, the copy number of METTL1 had a strong
influence on its expression (Pearson correlation coefficient
= 0.815, Figure 8C). As for SPTA1, we found >60% (19/30)
mutations of SPTA1 with functional impact (Figure 8D
and E) estimated by using MutationAssessor (66). Path-
way analyses showed that SPTA1-METLL1 could influ-
ence three hallmark pathways including genomic instabil-
ity, sustained angiogenesis and inflammation & evading im-
mune (P = 0.0105, P = 0.0020 and P = 0.0094, one-sided
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Figure 6. The specific genomic patterns and hallmark-associated pathways of gene cooperative events in GBM. (A) Five groups of cooperative events based
on genomic pattern similarity (top). Changes of alteration frequencies of marker genes were shown (bottom). (B) The hallmark-associated pathways affected
by gene cooperative events corresponding with above five groups. Dashed box denotes the pathways affected by TP53-IDH1 and TP53-RB1, respectively.
(C) The genomic patterns of TP53-IDH1 and TP53-RB1 are quite different, especially for PTEN (dashed box). (D) Samples carrying TP53-IDH1 and
TP53-RB1 are mutually exclusive. (E) Activity difference for representative hallmark pathways affected by TP53-IDH1 and TP53-RB1 cooperation in
different sample groups.

Wilcoxon rank sum test, Figure 8G). We thus speculated
that the combination of defects of SPTA1 and METTL1
was likely to be a high-risk clinical factor and they might
act (Figure 8F) as cooperative driver genes contributing to
the malignant progression of GBM. Further functional ex-
periments are required to validate our findings.

Case study: cooperative events in breast cancer

PIK3CA-EIF3H is a unique cooperative event in BRCA.
Of note, only one cooperative event PIK3CA-EIF3H was
identified in BRCA. The cooperative event was linked to
several clinically relevant genes (such as ERBB2, TP53 and
GATA3) and seven pathways involving six cancer hallmarks
(Supplementary Figure S12A–C), and was associated with
a poor survival in BRCA patients (P < 0.0001, log-rank
test, Supplementary Figure S12d). The role of PIK3CA in
BRCA has been well studied, and as for EIF3H, it was pre-
viously demonstrated as a driver gene within 8q23 ampli-

con and had effects on cell growth, survival and transforma-
tion in breast cancer (67). We next asked whether PIK3CA-
EIF3H was a potential prognostic factor in the two main
molecular subtypes (i.e. Basal and Luminal) of BRCA (68).
We divided all BRCA patients into two subtypes (Basal and
Luminal) based on ER and PR status and found that the
cooperative event could be associated with overall survival
in both subtypes (P = 0.0442 and P = 0.0009, log-rank test,
Supplementary Figure S12E).

DISCUSSION

We developed an integrated method, HCOC, for identify-
ing cooperative genomic alteration events in human can-
cer. Applying HCOC to 3753 patients from 12 cancer types
yield a total of 1199 cooperative events with high hetero-
geneity across human cancers. We constructed the land-
scape of cooperative networks within and across cancers
utilizing the cooperative events identified. We found that
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Figure 7. Gene cooperation could predict prognosis in GBM. (A) Classification based on all the cooperative pairs defines six subgroups using consensus
clustering. Our subgroups are identified by color in the top bar, with the pre-defined subtype specified in the bottom bar. Co-clustering matrices (top) and
alteration profiles of cooperative events (bottom) were shown. (B and C) Both our subgroups (B) and the pre-defined subtypes (C) could predict prognosis.
(D and E) When removing all GCIMP samples, our subgroups (D) still have a significantly different survival but the pre-defined subtypes (E) lose its
significance. (F) The estimated log-likelihood ratio statistic of a Cox proportional hazards model. The change of LR statistic as features were added to the
model was assessed for significance by Chi-square analysis.

these hallmark associated cooperative events were always
coupled with genomic alterations of several famous can-
cer drivers. Notably, patient classification based on coop-
erative events could provide additional prognostic informa-
tion complementary with clinical and molecular features.
As a case study, the diverse genomic patterns of cooperative
events in GBM revealed multiple molecular mechanisms of
gene cooperation underlying glioblastoma. The coopera-
tive events in GBM allowed us to reveal a high-risk sub-
group of GBM patients that were significantly enriched for
SPTA1-METTL1 cooperation representing a novel high-
risk prognostic factor. These two genes were seriously un-
derestimated when considered in isolation. This study rep-
resented one of the largest analysis of somatic cooperative
aberrations and demonstrated that the integration of omics
data can be used to characterize cooperative alterations dur-
ing tumorigenesis.

One advantage of HCOC is the consideration of ge-
netic context of gene cooperation. Each cooperative event
is linked to a specific genomic pattern of some important
genes with recurrent alterations. This specific genomic con-

text depicted certain genetic dependence between mutated
genes and the cooperative event. As in previous study, in
melanomas with BRAF V600E mutations, concurrent mu-
tational inactivation of the PTEN and RB1 exhibited di-
minished dependence upon BRAF signaling and were mu-
tually exclusive with loss of CDKN2A (27). The coopera-
tive event and the specific genomic context form a unique
combination of genomic aberrations, like the orchestration
of genomic alterations, which can help to precisely dissect
the mechanisms contributing to cancer initiation and pro-
gression. For example, despite that EGFR and PDGFRA
were reported as members of a mutually exclusive module
in GBM, in our result PDGFRA displayed an elevated al-
teration frequency when the co-alteration of EGFR-MDM2
occurred (P = 0.0017, one-sided binomial test, Supplemen-
tary Figure S13). The fact that both EGFR and PDGFRA
were upstream regulators of MDM2 may explain this con-
ditional co-occurrence.

Moreover, these cooperative events were highly associ-
ated with some cancer hallmarks. Interestingly, the coop-
erative events could lead to the changes of hallmark ac-



Nucleic Acids Research, 2017, Vol. 45, No. 2 579

Figure 8. METTL1 and SPTA1 are potential cooperative drivers in GBM. (A) Kaplan-Meier curves for sample groups based on METTL1 and SPTA1
co-alteration in GBM. (B) Kaplan–Meier curves for sample groups based on either METTL1 copy number amplification or SPTA1 mutation in GBM.
(C) The correlation of METTL1 copy number level and its mRNA expression. The red line denotes fitted curve based on correlation. (D) SPTA1 mutation
distribution in gene body. The red, blue and green rectangle denotes SH3-1 pfama, Ca2+ insensitive EF hand, and spectrin pfama on SPTA1 protein,
respectively. (E) The functional effect of mutations for SPTA1. And mutations with functional impact includes nonsense mutations, frame shift indels
and missense mutations that are categorized as high or median effects by MutationAssessor. (F) The overlap between samples carrying METTL1 copy
number amplification and SPTA1 mutation. P value is calculated by Chi-square test. (G) Activity difference for three hallmark pathways affected by
METTL1-SPTA1 cooperation in different sample groups.
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tivities to a larger extent than single alterations (Figure
3D), consistent with a phenomenon of epistasis, i.e., a mu-
tation is selectively advantageous only in the context of
other mutations (19). In fact, certain oncogenic mutations
can mandate that specific cellular pathways be targeted by
subsequent mutations (20). Epistatic interaction has been
demonstrated to play a crucial role in cancer genome evo-
lution. Previous protein-engineering studies demonstrated
that epistatic interactions could limit the potential muta-
tional trajectories and enforce ratchet-like constraints by
inhibiting the reversibility of the tumor evolutionary pro-
cess (20,69). During the development of cancer, distinct
tumor subclones evolve in parallel and gradually acquire
various hallmark capabilities by accumulating different ge-
netic alterations and, in the end, gain a significant fitness
advantage and further expand to dominant lineages (70).
Therefore, the cooperative network constituted of all co-
operative events in human cancers may approximately de-
pict the tumor heterogeneity and reflect diverse evolution
branches during tumorigenesis. In our results, TP53-IDH1
and TP53-RB1 were both identified in GBM, but their af-
fected patients, genetic contexts and associated cancer hall-
marks were quite different (Figure 6C–E). Since TP53 mu-
tation was an early clonal event in many cancers including
GBM (71,72), subsequent IDH1 and RB1 mutation may in-
dicate different evolution paths.

Importantly, these cooperative events could be as po-
tential new biomarkers for patient stratification. Specially,
SPTA1-METTL1 cooperation in GBM characterized a
subgroup with the worst survival, while single alterations
can not. METTL1 has been reported to influence the sensi-
tivity of an anti-carcinogen (5-fluorouracil) in cancer cells
(73), and mutations of SPTA1 were observed in differ-
ent stages of lung cancer, such as stages before and after
chemotherapy (74). We speculated that METTL1-SPAT1
cooperation might exert an adverse effect on anti-cancer
therapy. Classification based on all cooperative events could
also provide implications for clinical outcomes in most can-
cer types (Figure 4), however, it was not the case when based
on single alterations (Supplementary Figure S10). Tumor
subtypes based on single drivers may be confounded by
epistasis (75) or gene pleiotropy (76), which can be allevi-
ated by gene cooperation. Besides, due to the links of co-
operative events to evolutional branches, it’s understand-
able that cooperative events allowed us to reveal subtypes
with distinct evolution paths. Such subtypes have a signif-
icant clinical benefit. Our results suggest that gene coop-
eration is able to depict the underlying mechanism under-
lying tumorigenesis, and may be superior when translated
into clinical practice. Note that the identified cooperative
events in our study were associated with a specific pattern
of background marker genes, suggesting a possibility that
the effects of the cooperative events on cancer hallmarks
and clinical outcomes may be mainly caused by the back-
ground marker genes. To test the possibility, we evaluated
the effects of the marker genes on the hallmarks and clinical
outcomes in the samples without co-alteration of coopera-
tive events (for details, see Supplementary Methods). The
results showed that in most cases the cooperative events,
rather than the marker genes, have major effects on the can-
cer hallmarks and overall survival.

A previous study characterized the pre-disease state
based on time-series gene expression data, allowing to di-
agnose whether a new individual approaches to the pre-
disease state or not (77). With increasing numbers of time-
series genomic data available in cancer, we can use the
concept of dynamical network biomarkers to detect early-
warning cooperative signals in cancer, which will be crucial
to further understand the progression of cancer and facili-
tate early clinical diagnosis.

In our study, we integrated copy number alteration and
point mutations, which can comprehensively capture the
DNA damage upon certain genes. Nonetheless, point mu-
tations and copy number alterations cannot always be con-
sidered similar. Moreover, all point mutations are not equal.
Some mutations lead to gain-of-function, while some oth-
ers lead to loss-of-function. We thus classified mutations
into gain-of-function and loss-of-function, and determined
the dominant type of mutations for each gene (see Supple-
mentary Methods for details). By reapplying HCOC, we
observed that 91.4% cooperative pairs across cancers were
shared with previous results. Especially, the results were ex-
actly the same in CR, OV, BRCA, LAML and BLCA (Sup-
plementary Table S10).

In summary, our study presents a comprehensive char-
acterization of genomic cooperative events in 12 cancer
types, which extends our knowledge of interdependence
among cancer genes and enables to discovery novel onco-
genic genes. Our analyses shed new insights on molecular
mechanisms underlying tumorigenesis, and offer implica-
tions for clinical diagnosis, prognosis and therapeutic strate-
gies. Ultimately, we expect that our approach will be appli-
cable to other cancer genomic data and our results will be
helpful for achieving the goal of precise medicine.
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