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ARTICLE INFO ABSTRACT
Keywords: Background: Egl-9 family hypoxia-inducible factor 3 (EGLN3) is involved in the regulation of
EGLN3 tumor microenvironment and tumor progression. However, its biological function and clinical

Single-cell RNA sequencing
Tumor microenvironment
Cell apoptosis

Hypoxia

significance in various cancers remain unclear.

Methods: RNA-seq, immunofluorescence, and single-cell sequencing were used to investigate the
expression landscape of EGLN3 in pan-cancer. The TISCH2 and CancerSEA databases were used
for single-cell function analysis of EGLN3 in tumors. TIMER2.0 database was used to explain the
relationship between EGLN3 expression and immune cell infiltration. In addition, the Link-
edOmics database was used to perform KEGG enrichment analysis of EGLN3 in pan-cancer. siRNA
was used to silence gene expression. CCK8, transwell migration assay, flow cytometry analysis,
RT-PCR, and western blotting were used to explore biological function of EGLN3.

Results: The results showed that EGLN3 was highly expressed in a variety of tumors, and was
mainly localized to the cytosol. EGLN3 expression is associated with immunoinfiltration of a
variety of immune cells, including macrophages in the tumor immune microenvironment and
tumor-associated fibroblasts. Functional experiments revealed that EGLN3 knockdown could
inhibit cell proliferation, migration, and promote cell apoptosis. In addition, we found that Bax
expression was up-regulated and Bcl-2 expression was down-regulated in the si-EGLN3 group.
Taken together, as a potential oncogene, EGLN3 is involved in the regulation of tumor malignant
process, especially tumor cell apoptosis.

Conclusion: We comprehensively investigated the expression pattern, single-cell function, immune
infiltration level and regulated signaling pathway of EGLN3 in pan-cancer. We found that EGLN3
is an important hypoxia and immune-related gene that may serve as a potential target for tumor
immunotherapy.
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1. Introduction

The latest statistics report from the American Cancer Society shows that the number of new cancer cases in the United States is
expected to exceed 2 million by 2024 [1]. For men, the top 10 most common cancers were prostate cancer, lung cancer, colorectal
cancer, bladder cancer, melanoma, kidney cancer, non-Hodgkin lymphoma, oral cancer, leukemia and pancreatic cancer. For women,
the top 10 most common cancers were breast cancer, lung cancer, colorectal cancer, cervical cancer, melanoma, non-Hodgkin lym-
phoma, pancreatic cancer, thyroid cancer, kidney cancer and leukemia. Cancer deaths in the United States are projected to be 611,720
in 2024, with lung, colorectal and pancreatic cancers accounting for the largest number of deaths [1]. In recent years, with the
advancement of anti-tumor treatments such as targeted therapy and immunotherapy, many cancer patients have benefited from them
[2]. However, the mortality rate of cancer patients remains high due to tumor metastasis, drug resistance and lack of effective early
diagnosis.

Hypoxia is a typical feature of many solid tumors, and the hypoxia microenvironment is a key factor in tumor occurrence, ma-
lignant progression, treatment resistance and immune escape [3,4]. Existing studies have shown that the activities of EGLN (Egl-9
family hypoxia inducible factor) members EGLN1, EGLN2, and EGLN3 are not limited to HIF (Hypoxia Inducible Factor) regulation but
also include the regulation of cell survival, cell cycle, proliferation, and metastasis [5]. In the present study, we systematically explored
the expression profile, single-cell function, immune infiltration level, and regulatory signaling pathway of EGLN3 in pan-cancers. We
also focused on the role of EGLN3 in the regulation of malignant phenotypes in lung cancer.

2. Materials and methods
2.1. Database and public platform

We obtained gene expression data, clinicopathological data, and survival data from UCSC Xena for 33 cancers present in TCGA. The
UALCAN database (https://ualcan.path.uab.edu/) was used to identify differences in expression of EGLN3 in pan-cancer and normal
tissues [6,7]. We also investigated the RNA expression level of EGLN3 in some tumors using the Human Protein Atlas (HPA) database
(https://www.proteinatlas.org/) and determined the subcellular localization of EGLN3 through immunofluorescence microscopy [8].
We examined the expression of EGLN3 in different single-cell types in the HPA database. At the same time, we also used the
EGADO00001007030 dataset (https://ega-archive.org/studies/EGAS00001005115) (n = 18) in Single Cell Portal database (https://
singlecell.broadinstitute.org/single_cell) to investigate the expression of EGLN3 in a variety of tumor types, such as breast cancer,
prostate cancer, and melanoma [9]. In addition, we used the GSE148071 dataset (n = 42) from the Tumor Immune Single-cell Hub 2
(TISCH2) database (http://tisch.comp-genomics.org/) to investigate the expression level of EGLN3 in non-small cell lung cancer
(NSCLC) [10,11]. The CancerSEA database (http://biocc.hrbmu.edu.cn/CancerSEA/) was used for single-cell function analysis of
EGLN3 in pan-cancer [12]. We used the TISIDB database (http://cis.hku.hk/TISIDB/) to detect the expression of EGLN3 in different
molecular types and immune types in pan-cancer [13]. The TIMER2.0 database (http://timer.cistrome.org/) was used to analyze the
tumor immunoinfiltration of EGLN3 in pan-cancer [14]. The co-expression network and KEGG enrichment analysis of EGLN3 in LUAD
and LUSC were performed using the LinkedOmics database (http://linkedomics.org/login.php) [15]. In the “LinkFinder” module, the
volcano plots and heat maps show genes that are positively/negatively associated with EGLN3. In the “LinkInterpreter” module,
EGLN3-enriched KEGG pathways are represented by bubble maps.

2.2. Cell culture and transfection

The human lung cancer cell lines A549 and NCI-H1650 were obtained from the Cell Bank of Chinese Academy of Sciences
(Shanghai, China), and cultured in RPMI-1640 medium containing 10 % fetal bovine serum at 37 °C and 5 % CO,. EGLN3-targeted
siRNA (siRNA-EGLN3) and negative control scrambled siRNA (si-NC) were synthesized by Guangzhou RiboBio Company. Apoptosis
and gene expression were measured 48 h after transfection with 50 nM siRNA.

2.3. RNA extraction and real-time quantitative PCR

An extraction of total RNA was performed using TRIzol® reagent (Invitrogen; Thermo Fisher Scientific Inc.). To perform reverse
transcription, we used PrimeScript™ RT reagent kit (Takara Bio, Inc.), and to perform RT-qPCR, we used SYBR Green PCR kit (Takara
Bio, Inc.). We used the following primers: GAPDH forward, 5'-CCCATCACCATCTTCCAGGAG-3' and reverse, 5-GTTGTCATGGAT-
GACCTTGGC-3’; EGLNS forward, 5- CTGGGCAAATACTACGTCAAGG-3' and reverse, 5- GACCATCACCGTTGGGGTT-3’. GAPDH was
the internal reference gene, and data were calculated using the 2"22€T method.

2.4. Western blotting

We extracted protein from A549 and NCI-H1650 cells using RIPA lysis buffer (Abcam). Proteins were separated by 10 % SDS-
PAGE, transferred to nitrocellulose membranes, and then incubated at room temperature for 2 h with blocking solution (5 % skimmed
milk). Incubation of the primary antibody with the samples was performed at 4 °C overnight, followed by incubation of the secondary
antibody at room temperature for 2 h. The primary antibodies used included: GAPDH (Absin, abs132004, 1: 3000), EGLN3 (Abcam,
ab184714, 1: 5000), Bax (Bioworld Technology, MB66266, 1:1000), and Bcl-2 (Bioworld Technology, MB62589, 1:2000). GAPDH was
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Expression of EGLN3 across TCGA cancers (with tumor and normal samples)
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Fig. 1. The expression landscape of EGLN3 in pan-cancer. (A) The expression of EGLN3 across TCGA cancers. (B) The expression levels of EGLN3 in
multiple tumor cell lines. (C) The subcellular immunofluorescence staining of EGLN3 protein, nucleus, endoplasmic reticulum (ER), microtubules
and the merged images in RT-4, Rh30, and U20S cell lines. (*p < 0.05, **p < 0.01, ***p < 0.001).

the internal parameter; anti-rabbit IgG, HRP-linked Antibody (Cell Signaling Technology, 7074P2, 1: 1000). ECL luminescence reagent
(Absin, abs920) was used for protein visualization.

2.5. Flow cytometry analysis

In order to detect cell apoptosis, the Annexin V-APC/PI Apoptosis Detection Kit from KeyGEN (KGA1030-1007) was used.
Apoptosis was assessed using flow cytometry (CytoFLEX Flow Cytometer, Beckman Coulter, Inc.).
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Fig. 2. Single-cell expression landscape of EGLN3 in HPA database. (A) The expression of EGLN3 in different single-cell types. (B) UMAP shows the
cell clusters in the lung. (C) The heat map shows expression of EGLN3 and well-known cell type markers in the different single-cell type clusters of
lung tissue. The panel on the left shows which cell type each marker is associated with. Color-coding is based on cell type groups, each consisting of
cell types with functional features in common. (For interpretation of the references to color in this figure legend, the reader is referred to the Web
version of this article.)

2.6. Cell proliferation assay (CCK8)

A549 and NCI-H1650 cells were seeded in 96-well plates and cell proliferation was examined by Cell Counting Kit-8 (CCK8)
(Abiowell, AWCO0114a) according to the manufacturer’s instruction.

2.7. Transwell migration assay

We performed migration experiments using 24-well transwell chambers with 8-pm aperture (Corning, Inc.). A cell density of 6 x
10° cells/mL was adjusted after cell collection and resuspension in serum-free RPMI 1640 medium. We inoculated 100 pL of cell
suspension into the upper chamber and 500 pL of RPMI-1640 medium containing 10 % FBS into the lower chamber. Incubation at
37 °C for 24 h and staining at room temperature with 0.1 % crystal violet for 20 min were the procedures. Using a light microscope
(magnification, x100), three fields were randomly selected to photograph, and the number of migrated cells was manually counted.

3. Results
3.1. Expression landscape of EGLN3 in pan-cancer

To investigate the expression of EGLN3 in pan-cancer, we examined the expression of EGLN3 in tumor tissues and cell lines.
Compared with normal tissues, EGLN3 is highly expressed in a variety of tumors, such as BRCA (P < 0.001), CESC (P < 0.001), CHOL
(P < 0.01), ESCA (P < 0.01), HNSC (P < 0.001), KIRC (P < 0.001), KIRP (P < 0.001), LIHC (P < 0.001), LUAD (P < 0.001), LUSC (P <
0.001), PAAD (P < 0.01), and UCEC (P < 0.001) (Fig. 1A). Subsequently, we detected EGLN3 expression levels in a variety of tumor cell
lines. The results showed that EGLN3 was highly expressed in RT-4, Rh30, RPTEC/TERT1, A431, SuSa, CACO2, OE19, A549, HBEC3-
KT, HeLa, HAP1, and K562 (Fig. 1B). In addition, subcellular localization of EGLN3 was performed by immunofluorescence staining in
RT-4, Rh30 and U20S cells based on HPA database. EGLN3 was mainly localized to the cytosol (Fig. 1C).

3.2. Single-cell sequencing analysis of EGLN3

RNA single-cell type specific analysis demonstrated that EGLN3 expression was enhanced in dendritic cells, extravillous tropho-
blasts, suprabasal keratinocytes, basal keratinocytes and other cell types (Fig. 2A). Scatter plot showed the expression of EGLN3 in
different cell clusters in the lung, with high expression mainly concentrated in fibroblasts, endothelial cells, B-cells, macrophages
(Fig. 2B). The heat map shows expression of EGLN3 and well-known cell type markers in the different single-cell type clusters of lung
tissue (Fig. 2C). For example, fibroblast markers COL3A1 (z-score = 3.07), FBN1 (z-score = 2.35), and LUM (z-score = 3.88) showed
high expression. B-cell markers CD19 (z-score = 4.16), CR2 (z-score = 3.19), and MS4A1 (z-score = 4.11) showed the same trend.

The Single Cell Porta database was used to investigate the expression of EGLN3 in different cell subsets in breast cancer, prostate
cancer, and melanoma (Fig. 3). Next, the NSCLC-GSE148071 single-cell dataset containing 42 patients with primary cancer was used to
investigate the expression of EGLN3 in different cell subsets in NSCLC (Fig. 4). We analyzed the NSCLC-GSE148071 dataset, and
Fig. 4A-C showed that it was divided into 10 cell types, among which malignant cells (48,118), mononuclear/macrophages (14,078)
and fibroblasts (4792) were the most abundant. We also investigated the distribution of EGLN3 in different cell types (Fig. 4D). Heat
maps show upregulated immune-related gene sets mainly enriched in fibroblasts and mononuclear/macrophages (Fig. 4E). Cell-to-cell
interaction (CCI) analysis revealed that EGLN3-fibroblasts mainly interact with malignant cells, alveolar, mononuclear/macrophages
(Fig. 4F) and that EGLN3-macrophages mainly interact with fibroblasts (Fig. 4G). To explore the role of EGLN3 in NSCLC, we per-
formed GSEA analysis on the scRNA-seq data from the GSE148071 dataset and found that, compared to other identified cell types, The
hallmark_hypoxia, hallmark_apoptosis, and hallmark_epithelial-mesenchymal transition gene sets were specifically enriched in NSCLC
(Fig. 4H-J).

To further explore the role of EGLN3 in tumors, we investigated the function of EGLN3 at the single-cell level using CancerSEA
(Fig. 5). The results suggest that EGLN3 is associated with hypoxia in a variety of tumors, including GBM, glioma, LUAD, NSCLC, RCC,
BRCA, PC, HNSCC, and OV. In LUAD, EGLN3 was positively correlated with angiogenesis, apoptosis, hypoxia, inflammation,
metastasis, and stemness. EGLN3 was positively associated with angiogenesis, DNA repair, hypoxia, inflammation, invasion, metas-
tasis and stemness of PC. However, EGLN3 was negatively associated with apoptosis, DNA damage repair, hypoxia, invasion,
metastasis, and stemness in UM. These results suggest that EGLN3 may be involved in the regulation of tumor malignant process, which
needs to be verified in vitro and in vivo.
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Fig. 3. Single-cell expression analysis of EGLN3 in tumors. (A-C) Breast cancer. (D-F) Prostate cancer. (G-I) Melanoma.

3.3. Immune aspects of EGLN3 in tumor microenvironment

It is well known that the tumor immune microenvironment plays an important role in the malignant process of tumors. The violin
map revealed that EGLN3 expression in multiple tumors was significantly correlated with immune and molecular subtypes (Fig. 6). The
expression of EGLN3 in molecular subtypes of BRCA (P = 4.76e-14), COAD (P = 6.06e-09), LGG (P = 8.97e-07), LIHC (P = 2.44e-07),
LUSC (P = 3.28e-05), PCPG (P = 7.1e-04), PRAD (P = 1.25e-06), SKCM (P = 4.78e-07), and UCEC (P = 6.95e-04) was all significantly
different (Fig. 6A). EGLN3 expression showed significant correlation with immune subtypes in KIRC (P = 5.41e-04), LGG (P = 1.23e-
09), LIHC (P = 5.51e-09), LUAD (P = 4.33e-16), LUSC (P = 4.06e-04), PAAD (P = 1.89¢-04), and PRAD (P = 1.76e-05) (Fig. 6B).

The correlation between EGLN3 expression and tumor immune cell infiltration was analyzed using TIMER 2.0 database. Spearman
correlation analysis was used to investigate the association between EGLN3 and immune infiltration levels of immune cells including
macrophages, neutrophils, myeloid dendritic cells, B cells, regulatory T cells (Tregs), CD8" T cells, endothelial cells, mast cells,
monocytes, natural killer (NK) cells, and CD4 " T cells in pan-cancer (Fig. 7). We focused on tumor-associated fibroblasts (CAFs). Based
on four algorithms: EPIC, MCPCOUNTER, XCELL, and TIDE, it was suggested that EGLN3 expression is positively correlated with
infltration by CAFs in BRCA (Rho = 0.322, P = 1.92e-25), BRCA-Basal (Rho = 0.302, P = 5.19e-05), BRCA-LumA (Rho = 0.309, P =
7.27e-13), BRCA-LumB (Rho = 0.376, P = 7.37e-08), CHOL (Rho = 0.491, P = 2.76e-03), LIHC (Rho = 0.396, P = 2.20e-14), PCPG
(Rho = 0.401, P = 7.78e-08), PRAD (Rho = 0.366, P = 1.23e-14), TGCT (Rho = 0.447, P = 1.43e-08) and THCA (Rho = 0.561, P =
7.07e-42). EGLN3 was negatively correlated with immune cell infiltration in THYM (Rho = —0.613, P = 3.45e-13) (Fig. 8). Based on
single-cell sequencing and immunoinfiltration analysis, we preliminarily concluded that EGLN3 is associated with tumor immunity,
especially CAFs and macrophages. CAFs are the most abundant cell types in the tumor microenvironment and are the center of cross-
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Fig. 4. Single-cell expression analysis of EGLN3 in NSCLC based on scRNA-seq. (A, B) The cell subsets distribution and TME differences in 42 NSCLC
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in the identified cell types in NSCLC tissues based on the GSE148071 dataset. (E) The up-regulated immumologic gene-sets in NSCLC based on the
GSE148071 dataset. (F) The interactions between EGLN3+CAFs and other cells based on the GSE148071 dataset. (G) The interactions between
EGLN3+macrophages and other cells based on the GSE148071 dataset. (H) The enrichment of the HALLMARK hypoxia gene-set in identified cell
types based on the GSE148071 scRNA-seq data. (I) The enrichment of the HALLMARK apoptosis gene-set in identified cell types based on the
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Fig. 5. The role of EGLN3 in single-cell functional analysis from the CancerSEA database. (A) Functional status of EGLN3 in different human
cancers. (B) Correlation analysis between functional status and EGLN3 in RCC, OV, and LUAD. (*p < 0.05, **p < 0.01, ***p < 0.001).

communication between various cells in the tumor stroma. Targeting CAFs may become a new anti-tumor strategy.

3.4. EGLN3 co-expression network and pathway analysis in NSCLC

To investigate the molecular function of EGLN3, we performed gene network and pathway analysis. In LUAD, 6115 genes (red dots)
were positively associated with EGLN3 and 4798 genes (green dots) were negatively associated with EGLN3 (P < 0.05) (Fig. 9A). There
were 3190 genes positively correlated with EGLN3 and 4873 genes negatively correlated with EGLN3 in LUSC (P < 0.05) (Fig. 9D). The
top 50 genes that were positively (Fig. 9B-E) or negatively (Fig. 9C-F) correlated with EGLN3 were further shown by heat map.
Moreover, KEGG pathway analysis suggested that proteasome (P < 0.001), cell cycle (P < 0.001), DNA replication (P < 0.001),
spliceosome (P < 0.01), TNF signaling pathway (P < 0.01), oxidative phosphorylation (P < 0.01), ECM-receptor interaction (P < 0.01),
RNA transport (P < 0.05), protein export (P < 0.05), and IL-17 signaling pathway (P < 0.05) were enriched in LUAD (Fig. 10A). In
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Fig. 6. The correlation between EGLN3 expression and immune subtypes and molecular subtypes in pan-cancer. (A) Expression levels of EGLN3 in
diferent molecular subtypes. (B) Expression levels of EGLN3 in diferent immune subtypes. C1 (wound healing); C2 (IFN-gamma dominant); C3
(infammatory); C4 (lymphocyte depleted); C5 (immunologically quiet); C6 (TGF-b dominant).

LUSC, the top 10 enriched signaling pathways include focal adhesion (P < 0.001), HIF-1 signaling pathway (P < 0.001), fructose and
mannose metabolism (P < 0.001), ECM-receptor interaction (P < 0.001), glycolysis/gluconeogenesis (P < 0.001), PI3K-Akt signaling
pathway (P < 0.001), IL-17 signaling pathway (P < 0.001), TNF signaling pathway (P < 0.001), central carbon metabolism in cancer
(P < 0.01), and pathways in cancer (P < 0.01) (Fig. 10B).

3.5. EGLNS3 affects the malignant progression of NSCLC cells in vitro

EGLN3 was significantly overexpressed in LUAD (Fig. 11A) and associated with poor prognosis in patients (Fig. 11B). After
reviewing a large number of literatures, it was found that the biological function of this gene in LUAD was rarely reported. Here, we
examined the effects of EGLN3 on tumor proliferation, migration, and apoptosis in A549 and NCI-H1650 cells. Compared with the
control group (si-NC), the expression level of EGLN3 in si-EGLN3 group was significantly down-regulated (Fig. 11C). Functional ex-
periments revealed that EGLN3 knockdown could inhibit cell proliferation, migration, and promote cell apoptosis (Fig. 11D-F). In
addition, we found that Bax expression was up-regulated and Bcl-2 expression was down-regulated in the si-EGLN3 group (Fig. 11G).
Taken together, as a potential oncogene, EGLN3 is involved in the regulation of tumor malignant process, especially tumor cell
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Fig. 9. EGLN3 co-expression networks in NSCLC. (A, D) Te volcano plot of EGLN3 co-expression genes. Red dots represent genes that are positively
associated with EGLN3 and green dots represent genes that are negatively associated with EGLN3. Heat maps showed the top 50 positively (B, E)
and negatively (C, F) co-expressed genes of EGLN3 in NSCLC. Red squares represent positive co-expressed genes and blue squares represent negative
co-expressed genes. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

apoptosis.

4. Discussion

EGLN3 is an important member of the EGLN family, and its main function is to regulate HIF factors, while participating in the
regulation of tumor microenvironment and tumor malignant process [5,16-18]. Our study found that EGLN3 is significantly over-
expressed in LUAD and is associated with poor prognosis. Functional experiments also revealed that EGLN3 knockdown could inhibit
cell proliferation and migration, and promote cell apoptosis. However, this study has not yet elucidated the molecular mechanism by
which EGLN3 promotes tumor apoptosis, which we will address in the future.

Anoxic microenvironment is a common feature of most solid tumors. Hypoxia has a profound influence on the biological behavior
and malignant phenotype of cancer cells, mediates the effects of cancer chemotherapy, radiotherapy and immunotherapy through
complex mechanisms, and is closely related to the poor prognosis of various cancer patients [19-21]. Previous studies have shown that
drugs targeting key genes associated with hypoxia, as well as drugs targeting hypoxia-inducing factors and downstream targets can be
used for visualization and quantitative analysis of tumor hypoxia and antitumor activity. However, the relationship between hypoxia
and cancer is an area of research that needs to be further explored. By single-cell functional analysis, we found that EGLN3 was
positively correlated with hypoxia in malignant tumors, especially in LUAD, NSCLC, RCC, HNSCC, and OV. EGLN3 may serve as a
novel tumor therapeutic target by regulating hypoxic-related signaling pathways.

Macrophages are the largest number of immune cells in the tumor microenvironment except for tumor cells. Due to their
phagocytosis, they can destroy tumor cells at an early stage. However, under the domestication of the tumor microenvironment,
macrophages are gradually polarized into tumor-related macrophages with M2 phenotype, which promote tumor growth, invasion and
metastatic spread by inhibiting immunity and inducing neovascularization [22-25]. Previous lung cancer studies have shown that
tumor-associated macrophages (TAMs) exhibit a pro-inflammatory and anti-tumor phenotype (M1 type) in the early stage of lung
cancer, and gradually exhibit an anti-inflammatory and pro-tumor phenotype (M2 type) during the progression of lung cancer. Un-
derstanding the immunoinfiltration of macrophages in the tumor microenvironment is important for developing new cancer immu-
notherapy strategies. Tumor-associated fibroblast (CAF) is an important cell type in the tumor microenvironment, which plays an
indispensable role in promoting tumor growth [26-28]. It can promote cancer cell growth, inhibit tumor immune response, reshape
ECM, influence tumor cell drug resistance and promote angiogenesis to promote tumor progression and metastasis [29-31]. Therefore,
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Fig. 10. The signaling pathway analysis of EGLN3 in NSCLC. (A) LUAD. (B) LUSC. Y-axis represents the enriched signaling pathway. X-axis:
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targeting CAF has become a new anti-tumor therapy strategy in recent years. In this study, we found that EGLN3 is involved in the
regulation of TAMs and CAFs through single-cell functional analysis and immunoinfiltration analysis. We suggest that EGLN3 may
promote the malignant process of tumor by regulating the tumor immune microenvironment. In the future, we will confirm this
hypothesis through in-depth in vivo and in vitro experiments.

In summary, we comprehensively investigated the expression pattern, single-cell function, immune infiltration level and regulated
signaling pathway of EGLN3 in pan-cancer. We focused on the role of EGLN3 in the regulation of malignant phenotypes in lung cancer.
We found that EGLN3 is an important hypoxia and immune-related gene that may serve as a potential target for tumor
immunotherapy.
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Fig. 11. EGLNS3 affects the malignant progression of NSCLC cells in vitro. (A) The mRNA expression of EGLN3 in LUAD and normal lung tissues. (B)
Survival analysis of EGLN3 in LUAD in Kaplan-Meier plotter. Overall survival (OS) was used as an indicator. (C) siRNA effectively regulated the
expression of EGLN3 in the A549 and NCI-H1650 cells. mRNA and protein expression of EGLN3 were detected by RT-qPCR and western blotting,
respectively. (D) CCK8 assay was used to assess cell proliferation. (E) Cell migration was assessed using the transwell assay. (F) Flow cytometry was
used to verify cell apoptosis. (G) Western blot was used to detect the expression of apoptosis-related genes (Bcl-2, and Bax). *P < 0.05, **P < 0.01
and ***P < 0.001. si-NC, scrambled negative control; si, small interfering. All these experiments are compared between the experimental group and
the control group.
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Abbreviations

EGLN3  Egl-9 family hypoxia-inducible factor 3
ACC Adrenocortical carcinoma

AML Acute myeloid leukemia

BLCA Bladder urotelial carcinoma

BRCA Breast invasive carcinoma

CESC Cervical squamous cell carcinoma and endocervical adenocarcinoma
CHOL  Cholangiocarcinoma

COAD  Colorectal adenocarcinoma

DLBC Lymphoid Neoplasm Diffuse Large B-cell Lymphoma
ESCA Esophageal carcinoma

GBM Glioblastoma multiforme

HNSC Head and neck squamous cell carcinoma
KICH Kidney Chromophobe carcinoma

KIRC Kidney renal clear cell carcinoma

KIRP Kidney renal papillary cell carcinoma
LGG Brain Lower Grade Glioma

LIHC Liver hepatocellular carcinoma

LUAD  Lung adenocarcinoma

LUSC Lung squamous cell carcinoma

MESO  Mesothelioma

ov Ovarian serous cystadenocarcinoma
PAAD Pancreas adenocarcinoma

PCPG Pheochromocytoma and paraganglioma
PRAD Prostate adenocarcinoma

READ Rectal adenocarcinoma

SARC Sarcoma

SKCM  Skin cutaneous melanoma

STAD Stomach adenocarcinoma

TGCT Testicular Germ Cell Tumors

THCA  Thyroid carcinoma

THYM  Thymoma

UCEC Uterine Corpus Endometrial Carcinoma
Uucs Uterine Carcinosarcoma

UVvM Uveal Melanoma
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