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Results  Delayed planar anterior whole-heart ROI (WH) 
H/M ratios and WO were the most robust 123I-mIBG 
parameters. Significant correlations were observed between 
123I-mIBG parameters and several conventional echo 
parameters, global longitudinal and radial strain (GLS and 
GRS) and galectin-3. The highest Pearson’s r was observed 
between delayed H/M ratio and GRS (Pearson’s r 0.36, 
p = 0.01). Multivariate analysis showed that GRS was the 
only independent predictor of the delayed WH H/M ratio 
(p = 0.023).
Conclusion  The delayed planar H/M ratio is the most 
robust 123I-mIBG parameter. It correlates with several con-
ventional echocardiographic parameters, GLS, GRS and 
galectin-3. Of these, only GRS predicts the H/M ratio.

Keywords  Breast cancer · Anthracyclines · 
Cardiotoxicity · 2D strain imaging · 123I-mIBG 
scintigraphy · Biomarkers

Abstract 
Purpose  It remains challenging to identify patients at risk 
of anthracycline-induced cardiotoxicity. To better under-
stand the different risk-stratifying approaches, we evaluated 
123I-metaiodobenzylguanidine (123I-mIBG) scintigraphy 
and its interrelationship with conventional echocardiogra-
phy, 2D strain imaging and several biomarkers.
Methods  We performed 123I-mIBG scintigraphy, conven-
tional and strain echocardiography and biomarker (NT-
proBNP, TNF-α, galectin-3, IL-6, troponin I, ST-2 and 
sFlt-1) assessment in 59 breast cancer survivors 1 year after 
anthracycline treatment. Interobserver and intermethod 
variability was calculated on planar and SPECT 123I-mIBG 
scintigraphy, using the heart/mediastinum (H/M) ratio and 
washout (WO). Pearson’s r and multivariate analyses were 
performed to identify correlations and independent predic-
tors of 123I-mIBG scintigraphy results.
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Introduction

Anthracyclines are widely used for (neo)adjuvant treatment 
of breast cancer [11, 27]. This class of drugs is associated 
with cardiotoxicity [3]. Anthracycline-induced cardiotox-
icity (AIC) can be acute, which may lead to chemothera-
peutic dose reduction, but is generally reversible. However, 
development of chronic AIC (i.e. ≥1 year after therapy) is 
often irreversible and may have a significant impact on the 
overall prognosis and survival of breast cancer survivors 
[37]. As treatment with anthracyclines resulted in signifi-
cantly improved breast cancer survival over the past dec-
ades, the importance of (early) detection and prevention of 
potential side effects has increased. Most commonly, the 
possible deleterious effects of anthracyclines on left ven-
tricular function are monitored by left ventricle ejection 
fraction (LVEF) measurement using multigated radionu-
clide angiography (MUGA) or (2D non-contrast) echocar-
diography [3, 17]. However, the reproducibility of echo-
cardiography parameters varies and both techniques only 
detect LVEF changes that occur after considerable damage 
has been acquired [19, 36]. An adequate technique to iden-
tify patients at risk of cardiotoxicity (i.e. before the damage 
occurs) is still lacking [17].

The pathophysiology of AIC is complex and not yet 
fully understood. Recent research has focused on the 
topoisomerase-IIβ enzyme as the core defect mechanism, 
which is believed to induce cell death upon the formation 
of a complex with the anthracycline doxorubicin [24, 38]. 
This topoisomerase-IIβ–doxorubicin complex-induced cell 
death subsequently triggers a cascade of cytokine release 
and compensatory mechanisms, which are potential targets 
for early detection of AIC [7]. When myocytes die, cardiac 
output declines, with the release of norepinephrine (NE) 
in the synapse by the sympathetic nervous system as one 
of the first neurohumoral responses [1]. The release of NE 
in combination with a decreased presynaptic NE reuptake 
(i.e. NE transporter downregulation) leads to an increased 
concentration of NE in the synaptic cleft [12, 15]. Meta-
iodobenzylguanidine (mIBG) is an analogue of the sym-
pathetic neurotransmitter NE. Labelling of mIBG with 123I 
allows for scintigraphic assessment of sympathetic activity 
and may provide a measure for early detection of AIC [15]. 
The most commonly used methods to quantify myocardial 
123I-mIBG uptake are the measurement of the heart/medi-
astinum (H/M) ratio and washout (WO). Increased sympa-
thetic cardiac activity is characterized by a decreased H/M 
ratio and an increased myocardial washout of 123I-mIBG.

Other novel methods that may detect AIC in an early 
stage include 2D strain (rate) imaging with echocardiogra-
phy and blood biomarkers. 2D strain (rate) imaging meas-
ures the relative deformation (i.e. stretch) of cardiac tissue 
in three different axes [25]. Since strain can differentiate 

active from passive movement, subtle regional differences 
can be detected long before LVEF deteriorates [31]. Blood 
biomarkers can be measured to provide information on car-
diac pathological processes, as summarized in the cytokine 
hypothesis by Braunwald et  al. [7]. Myocyte injury, 
whether it is due to hemodynamic or ischaemic stress, 
induces release of the compensatory prohormone N-termi-
nal probrain natriuretic peptide (NT-proBNP), the myofi-
brillar protein troponin I and different cytokines including 
tumour necrosis factor alpha (TNF-α) and interleukin-6 
(IL-6). Subsequently, activated monocytes secrete the inter-
leukin-1 receptor family member ST2, while macrophages 
produce galectin-3 [7]. Furthermore, the angiogenesis pro-
moter-soluble Fms-like tyrosine kinase receptor 1 (sFlt-1) 
is activated [21].

As 123I-mIBG scintigraphy, 2D strain (rate) imag-
ing and blood biomarkers reflect different aspects of 
the same pathophysiological mechanism, they most 
likely show some interrelationship. However, knowl-
edge on this possible correlation is still lacking. There-
fore, the aim of the current study was to study the rela-
tion between 123I-mIBG scintigraphy, echocardiographic 
(strain) imaging and a selection of the most promising 
biomarkers. We aimed to study this in a homogenous 
group of breast cancer survivors 1  year after a poten-
tially cardiotoxic chemotherapeutic regimen, containing 
anthracyclines.

Materials and methods

Patient selection

All adult female patients presented between October 2010 
and May 2012 with breast cancer and at least 1 year after 
completion of (neo)adjuvant treatment with docetaxel, 
doxorubicin (i.e. anthracycline) and cyclophosphamide 
(TAC) were asked to participate in the study. Exclusion 
criteria consisted of major heart disease (i.e. myocardial 
infarction, percutaneous coronary intervention or coronary 
artery bypass graft) at the time of breast cancer diagnosis, 
renal failure at the time of cardiac evaluation, evidence of 
breast cancer recurrence or metastatic disease, pregnancy 
or breast feeding, participation in a research protocol with 
ionizing radiation 1  year prior to inclusion, diabetes mel-
litus, Parkinson’s disease or an 123I-mIBG accumulating 
tumour.

A detailed medical history and physical examination 
were obtained in all patients, with special attention to risk 
factors and signs and symptoms of cardiac disease. Current 
medication use was noted. A standard 12-lead electrocar-
diogram was performed and analysed for signs of cardiac 
disease and rhythm disturbances. The study was approved 
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by the medical ethics committee of the Radboud Univer-
sity Medical Center (Nijmegen, The Netherlands), and 
informed consent was obtained from all patients.

123I‑mIBG scintigraphy

Patient medication interfering with 123I-mIBG uptake was 
interrupted for at least 5 half-lives after consultation of 
the attending physician. Thyroid 123I uptake was blocked 
by oral administration of 400  mg potassium perchlorate 
1  h before intravenous injection of 185 MBq123I-mIBG 
(AdreView, GE Healthcare). Patients rested for 30  min 
prior to injection.

Planar 123I-mIBG images were acquired in anterior and 
posterior view 15  min (‘early’) and 4  h (‘delayed’) after 
injection. Imaging was performed during 10  min using a 
20  % energy window centred on the 159-keV photopeak 
of 123I, and acquired with a medium energy collimator and 
stored in a 128 ×  128 matrix. No scatter correction was 
applied. Subsequently, a single-photon emission computed 
tomography (SPECT) of the thorax was performed 35 and 
260 min post-injection, obtaining 32 frames of 60 s/frame, 
on a dual-head detector system, using a rotation of 180°.

Measurements on planar images

On the anterior planar images, 10–20 pixel regions of inter-
est (ROI) were drawn over the upper mediastinum by two 
observers (BB and ASL) (Fig.  1) [16, 30]. This ROI was 
then placed over the LV anterior wall to obtain the small 
left ventricular (Sm) ROI. Furthermore, a whole-heart 
(WH) ROI was manually determined. Both ROIs were mir-
rored on the posterior planar images. For all planar images, 
H/M ratios were calculated by dividing the cardiac aver-
age counts per pixel by the mediastinal average counts 
per pixel. Furthermore, a geometric mean of the heart and 
mediastinum counts was calculated (by means of the for-
mula 

√
countsanterior× countsposterior), resulting in the 

geo H/M ratio. Eventually, this resulted in two measure-
ments of the H/M ratios (i.e. anterior and geometric mean) 
on two time points (i.e. early and delayed) and with two 
ROI methods (i.e. WH and Sm).

The (background corrected) myocardial WO was defined 
as described by Veltman [35].

This was done for both the anterior images and the 
geometric mean method, using both the WH and Sm ROI 
delineation method. WO is expressed as a percentage.

Single‑photon emission computed tomography 
(SPECT) images

For SPECT image interpretation, tomographic slices were 
reconstructed in short axis, horizontal axis and vertical 

long axis planes. Early and delayed images were identi-
cally aligned so that simultaneous analysis of the image 
planes was allowed. Mediastinal, WH and LV (i.e. includ-
ing or excluding the cavum) voxels of interest (VOIs) were 
visually drawn using Inveon Research Workplace 4.1 (IRW, 
Siemens Molecular Imaging). The mediastinal VOI had a 
fixed spherical shape of 20 voxels, and care was taken to 
exclude thyroid tissue. H/M ratios and WO were calculated 
with mean voxel count as described above.

Echocardiography and biomarkers

Methods on the measurement of conventional and strain 
echocardiography parameters and biomarkers have been 
described extensively elsewhere [9, 34]. The current study 
focused on the interrelationship of these parameters with 
123I-mIBG values. The parameters on conventional echo-
cardiography that were studied included the internal dimen-
sions of the left ventricle at end-diastole (LVIDd) and 
end-systole (LVIDs), the posterior and septal wall thick-
ness at end-diastole (LVPWd, IVSd), left ventricular mass 
(LVM), left ventricular volume at end-diastole (LVEDV) 

Fig. 1   Standardized approach for the placement of the mediastinal 
and heart ROIs for H/M ratio determination, adapted from Somsen 
and Flotats [16, 30] Notice the upper and lower boundary defining 
the upper mediastinum and the mediastinal midline. The heart ROI 
consists of either a circular ROI including the left ventricle and the 
cavum (whole-heart ROI—WH) or a small circular ROI on the left 
ventricle lateral wall (small LV ROI; Sm)
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and end-systole (LVESV), left atrial end-diastolic volume 
(LAEDV), left ventricular ejection fraction (LVEF), early 
(E) and late (A) diastolic transmitral peak flow velocity 
(E/A ratio), the systolic to diastolic pulmonary vein peak 
flow velocity (PV S/D ratio) and early diastolic transmitral 
peak flow velocity (E) to early diastolic annular velocity 
(e′) ratio (E/e′ ratio). Measurements of LVEDV, LVESV, 
LVM and LAEDV were indexed by body surface area 
(BSA).

The biomarkers we studied were NT-proBNP, TNF-α, 
galectin-3, IL-6, troponin I, ST-2 and sFlt-1. Biochemical 
risk factors for cardiovascular disease (cholesterol, triglyc-
erides, HDL, LDL, glucose, HbA1C) were also determined.

Statistical analysis

Patient age and time after treatment are expressed in years 
or months with range. Other patient characteristics are 
expressed in numbers of total and percentage. 123I-mIBG 
and echocardiographic values are expressed as mean ± SD. 
Biochemical values are expressed as median with inter-
quartile range.

Lin’s concordance correlation coefficients (LCCs) with 
95 % confidence intervals are calculated for interobserver 
variability and depict the correlation of measurements 
of two different observers. For clinically relevant agree-
ment, the following criteria are used: LCC values <0.90, 
0.90–0.95, 0.95–0.99 and >0.99 were considered to indi-
cate poor, moderate, substantial and almost perfect agree-
ment, respectively [26]. The coefficient of variation (CV) is 
the relative ratio of SD to mean and expressed in percent-
age. 95 % limits of agreement in Bland–Altman plots are 
defined as mean ±  2SD, which is numerically expressed 
as the coefficient of repeatability (CR; calculated as 
1.96 × SD).

Correlations of the various studied methods are 
expressed in Pearson’s r. Correlations with a one-tail 
p  < 0.1 were included in multivariate regression analysis, 
which was performed in a forward stepwise fashion. Sig-
nificance was set at p < 0.05. All statistical analyses were 
performed with SPSS for Windows, version 20.0.

Results

Patient characteristics

Fifty-nine breast cancer survivors were included in the 
study. All patients had received a full dose of anthracy-
clines (300  mg/m2), except one who received 250  mg/
m2. None of the patients had a history of major cardiac 
events (i.e. myocardial infarction, percutaneous coro-
nary intervention or coronary artery bypass graft), nor 

did any of them indicate chest pain or express heart 
failure signs/symptoms. One patient presented with 
a known left bundle branch block. Other patient char-
acteristics, including risk factors and medication use, 
are displayed in Table  1. One year after treatment the 
mean LVEF was 62.6 (±7). LVEF was <55 % in three 
patients, respectively, 35, 53 and 54  %. The observed 
LVEF of 35  % was due to aortic sclerosis, which 
was observed on conventional echocardiography and 
returned to normal after surgical intervention. The other 
two patients did not receive follow-up, since they did 
not meet the criteria for subclinical cardiotoxicity. None 
of the patients used dexrazoxane.

Planar H/M ratio and WO

Anterior and geometric mean H/M ratios and WO 
were obtained in all patients on both early and delayed 
123I-mIBG images and by both observers. All anterior H/M 
ratios and WO were significantly lower than geometric 
mean H/M ratios and WO (Table 2).

Table 1   Patient characteristics of the study group (N = 59)

a  Systolic blood pressure >140 mmHg and/or use of antihypertensive 
medication
b  Presence of coronary artery disease in a first-degree family member 
at <55 years in men or <65 years in women

N (%) Median (range)

Clinical characteristics

Age in years 52 (36–69)

Time after treatment in months 12.5 (10–14)

Risk factors

Smoking 13 (22)

Hypertensiona 18 (30)

Family historyb 9 (16)

HbA1c >53 mmol/L 1 (2)

BMI >30 kg/m2 13 (22)

Medication use

ACE/ATII 2 (3)

Beta blocker 6 (10)

Diuretic 9 (15)

Statin 5 (9)

Calcium antagonist 2 (3)

Treatment characteristics

Tumour side

 Left 28 (46)

 Right 24 (39)

 Both 11 (12)

Radiation left thorax side 22 (37)

 Total radiation in gray 65 (45–142)

Cumulative anthracycline dose in mg/m2 300 (250–300)
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Interobserver and intermethod variability

Interobserver correlations of WH H/M ratios were moder-
ate, of Sm H/M ratios and WO poor (Table  2). However, 
mean interobserver differences were small for WH H/M 
ratio (Fig. 2). Intermethod variability, describing the corre-
lation of WH and Sm ROI definition by one observer, dem-
onstrated poor LCCs (Fig. 3).

SPECT H/M ratio and WO

IRW-derived H/M ratios are summarized in Table 3. Early 
H/M ratios could be calculated in 52 patients (88  %), 
delayed H/M ratios in 43 patients (73 %). This discrepancy 
was mainly caused by technical or acquisition protocol dif-
ficulties (e.g. hardware failure, data file corruption).

Intermethod variability

The intermethod correlation of SPECT-derived WH versus 
LV H/M ratio (both early and late) and WO was almost per-
fect (LCC 0.99). Mean differences were very small (Fig. 4).

SPECT versus planar

The WH method is the only method used for both planar 
and SPECT images. Therefore, correlation between SPECT 

and planar H/M ratio was calculated specifically for that 
method. We observed a Pearson’s r of 0.33 (p < 0.05) for 
the early images, r =  0.35 (p < 0.05) for the late images 
and r = 0.76 (p < 0.001) for WO.

Conventional and strain (rate) echocardiography 
and biomarker results

Although additional data on conventional echocardio-
graphic and strain (rate) imaging and biomarkers are 
described in earlier work, [9, 34] for the purpose of com-
pleteness, an overview of the obtained results is presented 
in Table 4.

Correlation of 123I‑mIBG with conventional and strain 
echocardiography and biomarkers

Significant correlations between the delayed planar WH 
H/M ratios and LVEDV/BSA, LVESV/BSA, IVSd, LVM/
BSA, E/A ratio (conventional echocardiography), GLS, 
GRS (strain echocardiography) and galectin-3 (biomarker) 
were identified (Table 5). The most significant correlation 
was observed for GRS (Pearson’s r 0.36, p =  0.01), the 
least significant for E/A ratio (Pearson’s r 0.19, p = 0.08). 
LVEDV/BSA, LVESV/BSA, IVSd, LVM/BSA, GLS and 
galectin-3 showed an inverse correlation, while E/A ratio 
and GRS showed a direct correlation.

Table 2   Planar H/M ratio and 
WO characteristics

H/M ratio heart/mediastinum ratio, WO washout, WH whole-heart ROI, Sm small left ventricle ROI; SD 
standard deviation, CV coefficient of variation (SD/mean), LCC Lin’s correlation coefficient, CI confidence 
interval, CR coefficient of repeatability (1.96 × SD), Δ = difference
†  p < 0.001

Anterior Geometric mean Intermethod 
∆

Mean LCC Mean LCC Mean

SD CV (%) 95 % CI SD CV (%) 95 % CI SD CR

WH

Early H/M ratio 2.71 0.90 2.99 0.91 0.28†

0.44 16.2 0.83–0.94 0.40 13.4 0.85–0.94 0.21 0.41

Delayed H/M ratio 2.72 0.92 2.82 0.92 0.10†

0.51 18.8 0.86–0.95 0.43 15.2 0.87–0.95 0.21 0.41

WO (%) 21.9 0.83 27.5 0.80 5.6†

13.1 59.8 0.74–0.89 10.2 37.1 0.69–0.87 5.6 11.0

Sm

Early H/M ratio 2.80 0.69 3.05 0.49 0.25†

0.53 18.9 0.56–0.78 0.46 15.1 0.34–0.62 0.24 0.48

Delayed H/M ratio 2.83 0.71 2.92 0.57 0.09†

0.56 19.8 0.58–0.80 0.47 16.1 0.40–0.70 0.24 0.47

WO (%) 20.0 0.53 26.0 0.57 6.0†

14.0 70.0 0.36–0.67 10.7 41.1 0.37–0.71 7.9 15.5
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Multivariate analysis

Since delayed anterior WH H/M ratio seems to be the most 
robust measurement in our population, we aimed to identify 
by which parameters it was influenced. Multivariate analy-
sis showed that GRS was the only independent predictor of 
the WH H/M ratio (standardized β = 0.36, p = 0.023).

Discussion

In the current study we examined the interrelationship of 
an extensive panel of potential parameters for the early 
detection of chronic AIC, in a homogenous group of breast 
cancer survivors 1 year after treatment. There was a signifi-
cant correlation between the delayed planar WH H/M ratio 
and several conventional echocardiographic values, GLS, 

Fig. 2   Bland–Altman plots of interobserver difference versus mean 
of planar anterior (a) and geometric (b) WH H/M ratio, both on early 
and on delayed images. Butted lines represent 95 % limits of agree-
ment. A. Mean differences: early images −0.04 (95 % CI −0.10 to 

0.01), R2 = 1.0 e−5; delayed images −0.01 (95 % CI −0.07 to 0.04), 
R2 = 0.01. B. Mean differences: early images 0.03 (95 % CI −0.01 to 
0.08) R2 = 0.01; delayed images 0.06 (95 % CI 0.02–0.10), R2 = 2.2 
e−4

Fig. 3   The dilution effect. Early geo WH versus Sm H/M ratio 
showed an LCC of 0.87 (95 % CI 0.81–0.91), R2 = 0.42. The increas-
ing intermethod difference is due to the dilution effect: the difference 
between cavum and myocardium increases when the myocardium has 
high 123I-mIBG uptake (i.e. the normal heart), and the ROI inclusion 
of blood pool (i.e. WH ROI) will account more heavily to the average 
heart count. Other LCCs were 0.79 (95 % CI 0.71–0.86, early ante-
rior), 0.87 (95 % CI 0.81–0.91, delayed anterior) and 0.82 (95 % CI 
0.74–0.88, delayed geo). Intermethod analysis of WO showed a poor 
correlation of 0.82 (95  % CI 0.72–0.88) for anterior images and a 
moderate correlation of 0.91 (95 % CI 0.85–0.94) for delayed images

Table 3   IRW-derived 123I-mIBG SPECT indices

WH whole-heart ROI, LV left ventricle ROI
†  p < 0.001

Mean (SD)

WH LV

Early H/M ratio 4.28 (0.96) 4.39 (0.99)†

Delayed H/M ratio 4.35 (1.24) 4.45 (1.27)†

Washout rate (%) 20.9 (14.9) 21.5 (14.4)
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GRS and galectin-3. Furthermore, GRS was identified as 
an independent predictor of the late planar WH H/M ratio.

Because high reproducibility is an important require-
ment for any diagnostic modality, we first evaluated the 
interobserver and intermethod variability of different meth-
ods of H/M ratio calculation to identify the most robust 
one, since the delineation method is a main factor hamper-
ing widespread clinical use of cardiac 123I-mIBG scintigra-
phy [10, 14, 35]. In most clinical studies, the WH ROI on 
anterior planar images is used [2, 6, 20, 33]. We showed 
that indices based on the geometric mean based did not 
improve reproducibility, nor was there a difference between 
early and delayed indices. Although a Sm ROI reduces a 
possible ‘dilution effect’ (Fig.  3), it is inferior to the WH 
ROI because of its high observer variability (Table 2). The 
Sm ROI should therefore not be used.

The addition of SPECT to 123I-mIBG scintigraphy 
might increase the diagnostic potential of this technique. 
Although most studies focus on regional sympathetic 
innervation rather than a global SPECT assessment, Chen 
et  al. [13] described a high reproducibility and accuracy 
of global 123I-mIBG SPECT evaluation, which allows to 
separate heart failure patients from healthy controls. We 
observed a high correlation between planar and SPECT-
derived parameters, especially for WO. Furthermore, 
SPECT H/M ratios were systematically higher than planar 

ratios, which is most likely caused by an overestimation 
of background activity on planar images [13]. Although 
SPECT reconstructions result in a more accurate calcula-
tion of the H/M ratio, SPECT image acquisition and recon-
struction are time-consuming and performed with different 
protocols, yielding divergent H/M ratio ranges, thus hinder-
ing standardization [13]. Hence, global 123I-mIBG SPECT 
imaging, although promising, does not provide sufficient 
added value to be recommended for use in daily clinical 
practice.

Several conventional echocardiographic parameters, 
GLS, GRS and galectin-3 showed a correlation with WH 
H/M ratio, but only GRS proved to be an independent 
predictor.

GRS measures the relative deformation of the cardiac 
left ventricular wall in the radial direction (i.e. LV wall 
thickening), yielding a positive strain value during systole. 
In AIC, functioning myocytes are replaced by non-con-
tracting fibrotic cells [32], which leads to impaired cardiac 
thickening and a decrease in GRS. Due to the sympathetic 
response to myocardial damage, the H/M ratio will also 
decrease. Therefore, theoretically one would expect a direct 
relationship between GRS and WH H/M ratio, which was 
confirmed by the results of our study. Since GLS measures 
shortening of the myocardial wall in the longitudinal axis, 
it is defined as a negative value and an inverse relationship 
with WH H/M ratio is expected. The results of our study 
indeed demonstrate an inverse correlation between GLS 
and WH H/M ratio, although not strong enough to predict 
the WH H/M ratio. No correlation, however, was observed 
between GCS and WH H/M ratio.

Of the studied biomarkers, only the novel blood bio-
marker galectin-3 showed a significant correlation with the 
WH H/M ratio. Galectin-3 is a protein expressed by mac-
rophages and believed to be a mediator of the profibrotic 
pathway, stimulating cardiac fibroblasts to proliferate and 
deposit collagen [22]. Galectin-3 concentrations are ele-
vated in patients with acute HF and predict an adverse out-
come [29]. In a recent study by Ky et  al., no association 
between cardiotoxicity and galectin-3 was found, although 
follow-up only lasted 6  months [22]. Other studies on 
this issue have not been performed in adults, but a recent 
study in paediatric patients showed an (non-significantly) 
increased level of galectin-3 at least 2 years after anthracy-
cline treatment [5].

Conventional echocardiographic parameters that cor-
related with the WH H/M ratio included LVEDV/BSA, 
LVESV/BSA, IVSd, LVM/BSA and E/A ratio. The correla-
tion of the WH H/M ratio and LVEDV, LVESV, IVSd and 
LVM displayed an inverse nature, which means that both 
cardiac volumes and cardiac wall diameters increase as the 
WH H/M ratio drops. This is an interesting finding, since 
typical AIC in adults presents as a dilated cardiomyopathy, 

Fig. 4   IRW-derived 123I-mIBG SPECT intermethod differ-
ences. Early WH versus LV H/M ratio: mean difference 0.12, LCC 
0.99  (95  % CI 0.985–0.994), R2  =  0.20. Delayed WH versus LV 
H/M ratio: mean difference 0.10, LCC 0.996 (95 % CI 0.993–0.997), 
R2 = 0.15. Butted lines represent 95 % limits of agreement. The dif-
ferences can be accounted for by the dilution effect. WO mean dif-
ference −0.5 %, LCC 0.993 (95 % CI 0.987–0.996), not included in 
figure
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featuring increased ventricle sizes and thin walls [18]. A 
possible explanation for this increased wall diameter is a 
compensatory myocyte hypertrophy in the dilated heart. 
This pattern has been described before in childhood can-
cer survivors [5, 23]. Another interesting finding is that the 
relative deformation (represented by the GRS and GLS) 
decreases, while the cardiac wall diameter increases. This 

probably reflects the replacement of active myocytes by 
passive (fibrotic) tissue and concurrent myocyte hypertro-
phy. Furthermore, we observed a (weak) direct correlation 
of the E/A ratio with the WH H/M ratio, indicating a con-
current decrease in the E/A ratio with the WH H/M ratio. 
The E velocity indicates diastolic filling, which decreases 
gradually in normal subjects. The A velocity reflects the 

Table 4   Conventional and 
strain (rate) echocardiography 
and biomarker results

EF ejection fraction, LVEDV left ventricular end-diastolic volume, BSA body surface area, LVESV left ven-
tricular end-systolic volume, LVIDd left ventricle internal dimension at diastole, IVSd interventricular sep-
tum at diastole, LVPWd left ventricular posterior wall at diastole, LVM left ventricular mass, LAEDV left 
atrial end-diastolic volume, E/e′ ratio early diastolic transmitral peak flow velocity (E) to early diastolic 
annular velocity (e′) ratio, E/A ratio early (E) and late (A) diastolic transmitral peak flow velocity ratio, 
S/D ratio systolic/diastolic ratio, GLS global longitudinal strain, GLSR global longitudinal strain rate, GRS 
global radial strain, GRSR global radial strain rate, GCS global circumferential strain, GCSR global circum-
ferential strain rate, N/A not applicable
†  RV as established by the Radboudumc chemical laboratory
‡  RV as stated in manufacturer’s protocol
a  Abnormal value is outside 2 SD when reference is defined as a mean ± SD

Study population Reference value (RV) Abnormal valuesa

N Mean (SD) <RV >RV

Conventional echocardiography

EF (%) 59 62.6 (7.1) ≥55 4 (7) N/A

LVEDV/BSA (ml/m2) 58 46.2 (10.0) 35–75 7 (12) 1 (2)

LVESV/BSA (ml/m2) 58 18.0 (6.3) 12–30 9 (16) 1 (2)

LVIDd (cm) 59 4.6 (0.5) 3.9–5.3 3 (5) 7 (12)

IVSd (cm) 59 0.9 (0.1) 0.6–0.9 0 14 (24)

LVPWd (cm) 59 0.9 (0.1) 0.6–0.9 0 15 (25)

LVM/BSA (g/m2) 59 77 (17) 44–88 0 12 (20)

LAEDV/BSA (ml/m2)a 57 22 (6) 22 (±6) 1 (2) 2 (4)

E/e′ ratio 52 6.5 (2.3) <8 N/A 10 (19)

E/A ratio 58 1.2 (0.3) 1.3 (±0.3) 3 (6) 3 (6)

PV S/D ratio 54 1.4 (0.4) 1.2 (±0.2) 3 (6) 15 (28)

2D strain (rate) echocardiography

GLS 57 −17.7 (3.1) −17.8 (2.1) 2 (4) 6 (11)

GLSR 57 −0.87 (0.2) −0.87 (0.1) 3 (5) 2 (4)

GRS 42 38.0 (10.0) 40.5 (11.4) 1 (2) 0

GRSR 41 1.45 (0.4) 2.20 (0.6) 0 0

GCS 42 −18.9 (4.6) −20.3 (2.6) 3 (7) 7 (17)

GCSR 41 −1.03 (0.2) −1.72 (0.3) 0 24 (57)

Median (interquartile range)

Biomarkers

 NT-proBNP (pg/ml) 59 119 (127) 18–50 years: <170 N/A 10 (17)

50–60 years: <250

60–70 years: <300†

 Troponin I (µg/l) 59 <0.2 (<0.2) <0.2† N/A 0 (0)

 TNF-α (pg/ml) 55 <2.8 (1.5) <10‡ N/A 4 (7)

 Galectin-3 (ng/ml) 55 12.9 (3.6) <17.6‡ N/A 4 (7)

 IL-6 (pg/ml) 55 <3.12 (<3.12) <10‡ N/A 0 (0)

 ST2 (ng/ml) 55 10.6 (14.4) 4.9–19.9‡ 0 (0) 0 (0)

 sFlt-1 (pg/ml) 55 <320 (<320) Not detectable‡ N/A 0 (0)
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active atrial contraction just before end-diastole and nor-
mally becomes more important in elderly patients, resulting 
in an E/A ratio approaching 1 [8]. However, a decreased 
E/A ratio could also imply diastolic dysfunction, indicating 
AIC, although opinions on the usefulness of the E/A ratio 
differ [4, 28].

The main limitation of the current study is the lack of 
baseline and follow-up measurements, so we could not 
assess the change in parameters over time. However, the 
aim of the study was not to detect a change in certain 
parameters, nor to predict AIC, but to assess the interrela-
tionship of different interesting parameters in the patho-
physiological process of AIC.

Although the correlations of certain parameters have 
been studied, for example strain (rate) imaging and tro-
ponin or conventional echocardiography and strain (rate) 
imaging, they have not been studied for their correlation 
with 123I-mIBG parameters. Furthermore, we focused on 
a homogenous group of breast carcinoma survivors with 
potential AIC damage, which is a patient group that has not 
yet been studied properly.

With the current study we have identified the relation-
ship of the WH H/M ratio with 2D strain imaging, bio-
markers and conventional echocardiography 1  year after 
anthracycline-based chemotherapy. This sheds some light 
on the complex pathophysiology of AIC, enabling future 
studies to identify appropriate parameters for the detection 
of AIC.

Conclusions

Delayed planar WH H/M ratio is the most robust 123I-mIBG 
parameter. It is correlated with several conventional echo-
cardiographic parameters, GLS, GRS and galectin-3. Of 
these, only GRS is an independent predictor of the WH H/M 
ratio. Future studies should concentrate on a combination of 
123I-mIBG scintigraphy, MUGA, echocardiographic strain, 
CMR and biomarkers, preferably in a prospective multicen-
tre trial with long-term follow-up in breast cancer survivors.
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