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Diabetes mellitus is a metabolic disorder that majorly affects the endocrine gland, and it is symbolized by hyperglycemia and
glucose intolerance owing to deficient insulin secretory responses and beta cell dysfunction. This ailment affects as many as 451
million people worldwide, and it is also one of the leading causes of death. In spite of the immense advances made in the
development of orthodox antidiabetic drugs, these drugs are often considered not successful for the management and treatment
of T2DM due to the myriad side effects associated with them. Thus, the exploration of medicinal herbs and natural products as
therapeutic sources for the treatment of T2DM is promoted because they have little or no side effects. Bioactive molecules
isolated from natural sources have been proven to lower blood glucose levels via regulating one or more of the following
mechanisms: improvement of beta cell function, insulin resistance, glucose (re)absorption, and glucagon-like peptide-1
homeostasis. In recent times, the mechanisms of action of different bioactive molecules with antidiabetic properties and
phytochemistry are gaining a lot of attention in the area of drug discovery. This review article presents an update of the findings
from clinical research into medicinal plant therapy for T2DM.

1. Introduction

Diabetes mellitus is a metabolic disorder depicted by
hyperglycemia (elevated levels of blood glucose) and glu-
cose intolerance, which brings about defects of insulin
secretion or insulin’s action to boost glucose uptake. This
disorder causes a burden worldwide because of its high rate
of morbidity, mortality, and higher health costs for man-
agement and treatment. According to the International
Diabetes Federation report of 2017, 451 million adults
worldwide are living with diabetes, with a predicted 693
million cases by 2045 [1]. On a global level, this disorder
is prevalent more in the low-income and middle-income
countries with almost 50% of the cases undiagnosed. In
Africa, there is a high incidence of undiagnosed diabetes
cases (69.2%) with 73.7% of all deaths due to diabetes

occurring before the age of 60 [1, 2], thus showing the
extent to which diabetes is destroying its workforce popu-
lation. In Africa and other continents of the world, type
2 diabetes accounts for over 90-95% of diabetes cases [3].
The prevalence of diabetes is rapidly increasing in South
Africa with approximately 1.8 million adults suffering from
diabetes mellitus (DM), while an additional 1.5 million
adults remain undiagnosed [4, 5].

The economic burden of diabetes in the Republic of
South Africa per person per annum was approximately R
5000 in 2010 and R 26,743.69 in 2015 [6]. This statistic only
showed the cost effect of treating diabetes without addressing
the cost of loss of manpower, since 60-80% of those suffering
from this ailment belong to the working class and they die
before the age of 60 [6]. According to the World Bank, not
more than 5% of a country’s gross domestic profit (GDP)

Hindawi
Oxidative Medicine and Cellular Longevity
Volume 2020, Article ID 1356893, 36 pages
https://doi.org/10.1155/2020/1356893

https://orcid.org/0000-0002-7460-9594
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/1356893


should be spent on health; however, in South Africa, 8.9% of
GDP is spent on health-related matters [7].

Type 2 diabetes mellitus (T2DM) is ranked among one of
the most challenging global epidemics because it affects both
human health and economies. The number of people plagued
with T2DM worldwide in the past 20 years has more than
doubled [8].

T2DM is a chronic disease caused by the complex inter-
actions of genetic and environmental factors (dietary and
lifestyle factors) [9]. The roles of both our genetic makeup
and the environment are contributing factors to insulin resis-
tance and β-cell dysfunction [9]. In recent times, there have
been arguments saying that changes in the gene makeup can-
not be the main cause for the upsurge in the prevalence of
T2DM but that changes in dietary and lifestyle patterns are
fundamental to grasping this epidemic [10].

The management and treatment of T2DM inflict both
direct and indirect costs on the subject most especially when
it is linked with other comorbidities like stroke and cancer.
The global community is seriously searching for a drug
which is cheap and together potent against T2DM so as to
cut down the number of death cases annually [11]. Further-
more, the numerous antidiabetic therapies employed by the
use of conventional drugs are laborious in the sense that most
of these drugs are not a single-dose program and are most of
the times taken by patients for their entire life. Also, it has
been reported that adverse side effects such as diarrhoea,
abdominal distention, and flatulence emanate from the
intake of these drugs. Thus, these limitations have prompted
the exploration of management strategies in the form of
medicinal plants with antidiabetic potentials which are cost
effective and have fewer side effects.

At the moment, there are a number of scientific reports
on the different biological activities of phytochemicals
against type 2 diabetes and diabetes. However, what is lack-
ing is a comprehensive review that gathers experimental evi-
dence and judiciously assesses their achievement as this
would provide future research direction in the area of oxida-
tive stress-mediated diabetes related to phytochemicals in
type 2 diabetes treatment. Therefore, this review investigates
the link between oxidative stress and type 2 diabetes at both
the cellular and molecular levels with the aim of putting forth
experimental findings on the potential of phytochemicals in
type 2 diabetes treatment.

2. Oxidative Stress and Diabetes

Oxidative stress describes a physiological state in which the
formation of reactive oxygen species (ROS) and reactive
nitrogen species (RNS) attains disproportionate levels, either
by excess production or reduced removal due to the over-
whelming antioxidant capacity of the system [12, 13]. These
highly reactive molecules are products of normal cellular
metabolism, and they play crucial roles in most signalling
pathways. The mitochondrion is the site where most of these
highly reactive species are generated. During ATP formation
in the mitochondria, electron transport and oxidative phos-
phorylation take place. These electrons react with oxygen
(O2), thus forming superoxide anions (•O2

-) which in turn

reacts with molecules like Fe2+ and generates other reactive
species (RS) such as the hydroxyl radical (•OH), hydrogen
peroxide (H2O2), and organic peroxides [14].

Also, the production of these highly reactive molecules
can be initiated in response to both extracellular and intracel-
lular stimuli. Extracellular stimuli on plasma membrane
receptors generate RS through tumor necrosis factor-
(TNF-) α, hormones (insulin), and growth factors (platelet-
derived growth factor (PDGF) and epithelial growth factor
(EGF)). Intracellular stimuli that generate reactive species
(RS) are induced by nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase [15], nitric oxide synthase
(NOS) [12, 16], and mitochondrial electron transfer [17].
In addition, RS can also be generated via some enzymatic
systems such as monoamine oxidase, lipoxygenase, xanthine
oxidase, and glucose oxidase [15]. All of these are the major
sources of reactive species (ROS and RNS), and upon their
overwhelming the body system they react by modifying
and damaging cellular macromolecules such as nucleic
acids, proteins, lipids, and carbohydrates to generate revers-
ible or irreversible oxidative modifications. They also have
the ability to trigger a number signalling cascades linked
with decoding stress, such as the mitogen-activated protein
(MAP) kinase family and c-Jun N-terminal kinase (JNK)
[18]. ROS has the ability to react with motifs of certain metal
ligands such as metalloproteases and the iron in oxyhemo-
globin. The superoxide radical (•O2

-) possesses the ability
to modify and inhibit catalase, while the hydroxyl radical
(•OH), a major product of a Fenton reaction, is released dur-
ing prolonged exercise and disease condition such as diabe-
tes [19, 20].

Recent findings have revealed that ROS, most especially
hydroxyl and superoxide radicals, react with certain amino
acids (such as cysteine, histidine, tryptophan, methionine,
and tyrosine), proteins, and simple peptides, thus making
them susceptible to altered function and damage, and thus
modifying their structure [20–22]. The effect of ROS and
RNS on fatty acids, lipoproteins, and phospholipids induces
a process called lipid peroxidation, and its resultant effect is
the formation of intermediates/products such as 4-hydroxy-
nonenal, hydroperoxide lipid, and malondialdehyde. These
products cause alterations and damages to the plasma mem-
brane, and they also have the ability to diffuse to other cells
within the organism, thus causing inflammation through
the binding of the oxidized low-density lipoprotein receptor
and also triggering apoptosis [20, 23]. According to Tsai
et al. [24] and Kawamura et al. [25], elevated blood sugar
levels enhance the production of ROS during lipid degrada-
tion of low-density lipoprotein (LDL).

Hydrogen peroxide at different levels in the cell can
either act as a signalling molecule that enhances cellular pro-
liferation or prompt cell death. At low/mild concentrations,
H2O2 acts as a second messenger for the triggering of NF-κB
and various kinases (p38 MAPK, ERK, PI3K, Akt, JAK2,
and STAT), while its presence at a little higher concentra-
tion in the cell alters mitochondrial membrane integrity,
thus bringing about the loss of the mitochondrial membrane
potential and the release of cytochrome c and other proa-
poptotic proteins such as apoptosis-inducing factor (AIF)
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[26, 27]. Upon the liberation of cytochrome c, it triggers
the activation of the intrinsic caspase-dependent apoptotic
pathway [28].

Oxidative stress has been attributed to be one of the
major determinants for the development of diabetes [29,
30]. The overwhelming of the antioxidant system by oxidants
promotes the pathogenesis of diabetes and that is why we
have more oxidative cells in diabetic subjects than in healthy
subjects, i.e., a higher level of ROS production [31, 32]. Also,
several reports have shown that there is a close association
between oxidative stress and DM due to increased oxidative
damage to vital macromolecules. According to reports of
Grimsrud et al. [33] and Muellenbach et al. [34], there is an
increased level of protein carbonylation and nitrosylation in
insulin-sensitive tissues and in the type 2 diabetes mellitus
(T2DM) state. Also, research findings have shown a strong
association between increased oxidative stress and protein
unfolding which causes the loss of protein function in a num-
ber of animal models [35, 36]. In diabetic patients, oxidative
stress causes the alteration of two major mechanisms which
are insulin resistance and insulin secretion. Oxidative stress
causes the adipocytokine dysregulation and inhibition of
insulin signals, thus bringing about insulin resistance. There
are also increased levels of malondialdehyde (MDA), protein
carbonyls, protein oxidation products, 4-hydroxy-2-nonenal,
glycation end products, isoprostanes, carbohydrate modifica-
tions, and 8-hydroxy-2′-deoxyguanosine (8-OH-dG), which
are biomarkers of oxidative stress in diabetic subjects [37–
39]. Furthermore, the upsurge production of ROS in T2DM
subjects has been shown to trigger harmful pathways such
as glucosamine pathways, advanced glycation end products
(AGEs), and PKCβ1/2 kinase [40].

In addition, high levels of leptin, free fatty acids (FFA), and
nonesterified FFAs promote excessive production of ROS in
T2DM subjects. These unnecessary FFAs go into the tricarbox-
ylic acid cycle to produce acetyl-CoA and loads of NADH,
which causes the overproduction of mitochondrial superoxide.

3. The Signalling Pathways Involved in Glucose
Metabolism Disorder in Diabetes

Elevated blood sugar levels have been implicated in the
induction of oxidative stress via a number of mechanisms,
viz., autoxidation of glucose, AGE formation, polyol path-
way, and PKCβ1/2 kinase [41]. Elevated free fatty acids, lep-
tin, and other circulating factors in T2DM patients may also
contribute to causing ROS overproduction [42].

In recent years, clinical and epidemiological studies in
diabetes research have confirmed that hyperglycemia and
lipid metabolism abnormalities have grave influence in the
onset of both micro- and macrovascular diseases. To this
end, four key hypotheses have been put up through clinical
trials to see specific inhibitors of hyperglycaemia causing
T2DM (Figure 1). These four key hypotheses are activation
of protein kinase C (PKC) isoforms, increased advanced gly-
cation end product (AGE) formation, and increased hexosa-
mine biosynthetic pathway flux and increased poly(ADP-
ribose) pathway flux (PARP).

3.1. Activation of Protein Kinase C (PKC) and Diacylglycerol
Formation. The protein kinase C (PKC) family consists
of not less than eleven isoforms of serine-threonine
kinases, which contribute to the regulation of endothelial
cell permeability, stimulating cell proliferation and vascular
growth [43]. According to the reports of Aiello et al. [44]
and Geraldes and King [45], PKCβ has been described to
be a potential target for the improvement of diabetic com-
plication. It was revealed that its activation is enhanced by
increased glucose levels in diabetic animals and vascular
cells [44, 45]. In recent times, high glucose levels induce
the activation of PKC and the increase in the levels of
diacylglycerol (DAG) in a number of tissues (retina, aorta,
heart, and renal glomeruli) are involved in diabetic vascular
complications using diabetic animal models and patients
[46–48]. Also, a large amount of clinical and animal experi-
mental models implicated elevated glucose levels to be the
direct activator of the polyol pathway, and it is also linked
with the excessive generation of reactive oxygen species
(ROS) by the activity of mitochondria, PKC, and NADPH
oxidase [49, 50]. Furthermore, prolonged activation of PKC
has been linked to influencing the activation of a number of
growth factors, i.e., platelet-derived growth factor (PDGF),
transforming growth factor β (TGFβ), and vascular endothe-
lial growth factor (VEGF) in both cultured mesangial cells
and glomeruli of diabetic rats [51, 52].

3.2. Increased Intracellular Formation of Advanced Glycation
End Products.According to Degenhardt et al. [53], intracellu-
lar hyperglycaemia is a fundamental event in the formation
of both intracellular and extracellular AGEs. Advanced gly-
cation end products (AGEs) refer to a group of heteroge-
neous compounds that can arise from the intracellular
autooxidation of glucose to glyoxal, the breakdown of the
Amadori product (glucose-derived 1-amino-1-deoxyfructose
lysine adducts) to 3-deoxyglucosone, and also the nonenzy-
matic removal of phosphate from glyceraldehyde phosphate
and dihydroxyacetone phosphate to yield methylglyoxal
[43, 53]. These reactive products (3-deoxyglucosone, glyoxal,
and methylglyoxal) react with free amines of proteins and
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HBPPKC/DAG PARPAGEs
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Proinflammatory cytokine
NADH/NAD+

Figure 1: Multiple signalling pathways underlying hyperglycemic
cellular damage in type 2 diabetes mellitus.
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lipids and speed up development and accumulation of AGEs
in the body [54, 55]. According to Piperi et al. [56], excessive
production of AGEs inflicts greater injury to pancreatic beta
cells than through hyperglycemia. In addition, hyperglycae-
mia has a direct effect on proteins of the electron transport
chain by way of promoting the generation of ROS which in
turn induces the fierce formation of AGEs [57, 58]. It is well
known that the accumulation of AGEs is associated with the
development of insulin resistance and also in the pathogene-
sis of diabetic complications [55, 59, 60].

According to Qiu et al. [61], extracellular AGEs aid the
binding and activation of signal transduction receptor RAGE
(receptor of AGE). Furthermore, the intracellular production
of the AGE precursor causes damage to cells via three mech-
anisms: (i) modification of intracellular protein by AGEs,
thereby causing the loss of function of cells; (ii) activation
of the RAGE signalling axis, which results in cell apoptosis,
proliferation, migration, and dysfunction; and (iii) plasma
protein modification, which causes the binding of AGE pre-
cursors to AGE receptors (i.e., RAGE and AGE-R1, 2, and
3) on cells such as vascular smooth muscles and macro-
phages. The binding of AGE precursors to their respective
receptors has been linked with a number of signalling path-
way such as p21ras/ERK1/2MAPK, JAK/STAT, NADPH
oxidase/ROS, and nuclear factor kappa B (NF-κB) activation,
therefore resulting in complications such as diabetes, cancer,
aging, and neurological diseases [62].

3.3. Increased Polyol Pathway Flux. The reduction of a wide
variety of carbonyl compounds to their respective alcohols
is stimulated by a family of aldose reductase enzymes [43,
63, 64]. The poly(ADP-ribose) pathway (PARP) involves
the breakdown of tissues and cells; it also consists of key
enzymes such as aldose reductase (AR) and sorbitol dehydro-
genase (SDH) [64–66]. During this metabolic process, glu-
cose is reduced to its preferred corresponding alcohol-
sorbitol by the action of AR instead of being phosphorylated
as 6-glucose phosphate [67, 68]. These reactions make use of
nicotinic acid adenine dinucleotide phosphate (NADPH).
The enzyme aldo-keto reductase (AR) determines the overall
rate of the polyol pathway, and it also has a low affinity
(Km > 100mM) for glucose while in nondiabetic subjects,
wherein the glucose concentration is normal. During the
metabolism of glucose by the polyol pathway, a very minute
percentage of total glucose is used [67, 69]. In a hyperglyce-
mic state, AR activation is achieved by increased intracellular
glucose. As a result of this reaction, resilient polar sorbitol is
produced which struggles to seep into the cell membranes,
thus bringing about osmotic cell swelling, impairment of cel-
lular structure and function, a decrease of ATPase activity,
and ultimately setting in motion cell metabolism and func-
tional damage [43]. The oxidation of sorbitol to fructose by
the action of sorbitol dehydrogenase causes PKC activation
by way of an increased NADH/NAD+ ratio [70]. It is note-
worthy that ROS is not generated in a direct way in this
mechanism but it is associated with redox imbalance that
brings about the onset of oxidative stress [71–73]. Recent
findings have implicated PARP to be strongly associated with
a myriad pathogenesis of diabetic complications, e.g., AGEs,

PKC, and oxidative stress. In addition, it has been revealed
to stimulate cardiac damage via its activation of NF-κB
(nuclear factor κB) and also inducing the overexpression of
vasoconstrictor endothelin-1 (ET-1) [49, 74, 75]. Further-
more, attention has shifted to PARP as one of the intense
subjects in the aetiology of diabetic complications [73, 74].

3.4. Increased Flux through the Hexosamine Biosynthetic
Pathway. Abnormally high blood sugar levels and insulin
resistance-induced fatty oxidation plays a key role in the
onset and advancement of diabetic complications via increas-
ing the flux of fructose-6-phosphate into the hexosamine bio-
synthetic pathway [76, 77]. This abnormal blood glucose
level triggers the premature activation of some metabolic
pathways, which in turn causes the usual expression of cer-
tain cytokines such as CTGF, ICAM-1, PAI-1, TGF-β,
TNF-α, and VCAM-1, which are involved in the develop-
ment of lesion [78, 79]. Upon the absorption of glucose by
cells, a majority are digested and shoved via glycogen synthe-
sis, metabolism of the pentose phosphate, and glycolysis; fur-
thermore, approximately 1-3% of glucose also go into the
hexosamine biosynthetic pathway [79, 80]. According to
Qin et al. [81], the excessive shunting of intracellular glucose
via the hexosamine biosynthetic pathway has been impli-
cated in a myriad of diabetic complications. Furthermore,
the hexosamine biosynthetic pathway allows fructose 6-
phosphate from glycolysis to be used as substrates for reac-
tions that require of UDP-N-acetylglucosamine such as in
the case of the formation of O-linked glycoproteins and also
the synthesis of proteoglycans. Another thing peculiar to this
pathway is that 6-phosphate monophosphate transaminase
catalyzes its first step of reaction, and it is also the rate-
limiting enzyme of the pathways [82, 83]. The ability to
inhibit glutamine : fructose-6-phosphate amidotransferase
(rate-limiting enzyme) which converts glucose to glucos-
amine helps blocks hyperglycaemia-induced increases in
the transcription of TGF-α, TGF-β1, and PAI-1 [76, 84–
86]. Lastly, the activation of the hexosamine biosynthetic
pathway via hyperglycaemia could bring about the overex-
pression of a number of cytokines such as TGF-α, TGF-β,
VEGF, and PDGF in non-insulin-sensitive tissues and also
lead to the onset of diabetic complications [62].

Some other molecular mechanisms have also been impli-
cated in the generation of free radicals during hyperglycemia
in both in vitro and in vivomodels. Such mechanisms include
the mitochondrial mechanism, dysfunction of cellular anti-
oxidative defense system (ADS), glucose autoxidation, lipid
peroxidation, and activation of free-radical generator
enzymes such as nicotinamide adenine dinucleotide phos-
phate (NADPH) oxidases, xanithine oxidase, cytochrome
P450 (CYP450), myeloperoxidase, and uncoupled endothe-
lial nitric oxide synthase (eNOS). These mechanisms are
summarized in Figures 2 and 3.

3.5. Mitochondrial Mechanisms. The mitochondrial respira-
tory chain (MRC) is constituted of five multimeric enzyme
complexes (I-V). The MRC is an established site for the pro-
duction of free radicals throughout hyperglycemia. Research
findings have highlighted the originators of mitochondria
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free radical formation. These include accelerated electron
disposition into the electron transport chain of the mito-
chondria through influx electron donation aided by com-
plexes I, III, and IV; escape of electrons; repression of the
function of the mitochondria antioxidative defense system
(ADS); and alteration of mitochondrial DNA [87]. The
chief role of the mitochondria in the cell is energy genera-
tion (ATP) through oxidative phosphorylation. This process
involves two main stages: (a) oxidation of NADH/FADH2
which aids in the supply of electrons to METC and (b)
phosphorylation of ADP to ATP [88]. In a hyperglycemic
condition, the glycolytic and tricarboxylic acid pathways
cause elevated levels of NADH and FADH2 [76, 88], thus
promoting the accumulation of electrons in complex I and
ultimately aiding in the excessive production of superoxide
anion (O2

-) [89–91].
The escape of electrons from the mitochondria brings

about free radical production via the disruption in electron
transfer induced by leakages in electrons at complexes I and
III and also aids the breakdown of O2 to

•O2
-. When mito-

chondrial ADS levels are lessened, they boost free radical
production. The presence of manganese-dependent superox-
ide dismutase (MnSOD) in the mitochondria transforms O2

-

to H2O2 and O2. Research findings have implicated the
hyperglycemic state to be one of the reasons why there is a
diminished level in mitochondria ADS expression in addi-
tion to a weakened buffering potential [87, 88, 92]. Mutation
in mDNA influenced by hyperglycemia promotes the decline
in the level of MnSOD, peroxiredoxins (PRX), thioredoxin
(TRX), and 8-hydroxydeoxyguanosine [93].

3.6. Dysfunction of Cellular Antioxidative Defense System.
Literature is replete with information that hyperglycemia
gives rise to a defect in the antioxidative defense system
(ADS) [94, 95]. In a diabetic state, there are a number of
decreases in some enzyme activity levels. For instance, in
the brain, there is a drastic decrease in the activities of
SOD, CAT, and GPx. In addition, lower levels of erythro-
cytes, hepatic cells, lymphocytes, and vascular endothelial
cells are predominant in diabetic subjects. All these

Hyperglycemia

Dysfunction of cellular
antioxidative defense
system (ADS)

Lipid
peroxidation 

Glucose
autoxidation

Oxidative stress

Insulin resistance

Cytokine production
Monocyte activation 

Dysfunction of
endothelial cell Beta cell dysfunction

Electron disposition
in ETC of the
mitochondria

Levels of NADH and FADH2
Levels of SOD, CAT, 
and GPx

Low density
lipoprotein (LDL). 

Figure 2: Some summarized pathways with increasing reactive oxygen species in a hyperglycemia state.
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Figure 3: Enzymatic reactions that generate ROS in diabetic state.
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diminished levels are the resultant effects of an upsurge in the
activity of free radicals [87, 96–98]. Several mechanisms have
been highlighted to be the likely causes of ADS-induced dia-
betes. The first of such mechanisms is via insulin, which is
thought to be a strong catalyst in the expression of the anti-
oxidative enzyme system [94, 99]. Its absence/shortage could
trigger an aberration in ABS expression. Antioxidative
enzyme glycation and inactivation is another mode by which
ADS is altered in diabetes [87, 94]. According to Kakkar et al.
[100], a deficiency in insulin promotes the activation of fatty
acyl-coenzyme A oxidase which results in excessive genera-
tion of H2O2. Another mode by which ADS is altered in dia-
betes is through several possible mechanisms that may be
responsible for the effect of diabetes on the ADS. Simonyan
et al. in 1987 proposed another mechanism that involves
the depletion in gene expression levels of CAT and SOD by
a reactive species in the event of hyperglycemia [101]. This
process is aided by DNA degradation and disturbance in
tRNA. Sindhu et al. [97] corroborate the findings of Simon-
yan et al. [101] that elevated levels of H2O2 chiefly affects
DNA degradation. Finally, it has been documented that the
alteration in glutathione metabolism and the decline in the
activity of glutathione reductase are linked with a hyperglyce-
mic condition.

3.7. Glucose Autoxidation. According to Wolff and Dean
[102] and Yaribeygi et al. [87], during hyperglycemia,
autoxidation of glucose takes place, and this gives rise to
the generation of harmful reactive species and ketoaldehyde
compounds. The production of H2O2 and malondialdehyde
is linked to glucose autoxidation-induced hyperglycemia.
Also, glucose autoxidation has been suggested to be the main
channel for the release of reactive species in a chronic hyper-
glycemic state [87, 103].

3.8. Lipid Peroxidation. There is accumulation of harmful
end products (aldehydes, alkanes, carboxylic acids, ketones,
and polymerization products) during fat peroxidation in
the cell membrane, and this is catalyzed by an upsurge in free
radicals [87]. These harmful products elicit their deleterious
effects on neighboring cells [104]. In a diabetic state, there
is an increased fat peroxidation, thus promoting the produc-
tion of free radicals and oxidative stress [87, 105].

3.9. Activation of Free-Radical Generator Enzymes. The
diabetes-induced free radicals that result from enzymatic
reactions and activation of the seven most important oxida-
tive enzymes like cyclooxygenases (COX), cytochrome P450
(CYP450), lipoxygenase (LOX), myeloperoxidase (MPO),
NADPH oxidase (NOX), uncoupled endothelial nitric oxide
synthase (eNOS), and xanthine oxidase (XOX) contribute
as much as those from the mitochondria as shown in
Figure 3 [87, 88].

3.9.1. Cyclooxygenase. Several studies revealed that prolonged
low-grade inflammation is attendant with type 2 diabetes
(T2D), and a well-defined connection with COX-mediated
inflammation has been ascertained [106–108]. In the past,
it was thought that COX existed in only two isoforms, i.e.,
COX-1 and 2 [109–111], but lately, there have been findings

that corroborate the presence of COX-3 [112, 113]. COX-1
and 2 are both expressed in mammalian cells and play biolog-
ical roles, while COX-3 is a splice variant of COX-1 [114,
115]. COX-1 is the most essential of all the isoforms as it is
found in nearly all tissues, whereas COX-2 is conveyed in
minute or trace quantities and most of the time it is released
as a result of stimuli taken from mitogens, pathogens, oxida-
tive stress, and inflammation [116–119].

According to Verma et al. [120], the COX-1 abundance
level is enhanced at the initiation of diabetes and it has also
been implicated with greater death rate in heart-related dis-
eases. Guo et al. revealed that there is a vast amount of
COX-2 in the vascular smooth muscle cells of the type 2 dia-
betes mouse model [121]; furthermore, in the coronary arte-
rioles of diabetic subjects, there are elevated levels of COX-2
and antiapoptotic protein Bcl-2 [122, 123]. Also, the elevated
levels of COX-2 inside podocytes make the kidney liable to
diabetic glomerular injury which occurs by way of a (pro)re-
nin-mediated mechanism [124]. The presence of COX-2
inhibitors in diabetic patients aid in shielding against the
incidence of nephropathy [125–127]. In addition, nimesu-
lide, a known COX-2 inhibitor, averts endothelial malfunc-
tion in the hind leg of diabetic rats [128].

3.9.2. Cytochrome P450 (CYP450). Cytochrome P450
(CYP450) is a large family of enzymes linked with drug
metabolism, and they are a crucial target in drug pharmaco-
kinetics and response. They are chiefly derived from cells of
the liver but are also expressed in body tissues associated with
great oxidative capability [129]. They are haemoproteins
whose sole aim is to aid in the biotransformation of endoge-
nous and exogenous compounds [129, 130]. They are mostly
positioned in the sarcoplasmic reticulum and inner mem-
brane of the mitochondria where they function in processes
such as metabolism and synthesis [131]. CYP2E1 and
CYP4A are the two predominant CYP450 enzymes that aid
in the production of oxidants such as hydrogen peroxides,
hydroxyl radicals, and anion superoxide in the body [87].
According to Bansal et al. [132], isoforms of CYP4A have
the tendency for producing hydrogen peroxide and superox-
ide. In addition, some CYP450 isoforms (2E1, 2C6, 2C7, 3A2,
4A3, and 2A1) have been activated and implicated in the
onset of hyperglycaemia via the hydroxylation of fatty acids
and ketone bodies in streptozotocin-induced diabetic ani-
mals [132–134].

3.9.3. Lipoxygenase. Lipoxygenases (LOXs) are a heteroge-
neous family that catalyzes the oxygenation of polyunsatu-
rated fatty acids such as arachidonic acid and linoleic acid
to produce their hydroperoxy derivatives and in the process
generate free radicals [135–137]. The resulting ROS pro-
duced binds to the enzymes’ active site while in a diabetic
state they cause collateral damage to surrounding tissues
upon their escape [136]. LOX enzymes and their products,
such as hydroxyeicosatetraenoic acids (HETEs) and hydro-
xyocatadecadienoic acids, have been linked with the develop-
ment of diabetes-induced oxidative stress. Hyperglycemia
promotes the upregulation LOX enzymes and boost their
activities [136]. An upsurge in the activities of 12/15-LOX
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has been associated with the pathogenesis of diabetes and
atherosclerosis [138–140]. Bleich et al. revealed that 12-
LOX knockout (12-LOX KO) mice were resistant to the dia-
betes development [141].

3.9.4. Myeloperoxidase.Myeloperoxidase (MPO) belongs to a
superfamily of mammalian heme peroxidase enzymes, which
also includes eosinophil peroxidase (EPO) and lactoperoxi-
dase (LPO) [142]. They possess antimicrobial and antiviral
potentials because of their ability to produce ROS [143].
MPO is a protein predominantly expressed in neutrophils,
while smaller expression has been observed in the monocytes
and macrophages [144]. MPO utilizes H2O2 to make hypo-
chlorous acid (HOCl) and tyrosyl free radicals which possess
bactericidal potential, thus creating ROS [143, 144]. Upon
the activation of neutrophils and monocytes, they employ
ROS for the destruction of pathogens which acquire access
into the cell; however, these radicals wield a great deal of
cytotoxic effect in the host cells. In a diabetic state, MPO acti-
vation gives rise to an upsurge in the production of oxidants
which exert cytotoxic and oxidative activity [87]; lingering
hyperglycemia is commonly linked with elevated levels of
an activated MPO enzyme [145]. Furthermore, the inhibitory
effect of N-acetyl-lysyltyrosyl-cysteine amine on the MPO
enzyme enhances the function of an endothelial cell and
abates oxidative stress in diabetic mice [87].

3.9.5. NADPH Oxidase. Nicotinamide Adenine Dinucleotide
Phosphate (NADPH) oxidases (NOXs) have also been linked
as one of the sources of ROS generation during a diabetic
state [146]. The NOX family is composed of seven members
(Nox1–Nox5, Duox1, and Duox2) that transfer electrons
across the biological membranes to generate ROS and are
myriads of organs in the body [147]. These different isoforms
stimulate superoxide generation by causing a reduction in
oxygen molecules via an electron donor (NADPH) [148].
Also, these isoforms are expressed in disparate patterns
within the organs of the body. These enzymes possess diverse
regulatory subunits crucial for their activity. For instance,
Nox1 requires NOXO1, NOXA1, and Rac and Nox2 requires
p47phox, p67phox, p40phox, and Rac, whereas NOX4 is
constitutively active [149]. In addition to their various activ-
ities, Nox1 and Nox2 are renowned for their copious genera-
tion of superoxide anion as their immediate product, whereas
NOX4 generates hydrogen peroxide enzymes without the
slightest presence of a superoxide [150]. Fakhruddin et al.
in 2017 affirmed that in a hyperglycemic state, NOX enzymes
are activated directly or by way of impeding adenosine
monophosphate- (AMP-) activated protein kinase [88]. Fur-
thermore, in a hyperglycemic state, there is enhancement of
NOX4 expression and oxidant production in the kidney
[151], while Eid et al. [152] and Lee et al. [153] showed that
in the same state, there is a subduing effect on AMP-
activated protein kinase, thus bringing about the upregula-
tion of NOX4 and ultimately promoting NOX activity in
the glomerulus.

3.9.6. Uncoupled Endothelial Nitric Oxide Synthase (eNOS).
Uncoupled eNOS is an occurrence symbolized by an electron

transfer within the eNOS molecule by way of L-arginine oxi-
dation, which ultimately breaks down molecular oxygen into
a superoxide rather than a nitric oxide (NO) [154]. Thus, it
has been revealed that uncoupled eNOS plays a dual role by
way of causing an upsurge in ROS production and a decline
in NO bioavailability. These two processes have been linked
to the development of diabetes [155]. Xia et al. in 2017
revealed that vital physiological processes in the body (cellu-
lar proliferation, cellular signalling, platelet aggregation, and
vascular tone) are dependent on NO [156]. The mechanism
by which uncoupling eNOS is initiated can be grouped into
four pathways, viz., accumulation of methylarginines, deple-
tion of L-arginine, eNOS S-glutathionylation, and oxidation
of tetrahydrobiopterin (BH4) [157–159]. Nitric oxide binds
to BH4 as a cofactor. In a diabetic condition where BH4 is
absent, eNOS is transformed to its monomeric form
(uncoupled eNOS). In this state, eNOS enzyme basically pro-
duces O2

- instead of NO [160]. Peroxonitrite (ONOO-) is
another powerful oxidant derived from the reaction between
NO and O2

-. The depleted bioaccessibility of BH4 in the body
has been connected with diabetes development [161], and it
has been suggested that it is a potential cause for endothelial
dysfunction and oxidative stress in diabetes subjects [161].
Uncoupled eNOS is a major source of oxidative damage in
diabetes kidneys that was reversed by BH4 treatment [162].

3.9.7. Xanthine Oxidase. Xanthine oxidase (XO) is a metallo-
flavoenzyme that catalyzes the oxidation of hypoxanthine,
thus causing the production of xanthine and some oxidants
(e.g., superoxide and peroxynitrite) [163, 164]. XO also gen-
erates oxidants, which are key players in the T2DM develop-
ment process [165–168]. In a diabetic state, there is an
upsurge in XO production and the treatment with an inhib-
itor (allopurinol) aids in the reduction of XO activity, gener-
ation of superoxide anion, and ultimately, alleviation of
oxidative stress [165]. There is an exceptionally immense
upsurge in the activity of XO in a diabetic state, thus promot-
ing oxidative damage as well as inflammatory response [169].

4. Transcriptional Factors and Proteins
Implicated in Oxidative Stress-
Mediated Diabetes

T2DM is depicted by its myriad of stimuli, decisive factors
whereby proinflammatory mediators play a vital role in the
onset of insulin resistance and pathogenesis of T2DM
through the involvement of oxidative stress and activation
of several transcriptional mediator pathways [170].

Oxidative stress has been shown to increase the produc-
tion of cytokine by a number of signalling pathways. A
substantial amount of research findings has revealed that
oxygen derivatives act as a second messenger which activate
transcription factors such as nuclear factor kappa B (NF-
κB), which in turn leads to the production of inflammatory
cytokine such as tumor necrosis factor-α (TNF-α), interleu-
kins (ILs), growth factors, and ECM proteins [171, 172].

4.1. Tumor Necrosis Factor-Alpha. The TNF superfamily
contains 19 legends and 29 receptors that play a myriad of
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roles in the body, with all members exhibiting proinflamma-
tory activity [173]. TNF-α is among the first proinflamma-
tory biomarkers to be associated with the pathogenesis of
insulin resistance and glucose-related abnormalities that link
to T2DM [174, 175].

It plays a vital role in the development of insulin resis-
tance by reducing the expression of glucose transporter type
4 (GLUT 4) that regulates insulin. It is situated in adipocytes
and in skeletal and cardiac muscles [176, 177].

Recent reports have revealed the pivotal role TNF-α plays
in the induction of tissue-specific inflammation, which
brings about the pathogenesis of T2DM [178–180]. Accord-
ing to Swaroop et al. [181], an elevated level of TNF-α in
the blood is associated with the development of insulin resis-
tance and diabetes. Hu et al. [182] reported that TNF-α acti-
vates adhesion molecules such as intracellular adhesion
molecule-1 that stimulates the growth of insulin resistance.

In addition, reports have shown that in metabolic disor-
ders such as hyperglycemia and hyperinsulinemia, which
are closely related to diabetes, there is an enhanced produc-
tion of TNF-α from monocytes and macrophages in an
in vitromodel [183, 184]. Also, there is a positive relationship
between the increase in age and levels of TNF-α [185].

In the pathogenesis of T2DM, increased production of
TNF-α in adipose tissues is also related to the obesity-
associated insulin resistance that leads to the development
of T2DM [186]. Phytochemicals like anthocyanidins, which
possess potent antioxidants, have been proven to inhibit
TNF-α activity and its related prodiabetic effects [187, 188].

There is a cross-talk between the IKK/NF-κB signalling
pathway and its implicated linkage to metabolism, inflamma-
tion, and insulin action [189–191]. Almost all metabolic
stress signals that are induced either intracellularly or extra-
cellularly bring about insulin resistance or pancreatic β-cell
dysfunction by converging on the NF-κB-activating kinase
IKKb. Furthermore, the IKK/NF-κB pathway influences glu-
cose metabolism via its activity on the central metabolism
networks in pancreatic islets. This brings about elevated
damages on the islet and also causes a malfunction in β-cell
response to metabolic stress and proinflammatory signals in
insulin-resistant subjects which are the hallmark of glucose
intolerance and full-blown type 2 diabetes [190, 192, 193].

4.2. Transforming Growth Factor-Beta. TGF-β belongs to a
superfamily of three isoforms. The most prevalent of this iso-
form is TGF-β1; it is produced in its latent form where it is
intertwined with protein and concealed in the extracellular
matrix. TGF-β1 is made active when its complexed form is
cleaved by a proteolytic enzyme [194]. A number of research
findings have pointed to a high level of TGF-β1 expression in
advance glycation end products, high blood glucose level, and
other outcomes of oxidative stress [195–197]. TGF-β1 has
been implicated as a major stimulator of tissue fibrosis, and
a prolonged dosage of TGF-β1 aids in restoring normal func-
tioning of the kidney in type 1 and 2 diabetes experimental
models [198, 199].

It is noteworthy that TGF-β2 has not been well studied in
comparison with TGF-β1, but it has been associated with
diabetes-related problems most especially in diabetic condi-

tions relating to the kidney [200, 201]. In recent times, iso-
forms of TGF have been studied closely for its downstream
effects on certain microRNA (miRNAs) species [202]. It has
also been reported that extreme glucose levels may possibly
upsurge transcription of TGF-β genes which in turn pro-
motes the elevation levels of TGF-β and its downstream sig-
nalling [203–205]. Although the mode by which TGF-β
activation causes heart problems in diabetic subjects is
vague, its activation in such subjects could result from the
modulation of the expression of certain changes in miRNAs.
These miRNAs are noncoding ribonucleic acid molecules
tasked with the responsibility of controlling the expression
of genes [206]. It has been reported that miRNAs modify
the focal points associated with the TGF-β pathway which
in turn alters the signalling process of the pathway [207].
An example of such modification of miRNAs has been
implicated in its ability to control ERK-MAPK activity in a
diabetic state [208].

4.3. Plasminogen Activator Inhibitor-1. Plasminogen activa-
tor inhibitor-1 (PAI-1) is a serine protease inhibitor that
functions as the principal inhibitor of tissue-type plasmino-
gen activator and urokinase-type plasminogen activator, the
activators of plasminogen and hence fibrinolysis. PAI-1 is
dramatically upregulated in obesity, a complex condition
associated with increased risk for myocardial infarction,
accelerated atherosclerosis, hypertension, glucose intoler-
ance, insulin resistance, hyperinsulinemia, and type 2 diabe-
tes [209, 210]. Moreover, we recently demonstrated that PAI-
1 is involved in streptozotocin-induced type 1 diabetic bone
loss in female mice [211].

4.4. Soluble Adhesion Molecules. Diabetes and its macrovas-
cular diabetic complications are multifactorial diseases,
which could be brought about by genetic and environmental
factors [212]. In most locations of diabetic macrovascular
complications and hyperglycemia, there is a tendency to
stimulate the initiation of inflammation in the endothelium
by way of dysregulation of NOS, NF-κB activation, the
formation of advanced glycation end products (AGEs), and
oxidative stress. Upon the activation/initiation of the endo-
thelium in diabetic subjects, there is increased expression of
soluble adhesion molecules such as E-cadherin, E-selectin,
intercellular adhesion molecule 1 (ICAM-1), and vascular
cell adhesion molecule 1 (VCAM-1) [213]. These aforemen-
tioned molecules enable conscription of leukocytes and also
bring about their permeation into tissues at locations of
macrovascular diabetic complications [214, 215]. It has been
observed in both type 1 and 2 murine models that the erasure
of ICAM-1 in diabetic nephropathy fends off the advance-
ment of renal diseases [216, 217]. In addition, the impasse
of ICAM-1 aids in averting blood-retinal barrier collapse
and endothelial cell mutilation [218, 219].

According to Leinonen et al. [220], upon the activation of
endothelial cells, some soluble adhesion molecules such as
VCAM-1 and ICAM-1 are liberated which are biomarkers
of the inflammatory reaction. Also, P-selectin and sICAM-1
levels are notably greater in diabetic neuropathy subjects
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and it has also been implicated in the weakened pace of ner-
vous conduction [221, 222].

4.5. Interleukins. Type 2 diabetes mellitus (T2DM) arises
out of impaired insulin secretion and insulin resistance.
This metabolic disorder is connected with inflammatory
responses which are typified by the modification of cytokine
production such as interleukins (ILs). Interleukins have
been implicated in the pathophysiology of T2DM and insulin
resistance by way of their respective signalling pathways
[171]. On a large scale, cytokines could either be pro- or
anti-inflammatory in their activity. IL-1 has been revealed
to be a key proinflammatory cytokine which is mostly liber-
ated from immune cells, and it is concealed in certain secre-
tory cells such as adipocytes, monocytes, macrophages, and
a number of cells located around diabetic macrovascular
complications [171]. IL-1 has two isoforms, IL-1α and β,
with a slight difference in their biological functions. IL-1 in
collaboration with other cytokines stimulate inflammation
[171]. In addition, Spranger et al. [223] revealed that subjects
possessing a combination of discernible IL-1β and uplifted
IL-6 levels are three times more prone to exhibit T2D in
comparison with subjects having trace IL-1β and dwindling
IL-6 levels. Genomic analysis has pointed to certain IL-1
genes to closely link with glucose breakdown, non-insulin-
dependent diabetes, and a myriad of cardiovascular diseases
aftermaths [224–228].

5. Potentials of Phytochemicals in Type 2
Diabetes Mellitus Therapy

A number of naturally occurring chemical materials/-
substances known as phytochemicals (phenols, terpenoids,
nitrogen-containing alkaloids, and sulphur-containing com-
pounds) found in plants have been implicated to possess
antidiabetic effects [229]. Phenolic compounds have been
implicated in altering inflammatory activity (CRP, IL-6,
IL-1β, and TNF-α), transpirational factor enzymes (NF-
κB, PPARγ), and genes pertinent for the occurrence of
T2DM [230].

Researchers have explored different parts of plants for
their antioxidant and antidiabetic properties [231–233].
Some antioxidants present in the human body such as gluta-
thione and thioredoxin mop up ROS via the donation of
reducing equivalents in the form of a hydrogen atom or
electron to the free radicals, thus making them less harmful
in the body system. Certain plant-derived compounds have
been ascribed with the following attributes with relation to
T2DM therapy: activate the ERK1/2 and AMPK pathways
[234–236]; downregulate gene expression associated with
COX-2, thus promoting the increased liberation of proin-
flammatory mediators [237, 238]; increase glucose tolerance
and insulin sensitivity [239, 240]; lessen influx of inflamma-
tory cells [241]; decrease levels of proinflammatory cytokines
IL-1β, IL-6, and TNF-α in the serum [242]; restrain the acti-
vation of NF-κB pathways [243]; and repress the expression
of macrophage chemostatic protein (MCP-1) and ICAM
[241]. Figure 4 exemplifies the possible function of phyto-
chemical or secondary metabolites with antioxidant potential

in the oxidative stress-induced T2DM pathway. ROS/RNS
influenced oxidative stress results in diabetes through the
following:

(1) Insulin resistance

(2) Dysfunction of beta and endothelial cells due to pro-
longed exposure to high glucose, elevated free fatty
acid level, or the combination of both

(3) Decreased insulin secretion and dysfunction of mito-
chondrial energy product

Antioxidants embedded in natural phytocompounds
have gained greater attention, and they are now being
employed therapeutically for mopping up reactive species,
consequently attenuating oxidative stress-mediated diabetes.
Oxidative stress in a diabetic subject causes insulin resistance,
beta cell dysfunction, and insulin secretion which could be
modulated by phytocompounds with strong antioxidant
potential via either regulating blood sugar levels or attenuat-
ing no less than one of the following mechanisms linked with
insulin resistance: beta cell function, glucose (re)absorption,
and incretin-related pathways [244].

6. Antidiabetic Effects of Phytochemicals

6.1. Preclinical In Vitro/In Vivo (Animal) Studies. Several
plant species having hypoglycemic activity have been avail-
able in the literature; most of these plants contain bioactive
compounds such as glycosides, alkaloids, terpenoids, flavo-
noids, carotenoids, peptidoglycans, hypoglycans, guanidine,
and amino acids, that are frequently implicated as having
an antidiabetic effect.

The antidiabetic property of the hydroalcoholic extract
of the Dioscorea rhizome was revealed by its ability to
reduce blood sugar level in a high-fat-induced rat model
[245]. Its mode of action is its ability to attenuate insulin
resistance via lessening the phosphorylation of ERK and
pS6K and causing an upsurge in Akt and GLUT 4 phos-
phorylation [245].

Another research finding examined the antidiabetes
effects and mechanism of action ofAstragalus membranaceus
root extract on a diabetic rodent model [246, 247]. The result
showed that the extract has the ability to surge insulin sensi-
tivity via Akt activation and increase receptor response to
GLUT 4 [247, 248].

The ethanolic extract of Glycyrrhiza uralensis was able to
reduce blood sugar, body fats, and blood pressure in a rat
model [244, 249]. Another member of this genus, G. foetida,
possesses a bioactive molecule (licorice) which also helps in
reducing blood sugar and body fats. The mode of action of
licorice is achieved by its binding and activation of PPARγ
which is pivotal in glucose and lipid metabolism, thus point-
ing to its antidiabetic potential [250].

Gastrodia eleta Blume is a medicinal herb in China. The
aqueous extract ofG. eleta has been shown to enhance insulin
resistance by causing a reduction in body fat of diet-induced
obese rats [251]. The presence of two potent bioactive mole-
cules (vanillin and 4-hydroxybenzaldehyde) in this extract
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brings about its enhancement of insulin resistance by way of
attenuating the fat accumulated in adipose tissues and caus-
ing a surge in fat oxidation [251].

Cinnamon (Cinnamomum verum and Cinnamomum
zeylanicum) has a rich history of being used as a flavouring
agent and medicinal plant for treating a myriad of ailments
such as common cold, diarrhoea, diabetes, and rheumatism
[252, 253]. Its antidiabetes activity is attributed to its ability
to lower blood glucose levels by way of diminishing insulin
resistance and promoting hepatic glycogenesis [252, 254].
Cinnamaldehyde, a water-soluble polyphenol compound
isolated from cinnamon, acted as an antihyperglycemic and
antihyperlipidemic agent in a diabetic rat experimental
model [255].

The inclusion of Trigonella foenum-graecum leaves and
seeds in diets of rats and dogs, respectively, revealed a signif-
icant diminishing effect on blood sugar [256]. The presence
of compounds such as diosgenin, galactomannan, trigoneo-
side, and 4-hydroxyisoleucine in T. foenum-graecum pro-
motes its antidiabetic effect [257, 258]. T. foenum-graecum
brings to bear its hypoglycemic effect by way of enhancing/-
promoting insulin sensitivity in a clinical study [259].

Semen litchi, a common medicinal plant used by the
Chinese people, also possesses antidiabetes potential. The
aqueous seed extract of S. litchi causes a decrease in insulin
resistance in a diabetic rat model [260]. In addition, a clinical
study on the seeds has also corroborated its antidiabetes
activity [261].

Gymnema sylvestre is one of the medicinal plants used in
Indian folk medicine for the management and treatment of
diabetes. According to Al-Romaiyan et al. [262], a novel G.
sylvestre extract called OSA® showed its ability to decrease

blood glucose. Its mode of action is via insulin secretion
and (re)generation of beta cells in both in vivo and in vitro
models. The ethanol extract of T. divaricata has been
revealed to surge the insulin level in the blood and diminish
blood sugar levels in STZ-induced diabetic mice [263]. The
hydroalcoholic extract of Carthamus tinctorius demonstrated
antidiabetic activity by way of improving insulin secretion in
alloxan-treated diabetic rats [264].

Panax ginseng and P. quinquefolius are well known for
their blood glucose-reducing capability in rat models [265,
266]. The ginseng mode of action of attenuating the blood
glucose level is by way of diminution of beta cell function
and insulin resistance [267–269]. In addition, the ethanol : -
water (80 : 20, v/v) extract of the ginseng root possesses a pro-
tective effect against the apoptosis of beta cells in the
MIN6N8 cell line [270].

Aloeresin A, a point biomolecule derived from Aloe vera,
has an antidiabetic potential due to an inhibitory action
against alpha-glucosidase and glucose absorption in the
intestine [271]. Apigenin is a flavonoid derived from Cham-
omile tea, which has been revealed to decrease the creation of
proinflammatory cytokines such as IL-6, IL-1β, and TNF-α
via modifying a myriad of signalling pathways in macro-
phages and as a result amending damage caused by a hyper-
glycemic state [272].

Baicalein is another flavonoid with antidiabetic poten-
tial isolated from the roots of Scutelleria baicalensis and
S. lateriflora; its mode of action is via the activation of
AMPK which results in lessened insulin resistance by way
of phosphorylating AKT and insulin receptor substrate 1
(IRS-1), and inducing dephosphorylation of ERK, NF-κB,
and JNK [273].

ROS/RNS

Oxidative stress/endoplasmic reticulum stress

Insulin resistance Beta cell dysfunction Activation of receptors 

Hyperglycemia

Type 2 diabetes mellitus 

Endogenous antioxidants, e.g., Cu, Zn,
Mn, SOD, catalase, and glutathione
⁎ Directly scavenge reactive species 

Exogenous antioxidants, e.g., vitamin C,
vitamin E, carotenoids, and

polyphenols   

Figure 4: Potential targets of antioxidants in type 2 diabetes mellitus therapy.

10 Oxidative Medicine and Cellular Longevity



Berberine is a benzylisoquinoline alkaloid derived from a
majority of the Mahonia genus. This biomolecule has an
antidiabetic property ascribed to it since it prompts a surge
of insulin resistance, diminishes blood glucose levels, and
accelerates beta cell rejuvenation in T2D experimental
models [274–276]. Berberine also prompts a surge in glucose
uptake in L6 myocytes and C2C12 skeletal muscle cell lines
by way of diminution of PTP1B activity and enhancing the
phosphorylation of Akt, insulin receptor, and insulin recep-
tor substrate [277].

Curcumin, the main bioactive compound in Curcuma
longa, possesses antioxidant, antidiabetic, and other immune-
boosting effects [278]. Its antidiabetic effect is attributed to
its ability to enhance beta cell function and regulate insulin
tolerance [279]. According to Wongeakin et al. [280], dia-
betic rats fed with a dose of 300mg/kg BW of curcumin
amended vascular inflammation via attenuating ROS over-
production and ICAM-1 and NOX2 expressions.

Diosmin, is a flavonoid found in oranges, lemons, and
other citrus plants. Its mode of action is by attenuating
ROS-induced diabetes through the impairment of NF-κB-
related proinflammatory cytokines, specifically interleukins,
MCP-1, and TNF-α [281].

Emodin, a potent bioactive compound found in Aloe
vera, banana, and Rheum palmatum, has an antidiabetic
property [229, 282]. Its mode of action is through the break-
down of IκB, a very essential part of NF-κB. In addition, the
treatment of varying concentrations of emodin caused an
upsurge in glucose uptake via enhancing glycogen break-
down by AMP-activated protein kinase and also aided the
repression of NF-κB and ERK in C2C12 myotubes and
3T3-L1 adipocytes [282].

Epigallocatechin-3-gallate (EGCG), a catechin isolated
from the leaves of Camellia sinensis has been revealed to pos-
sess antidiabetic potential in different experimental models
[283–286]. Its mechanism of action is via the upsurge of
insulin secretion, safeguarding the islet of Langerhans, and
diminishing both insulin tolerance and generation of glucose
from FFA and lipids [286, 287].

Genistein, also known as 4′,5,7-trihydroxyisoflavone, is a
naturally occurring isoflavonoid derived from Glycine max
and some other leguminous plants like chickpeas. 4′,5,7-Tri-
hydroxyisoflavone has the ability to sustain islet of Langer-
hans mass by way of upsurging the amount of beta cells
and promoting its continued existence within the pancreas
[288, 289]. Its antidiabetic mechanism of action is by way
of initiation of ERK1/2 and protein kinase A (PKA), thus
resulting in declined insulin sensitivity [290]. The treatment
of genistein to high-calorie-diet mice brought about enhanced
insulin action via the initiation of AMPK [291].

Kaempferol (3,4′,5,7-tetrahydroxyflavone) is a natural
flavonol derived from fruits and vegetables with a very potent
antioxidant activity [292]. Its antioxidant potential is due to
its ability to suppress the level of IL-1β and TNF-α in diabetic
neuropathy in mice [293]. Kaempferol notably reduced fast
blood glucose levels of high-fat-diet mice via the initiation
of the AMPK signalling pathway [294].

Morin is the main compound isolated from Maclura
pomifera, M. tinctoria, and from the leaves of Psidium gua-

java. Abuohashish et al. revealed that morin diminished the
surge of IL-1β, IL-6, and TNF-α through the SphK1 signal-
ling pathway [295]. Another study using streptozotocin-
induced diabetic rats showed that morin drastically trimmed
down blood glucose, enzymes involved in glucose metabo-
lism, and caused an upsurge of levels of insulin [296].

Myricetin is another naturally occurring flavonoid, but it
is more abundant in walnut. A number of pharmacological
properties (antioxidant, anti-inflammatory, and antidiabetic)
have been ascribed to myricetin. It owes its antidiabetic effect
to its ability to enhance insulin receptor substrate 1- (IRS-1-)
related GLUT 4 and PI3-kinase transfer/movement [297].
According to Chang et al. [298], the effect of myricetin on
HFD rats was through the improvement of PPARα and the
suppression of sterol regulatory element-binding protein
(SREBP) hepatic expression.

Naringenin is a flavanone present in citrus and grape-
fruits with very strong antioxidant activity. According to
Sandeep and Nandini [299], streptozotocin-induced dia-
betic rats treated with 0.05% of naringenin had enhanced
levels of IRS 1, GLUT 1, and GLUT 3. Another study on
streptozotocin-induced diabetic rats administered with nar-
ingenin displayed an improvement in the signalling path-
ways of both PPARγ and AMPK and caused a surge in
insulin sensitivity [239, 300].

Resveratrol is a stilbene abundantly found in the skin and
seeds of grapes. A number of pharmacological activities such
as antidiabetic, anticancer, anti-inflammatory, and immuno-
modulatory activities have been attributed to resveratrol
[301]. The upsurge in hepatic glucose level is a crucial indica-
tor of hyperglycemia in type 2 diabetic subjects. Resveratrol
aids in the stimulation of AMPK in the liver, thus causing a
decline in the production of hepatic glucose and diminishing
the expression levels of certain gluconeogenic enzymes, i.e.,
phosphoenolpyruvate carboxykinase (PEPCK) and glucose-
6-phosphatase (G6Pase) [302]. In addition, it averted apo-
ptosis of beta cells influenced by islet amyloid polypeptide
(IAPP) on culture medium [303]. Furthermore, it promotes
glucose uptake in L6 myotubes by way of initiating sirtuins
(SIRT1) as well as AMPK phosphorylation [304]. Clinical
studies [305, 306] point toward resveratrol potential in the
enhancement of glycaemic control and insulin sensitivity,
and in the diminution of oxidative stress in T2DM subjects.

These selected in vitro and in vivo studies on cells and
diabetic rat models directly involved or mimic cells/tissue-
s/organs implicated in diabetes are summarized in Tables 1
and 2 thus showing the potential of phytochemicals in
obtaining therapeutic agents by T2DM subjects.

6.2. Clinical Studies. In recent times, the use of conventional
drugs for the treatment and management of diabetes has
raised a lot concern from the general public because of their
constitutive side effects, thus promoting the exploration of
medicinal plants as alternative therapies [370, 371]. A num-
ber of medicinal plants used in the management or treatment
of diabetes in folk medicine have been proven to possess a
large amount of bioactive components which elicit antihy-
perglycemic or antidiabetic activity [371, 372]. In spite of
all these great attributes and potentials ascribed to medicinal
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plants used for the management/treatment of diabetes in
other models, there is scant information concerning their
efficacy in clinical/human trials. Therefore, this section sheds
light on a few medicinal plants that have been explored in
clinical/human trials.

6.2.1. Allium cepa. Allium cepa L. (onion) is a perennial herb
in which different products (extracts, essential oil, freeze-
dried powder, and juice) from bulbs have been shown to
exhibit antidiabetic activity [373–378]. Eldin et al. in 2010
assessed the hypoglycaemic potential of A. cepa in type 1
and type 2 diabetic patients whose were administered 100 g
of the crude fresh slices of A. cepa per day. The result revealed
a significant decrease in the levels of fasting blood glucose
(FBG) by about 89mg/dL in (type 1 diabetes patients) and
40mg/dL in (type 2 diabetes patients) after 4 hours of admin-
istration. Also, a decrease in the levels in subgroup Ib (posi-
tive control) by 145mg/dL was observed 4 hours later [379].

6.2.2. Aloe vera. Aloe vera extracts administered to three hun-
dred and forty-eight prediabetic patients and T2DM patients
for a period of 6-8 weeks revealed a substantial decrease in
fasting blood glucose (FBG) [371]. It was also found that
the administration of gliberclamide alone to 72 T2DM
patients (49 men and 23 women) with elevated FBG levels
did not ameliorate the blood glucose levels, whereas those
administered 80% Aloe vera juice together with gliberclamide
recorded a decline in the level of FBG in less than two weeks
administration with no harm done in both the liver and kid-
ney [371, 380].

In addition, Aloe QDM complex or placebo was orally
administered during a randomized control trial (8 weeks)
to one hundred and thirty-six (136) participants who were
randomly assigned to the sixty-eight (68) participants from
each group. The study revealed a considerable decrease in
body weight, body fat mass, fasting blood glucose (FBG),
fasting serum insulin (FSI), and Homeostasis Model of
Assessment-Insulin Resistance (HOMA-IR) after eight weeks
of treatment [381].

6.2.3. Cinnamon. The antidiabetic potentials of cinnamon are
highly appreciated in Ayurvedic and Chinese medicine [382]
with an increase in the number of discoveries about its insu-
lin boosting potentials [383, 384]. However, contradictory
results have emerged from clinical trials using cinnamon as
supplementation [371, 385, 386]. From the five clinical stud-
ies reviewed by Kirkham et al. [385], one study involves a
randomized, placebo-controlled clinical trial that investi-
gated the effect of cinnamon on blood glucose levels using a
total 311 participants (eight studies) which were divided into
five type 2 diabetic and three nondiabetic groups, respec-
tively. The results revealed that only two of the diabetic
groups had a significant decrease (p < 0:05) in FBG levels
(18–29% and 10.3%), while the other three groups had no
significant differences. In one of the nondiabetic groups, an
8.4% decrease was recorded (p < 0:01) in FBG vs. placebo
when comparing with those administered with placebo,
while another group recorded a significant decrease in glu-
cose response employing oral glucose tolerance tests

(p < 0:05). Another study by Mang et al. in 2006 examined
the effects of oral administration of cinnamon extracts on
79 patients diagnosed with diabetes mellitus type 2 (T2DM)
(44 men and 21 women, using oral antidiabetics or diet)
using a randomized placebo-controlled clinical trial. Three
grams of aqueous cinnamon extract was administered for 4
months after which a substantial decrease in fasting plasma
glucose (FBG) level was recorded in the cinnamon group
(10.3%) in comparison to the placebo group (3.4%); this find-
ing corroborates the moderate hypoglycemic potential of cin-
namon [387]. Gutierrez et al. in 2016 conducted a study
using ten sedentary and obese females (22:7 ± 4 years; BMI
35:39 ± 5:36 kg/m2) who were administered 5 g of encapsu-
lated Cassia cinnamon bark or 5 g of encapsulated placebo.
They found out that there was a significant decrease in blood
glucose levels with an improvement in glucose tolerance
following OGTT by 10.1% in comparison with the placebo
group [388]. However, there was no amelioration in insulin
sensitivity (IS) and insulin resistance (IR) in young women.
Furthermore, another double-blind, placebo-controlled
study involved 72 juvenile diabetes subjects (diagnosis for
≥18 months prior to the study, age group 13–18 years) who
were administered cinnamon (1 g/day) for a period of 90
days [389]. It was observed that all these studies spanned
for a period of more than three months, but moderate antidi-
abetic effect was observed.

6.2.4. Juglans regia. The leaves of Juglans regia are used in folk
medicine in Iran for the treatment of diabetes mellitus and
hyperglycemia, and lipid profile potential was evaluated on
61 T2DM patients [390]. Subjects used for this study were
diagnosed with T2DM and had FBG values ranging between
150 and 200mg/dL, glycated hemoglobin (HbA1c) levels
between 7% and 9%, and ages between 40 and 60 years.
The subjects were selected and randomly distributed into
two groups: the Juglans regia group and the placebo group.
The J. regia group received 100mg capsules twice a day for
a period of three months, while the control group received
100mg placebo capsules applying the same dosage. These
dosage patterns for both groups was coadministered with
the standard antidiabetic therapy which is made up of met-
formin, glibenclamide, and nutritional regimen. The results
showed that J. regia-treated patients had a significant reduc-
tion in the levels of FBG, HbA1c, total cholesterol, and tri-
glyceride in comparison with the baseline and placebo
group after three months of administration [390].

6.2.5. Momordica charantia. Momordica charantia hypogly-
cemic and antihyperglycemic activities have been reported
in whole plant, fruit pulp, seeds, and leaves in a number of
in vivo studies because of the ability to reduce blood glucose
levels and boost plasma insulin [391, 392].

A randomized, double-blind, active-control trial involv-
ing patients with ages between 35 and 70 years and who were
recently diagnosed with type 2 diabetes (fasting plasma glu-
cose (FPG) ≥126mg/dL or 2 h postprandial glucose levels
during 75 g oral glucose tolerance-test (OGTT) ≥200mg/dL)
was used for the study. The administration of 500mg of dried
fruit pulp (powder) which contained 0.04–0.05% charantin
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(2000mg/day) to T2DM patients for a period of 4 weeks
brought about a significant reduction in the levels of fructo-
samine without any side effects recorded [393].

6.2.6. Ocimum tenuiflorum. Ocimum tenuiflorum (Ocimum
sanctum) is popularly known as Thulasi/Tulsi in India. The
ethanolic extract and fixed oil of O. sanctum have shown a
significant antidiabetic effect in vivo [394, 395].O. tenuiflorum
is indigenous to India and certain parts of north and eastern
Africa, China, Hainan Island, and Taiwan where the fresh
and dried leaves are used in herbal in medicine [396].

A study conducted by Agrawal et al. in 1996 explored and
studied the effects of treatment with O. tenuiflorum and O.
album leaves on fasting and postprandial blood glucose and
serum cholesterol levels of non-insulin-dependent diabetes
mellitus patients using a randomized, placebo-controlled,
crossover single blind trial. The results pointed out a substan-
tive reduction in levels of fasting (17.6%) and postprandial
blood glucose levels (7.3%) with urine glucose levels revealing
a similar result [397].

Another study investigated the effect ofOcimum sanctum
(Tulsi) on 30 young overweight/obese subjects using a ran-
domized, parallel group, open label pilot trial. A 250mg cap-
sule of Tulsi extract was administered twice daily, and it
brought about significant reduction in plasma insulin and
insulin resistance by 28.49% and 24.79%, respectively, upon
8 weeks of administration. In addition, serum lipid level
was regularized with a reduction in body weight and BMI
observed when compared to the control group [398].

6.2.7. Panax ginseng. Panax ginseng is a herb native to China,
Japan, and Korea with distinctive branched roots [399]. The
antidiabetic activity of ginseng has been documented by sev-
eral authors. Kim et al. analysed data gathered from four dis-
similar randomized clinical trials where the subjects were
administered 0.78–6 g of ginseng per day for a period of 12
weeks. Their findings revealed that ginseng had no signifi-
cantly modulated blood glucose level in T2DM patients
[400]. On the contrary, findings from Shergis et al. in 2013
showed some encouragement as ginseng boosted glucose
metabolism in a survey of six clinical trials [401]. In addition,
another study by Shishtar et al. assessed sixteen trials where
subjects with and without diabetes were subjected to the
intake of different ginseng preparations (0.1–20 g/day) for a
period of 4–24 weeks. The findings showed that both groups
(diabetic and nondiabetic) had a significant decrease in fast-
ing blood sugar levels [402].

6.2.8. Sauropus androgynus. Sauropus androgynus is one of
the most popular herbs in Asia because of its slimming
potential, and it has also been shown to possess an antidia-
betic potential [403]. Its antidiabetic potential was validated
in a clinical trial using 18 type 1 diabetes mellitus subjects
between 50 and 65 years and having body weights of 70-
85 kg. The results revealed a substantive decline in blood glu-
cose levels as reflected in glycemic index (GI) scores (GI = 55)
which were far less than the glucose level in the control group
(GI = 100) [404].

6.2.9. Vitis vinifera. Hokayem et al. in 2013 investigated the
clinical efficacy of nutritional doses of grape polyphenols
(PPs) capable of abating fructose-induced oxidative stress
and insulin resistance in thirty-eight (38) healthy over-
weight/obese first-degree relatives of T2DM patients (18
men and 20 women, aged 30–65 years, BMI between 25
and 35 kg/m2, waist circumference > 94 cm for men and
>80 cm for women, FBG < 110mg/dL) using a randomized,
double-blind controlled trial between a grape PP (2 g/day)
group and a placebo (PCB) group [405].

After 8 and 9 weeks of supplementation, the mixture of
grape PPs at tested nutritional doses abated fructose-
induced oxidative stress and insulin resistance, thus making
it a vital agent in the area of preventive nutrition [405].

A new insight into the field of phytochemicals in diabetes
mellitus is in their ability to act as a subordinate for allopathic
drugs used for diabetes management and treatment due to
their antioxidant potential which helps in combating oxida-
tive stress and other cellular damages or side effects associ-
ated with the intake of allopathic medicine during diabetes
treatment [406]. It is also worth mentioning that vitamin
supplementation in T2DM subjects aids in improving the
antioxidant status through a lot of ways such as causing a
surge in the levels of glutathione peroxidase (GPx), superox-
ide dismutase enzyme (SOD), and total antioxidant capacity
(TAC) and also mitigating malondialdehyde (MDA) and
thiobarbituric acid reactive substance (TBARS) products.
Results obtained from Balbi et al. (2018) revealed that
postdiagnosis supplementation of vitamin E (alone or in
combination) in T2DM promoted health benefits such as
enhancement of plasma antioxidant capacity and the con-
centration of enzymes (GPx and SOD) and lower levels of
MDA and TBARS products [406]. Another study revealed
that vitamins C and E are the most frequently administered
antioxidants used as supplements in subjects with type 2
DM. They also noted that the supplementation period was
between 3 and 12 weeks [407]. T2DM patients are more sus-
ceptible to micro- and macrovascular complications; thus,
daily intake of vitamins as supplements offers a new
approach for metabolic control, as well as summing up the
effect of diet, exercise, and medication.

7. Conclusion

Reactive oxygen species produced either exogenously or
endogenously are one of major contributors to the develop-
ment/initiation of T2DM, an ailment that is causing increas-
ing morbidity and mortality in humans all over the globe.
Researchers in different parts of the world are exploring nat-
ural sources (medicinal plants and natural products) for the
management and treatment of diabetes mellitus because the
available allopathic drugs sold over the counter are very
expensive and come with a number of worrisome side effects.
As a result, the exploration of medicinal plants with antidia-
betic potential is gaining greater attention on a daily basis
because of the presence of potent phytochemicals. In recent
times, research findings have revealed that these plant chemi-
cals possess the ability of mitigating diabetes mellitus via a
number of mechanisms such as the regulation of insulin
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signalling, which induces gene and protein expression; the
promotion of insulin secretion; the improvement of β-cell
function; and the (re)absorption of glucose in both in vitro
and in vivomodels. However, only a few of these active com-
pounds from natural sources have been translated to clinical
use. An example of such is metformin derived from Galega
officinalis. Hence, there is a need for more scientific progress
in the area of converting phytochemicals with antidiabetes
activity to clinical drugs as a means of reforming the manage-
ment/treatment of T2DM in years to come.
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