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Abstract: Manual sleep stage scoring is usually implemented with the help of sleep specialists by
means of visual inspection of the neurophysiological signals of the patient. As it is a very hectic task to
perform, automated sleep stage classification systems were developed in the past, and advancements
are being made consistently by researchers. The various stages of sleep are identified by these
automated sleep stage classification systems, and it is quite an important step to assist doctors
for the diagnosis of sleep-related disorders. In this work, a holistic strategy named as clustering
and dimensionality reduction with feature extraction cum selection for classification along with
deep learning (CDFCD) is proposed for the classification of sleep stages with EEG signals. Though
the methodology follows a similar structural flow as proposed in the past works, many advanced
and novel techniques are proposed under each category in this work flow. Initially, clustering is
applied with the help of hierarchical clustering, spectral clustering, and the proposed principal
component analysis (PCA)-based subspace clustering. Then the dimensionality of it is reduced with
the help of the proposed singular value decomposition (SVD)-based spectral algorithm and the
standard variational Bayesian matrix factorization (VBMF) technique. Then the features are extracted
and selected with the two novel proposed techniques, such as the sparse group lasso technique
with dual-level implementation (SGL-DLI) and the ridge regression technique with limiting weight
scheme (RR-LWS). Finally, the classification happens with the less explored multiclass Gaussian
process classification (MGC), the proposed random arbitrary collective classification (RACC), and
the deep learning technique using long short-term memory (LSTM) along with other conventional
machine learning techniques. This methodology is validated on the sleep EDF database, and the
results obtained with this methodology have surpassed the results of the previous studies in terms
of the obtained classification accuracy reporting a high accuracy of 93.51% even for the six-classes
classification problem.

Keywords: clustering; dimensionality reduction; feature extraction; selection; classification

1. Introduction

Sleep is one of the most important functions of the brain, and it plays a vital role in a
person’s life, which includes factors such as learning ability, concentration, and memory [1].
A partial or full unconsciousness is rendered by sleep to an individual, thereby making
the brain a less complicated network. Conditions such as insomnia and obstructive sleep
apnea are quite frequent, and they greatly affect the physical health [2]. Sleep issues cause
depression, fatigue, lack of interest in academics/office, headache, frequent colds, and
joint problems, and can sometimes lead even to death. A lot of road traffic accidents
and fatalities are caused by drowsiness [3]. Therefore, automatic detection and analysis
of sleep patterns are quite important to trace sleep-related conditions, including fatigue,
drowsiness, apnea, insomnia, and so forth [3]. For the analysis of human sleep, sleep stage
scoring is the gold standard, and it helps to identify the sleep stages that are important
in treating sleep disorders. Based on the polysomnographic (PSG) recordings obtained
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from the patients during sleep time, the scoring of sleep stages is usually considered [4].
The overnight PSG recordings include electroencephalography (EEG), electrooculography
(EOG), electromyography (EMG), and electrocardiography (ECG) recordings, and the visual
scoring of them is performed by experts per the guidelines modelled by Rechtschaffen and
Kales (R and K) [5]. The division of the PSG recording is made into a 20 or 30 s epoch, which
is further classified into wakefulness (W) stage, rapid eye movement (REM) sleep, and non-
REM (NREM) stages. NREM is further divided into four stages—S1, S2, S3, and S4—based
on the guidelines of R and K. Multiple signal channels are included in the PSG recordings,
and therefore, the visual examination of it by an expert is highly time-consuming, expensive,
and prone to a lot of human errors [6]. Moreover, when the recording of the signals is
performed, the sleep efficiency of the patient can be severely disturbed as the patient sleeps
in an unfamiliar environment for the full night with so many adhesive electrodes and
wires attached to the patient. Therefore, when analyzing these challenges, an automated
sleep stage classification system is necessary as it would mitigate the time demand of the
clinicians and can easily improve the diagnosis of sleep disorders. For the analysis of
sleep stages, the EEG signal plays a vital role, and single/multiple EEG channels have
been utilized in the past [7]. An EEG is a very efficient modality helping in acquiring
the brain signals that correspond to different states from the area of scalp surface [8].
The EEG, apart from sleep analysis, helps in many other important applications, such as
motor imagery classification [9], visual feedback classification [10], subject independent
brain–computer interface classification [11], schizophrenia classification [12], and epilepsy
classification [13]. In this work, the design of the proposed methodology is implemented
only for sleep stage classification. A lot of methods and algorithms have been proposed in
the past for automated sleep stage classification systems, and few important related works
are discussed as follows.

A lot of analysis has been performed in many sleep-related datasets, such as sleep-EDF
dataset, expanded sleep-EDF dataset, Montreal Archive of Sleep Studies (MASS) dataset,
Sleep Heart Health Study (SHHS), and Massachusetts Institute of Technology–Beth Israel
Hospital (MIT–BIH) dataset, ISRUC dataset, Massachusetts General Hospital (MGH), Uni-
versity College Dublin Sleep Apnea Database (UCD) dataset, and CAP dataset [14]. In this
work, only the related works conducted on sleep-EDF are discussed as the present work
was implemented only on this dataset in a very exhaustive manner. A recent survey paper
published in 2020 highlighted all the previous works in the past in the field of automated
sleep stage classification, which includes all the methodologies involved, algorithms im-
plemented, classification techniques used, and so forth, thereby easing the work of other
authors not to repeat the past literature over and over again [15]. However, the most recent
and relevant works in the automated sleep stage classification published in recent years on
sleep-EDF dataset are provided in a short manner for the readers’ elaborate understanding.
It has become a fashion in recent years to use deep learning for almost all the applications
in every domain, and so papers published in the past 2 to 3 years in automated sleep
stage classification utilizing deep learning are discussed as follows. A convolutional neural
network (CNN) design was implemented in [16–19] for automated sleep stage classification,
and they reported classification accuracies of 92.5%, 84.5%, 83.6%, and 81.3%, respectively.
Attention CNN produced a classification accuracy of 93.7% in [20], and a one-dimensional
1D-CNN was implemented in [21], producing a classification accuracy of 90.8% for EEG
signals, 89.8% for EOG signals, and 91.2% for EEG and EOG combined signals, respectively.
Elman recurrent neural network (RNN) analysis was used in [22], reporting a classification
accuracy of 87.2%. A multitask CNN was utilized in [23], reporting a classification accuracy
of 82.3% for EEG and EOG combined signals and 81.9% for EEG signals, respectively. A
deep neural network (DNN) was implemented, reporting a classification accuracy of 86.1%
in [24]. Hybrid deep learning models for automated sleep stage classification utilized
CNN with bidirectional LSTM (CNN-BiLSTM) [25], CNN with bidirectional RNN (CNN-
BiRNN) [26], RNN-LSTM [27], and CRNN [28] reporting classification accuracies of 82.0%,
84.3%, 86.7%, and 83.9%, respectively. Generally, the features of the signals extracted with
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or without dimensionality reduction and later classified by a classification procedure is the
standard protocol followed. For feature extraction techniques, time domain methods, fre-
quency domain methods, nonlinear complex methods, and so forth are utilized widely [29].
The common time domain methods used in the past for feature extraction are standard
statistical methods, such as mean, variance, standard deviation, skewness, kurtosis, thresh-
old percentile, median, Shannon entropy, Renyi entropy, zero crossing, Hjorth parameters,
detrended fluctuation analysis, mutual information, and Tsallis entropy. The common
frequency domain methods utilized in the past include nonparametric analysis, parametric
analysis, higher-order spectra (HOS), median frequency, harmonic parameters, coherence
analysis, Itakura distance, spectral entropy, and so forth [29]. The time–frequency domain
methods include wavelet transform, signal decomposition, short-time Fourier transform,
empirical mode decomposition, energy distribution, and Choi–Williams technique. Other
nonlinear parameters involved in the past for feature extraction included correlation dimen-
sion, Lempel–Ziv complexity, Lyapunov exponent, fractal dimension, approximate entropy,
sample entropy, autoregressive coefficients, phase space components, Hurst exponent,
energy operators, permutation operator, and multiscale entropy [29]. Feature selection
techniques involved in the past for sleep stage classification includes fuzzy C-means cluster-
ing, minimum redundancy maximum relevance, sequential techniques, artificial immune
clustering, large margin neural network, fast correlation-based filter, fisher score, t-test,
recursive feature elimination, principal component analysis, ReliefF method, and meta-
heuristic algorithms such as differential evolution, genetic algorithm, and particle swarm
optimization (PSO) feature selection methods. Many machine learning techniques, such
as linear discriminant analysis (LDA), support vector machine (SVM), artificial neural
networks (ANN), naïve Bayesian classifier (NBC), quadratic discriminant analysis (QDA),
K-nearest neighbor (KNN), decision trees (DT), Adaboost, K-means classifier, Gaussian
mixture model (GMM), hidden Markov model (HMM), and bagging, have been utilized for
sleep stage classification in the past [30]. A lot of concerns always exist with the automatic
sleep stage classification system, such as deviation in the ranges of classification accuracy
with sensitivity and specificity measures, careful selection of versatile feature extraction
and selection methods, and execution of advanced classification techniques. Many other
considerations, such as strong mathematical modelling, good computational time, high
generalization and stability, and prospects for good hardware implementation in real-time
situations, are also considered while developing automated sleep stage classification sys-
tems. On analyzing all the past literature, in this paper something novel was implemented,
and the major contributions of the work are as follows:

(a) Initially, the clustering was implemented to EEG signals, and the clustering method-
ology incorporates hierarchical clustering, spectral clustering, and the proposed
PCA-based subspace clustering techniques, which is the first of its kind to imple-
ment all the three techniques for EEG signal processing utilized for automated sleep
stage classification.

(b) The dimensionality of the signals was then reduced with the help of the proposed
SVD-based spectral algorithm and the standard VBMF. Though VBMF is already
existing in the literature, very few works have been reported on its application for
reducing the dimensionality of EEG, and so it is considered in this work along with
the proposed SVD-based spectral technique.

(c) The features were extracted and selected with the help of techniques, such as the
proposed sparse group lasso technique with dual-level implementation (SGL-DLI) and
the proposed ridge regression technique with limiting weight scheme (RR-LWS). Both
these two developed novel techniques have been successfully utilized in our work.

(d) Finally, classification happens with the less explored multiclass Gaussian process
classification (MGC), the proposed RACC method, and the deep learning technique
using LSTM, and the performance is compared with the other conventional machine
learning techniques too.
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A very good mathematical modelling was provided for all the proposed techniques,
and the interesting factor is the novel convergence of all the proposed techniques, which
makes the whole paper in general very interesting and easy to perform the experiment and
provide better results than the previous works. The workflow of the methodology is shown
in Figure 1.
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The organization of the work is as follows: In Section 2, the clustering and dimension-
ality reduction techniques are discussed, followed by the usage of feature extraction and
selection techniques in Section 3. Section 4 discusses the usage of classifiers, followed by
the results and discussion in Section 5 and ended with the conclusion in Section 6.

2. Clustering and Dimensionality Reduction Techniques
2.1. Clustering Techniques

The primary task of assimilating a group of objects in such a manner in which the
objects in the same cluster/group are quite similar to each other compared with those
present in the other cluster/group is called clustering. In this work, hierarchical clustering,
spectral clustering, and the proposed PCA-based subspace clustering are utilized for the
clustering, and they are applied to the signals once the preprocessing is done with the help
of independent component analysis (ICA).

2.1.1. Hierarchical Clustering

One of the famous and strong manifestations of the curse of dimensionality problem
is that the points considered from high dimensional distributions are quite far from their
nearest neighbors, and to address the noise and outliers associated with it becomes a huge
challenge [31]. In order to model the low-dimensional structure, various assumptions are
imposed on the data such that the clusters should be drawn from the affine subspaces. Spec-
tral clustering usually takes place when the cluster shape is unknown or when it deviates
severely from the linear structure. With respect to the geometry of the clusters considering
the noise and outliers, this clustering seems to be a very popular and effective approach.
An initial distance or a similarity measure is required by the spectral clustering as the
operation of it is performed on a graph constructed between the neighbors assessed and the
weights dependent on such distances. In the procedure of assessing the groupings within
the data and based on these groupings, the assigning of labels to the data points without
supervision is performed, and the procedure is termed clustering. In some circumstances,
it can perform well, but in some other circumstances, it can never perform well as we have
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learned with K-means clustering, fuzzy C-means clustering, and so forth [31]. Statistical
assumptions are usually placed on the data so that a good performance assessment is pro-
vided. The most famous clustering technique is K-means along its variants and is utilized
with many feature extraction techniques for EEG signal processing. However, in this paper,
a different attempt to utilize other kinds of clustering is implemented, and the notations
utilized for the clustering concept are as follows: The data points to the clusters are denoted
by X = {xi}n

i=1 ⊂ <d, the intrinsic dimension of cluster sets is expressed by d, the number
of clusters is denoted by K, and the discrete data clustering is denoted by {Xl}K

l=1. The
discrete noise data are represented as X, and the denoised data are represented as XN .
The number of points that remains in the cluster is denoted as nmin, and W represents
the weight matrix. The arbitrary value is represented by ρ. A family of clusters is built
at distinct hierarchical levels by the hierarchical clustering algorithm [31]. The initiation
of the individual points is performed as their own clusters, and then the merging of it
is performed in an iterative manner unless it reaches a stopping criterion, and therefore,
the algorithms are agglomerative. The merging of the clusters at a certain iteration is
determined by the agglomerative techniques by utilizing a clustering dissimilarity metric
ρc. For two clusters, Ci, Cj, ρc

(
Ci, Cj

)
implies that the clusters are strong candidates for

merging purposes. For every data point in X, let the metric be expressed as ρX , and along
with the standard ρc, the corresponding clustering techniques include:

ρSL
(
Ci, Cj

)
= minxi∈Ci ,xj∈CjρX(xi ,xj)

, single linkage clustering

ρCL
(
Ci, Cj

)
= maxxi∈Ci ,xj∈CjρX(xi ,xj)

, complete linkage clustering

2.1.2. Spectral Clustering

To define an embedding of the data, a spectral decomposition of a Laplacian ma-
trix is utilized, and then the embedded data are clustered using a standard algorithm
called K-means. On the data, a weighted graph is constructed that can specify the local
relationships. For the points that are far apart from each other, the graph has very low
edge weights. For the points that are very close to each other, the graph has very high
edge weights. Then the partitioning of the graph is performed into clusters so that small
edge weights are present between each cluster and large edge weights are within each
cluster. A kernel function is denoted here as fσ : < → [0, 1] with a specific scale parame-
ter σ. Assume that Wij = fσ

(
ρ
(
xi, xj

))
is the respective weight matrix for a given metric

ρ : <D ×<D → [0, ∞) and some discrete set X = {xi}n
i=1 ⊂ <D. The degree of point xi is

expressed as di = ∑n
j=1 Wij, and the diagonal degree matrix Di1 = di, Dij = 0 is also defined

for i 6= j. By expressing L = D −W, the graph Laplacian is defined and is normalized
to get the symmetric Laplacian LSYM = I − D−

1
2 WD−

1
2 . It can also be normalized to

obtain a random walk Laplacian LRW = I − D−1W. To define an embedding, utilizing the
eigenvectors of L leads to un-normalized spectral clustering, while the eigenvector of LSYM
leads to normalized spectral clustering. The within-cluster similarity is always maximized
by normalized spectral clustering and is generally utilized in practice.

The spectral clustering with LSYM is considered, and then the spectral embedding
is constructed [32]. In order to indicate the matrix LSYM computed on the data set X,
LSYM(X, ρ, fσ) is utilized effectively with a metric ρ and kernel fσ. The eigenvalues of LSYM
are specified by λ1 ≤ . . . ≤ λn, and the respective eigenvectors are denoted by φ1, . . . , φn.
The data have to be clustered into K groups, and initially, a n× K matrix Φ is formed where
columns are expressed by {φi}k

i=1, where the K eigenvectors are called as the K principal
eigenvectors. To obtain matrix V, the normalization of the rows of Φ is performed and is
expressed as:

Vij = Φij
∣∣(ΣjΦ2

ij

)1/2

(1)
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The rows of V are specified by {vi}n
i=1 ∈ <K. If g : <D → <K is implemented to

specify the spectral embedding, then vi = g(xi). At the end, the clustering of {vi}n
i=1 is

performed into K groups by applying K-means where the partition of data points {xi}n
i=1 is

expressed. Similarly, LRW can be utilized. A vital aspect of spectral clustering is to choose
K. In order to estimate the total number of clusters as the largest empirical eigenmap,
the eigenvalues of LSYM are often used and are represented as K̂ = argmaxiλi+1 − λi. It
should also be observed that λk̂+1 − λk̂ is maximal and also λi should be close to zero for
i ≤ k̂. The spectral clustering algorithm utilized in this work is given in Algorithm 1. When
utilizing a sparse Laplacian especially, where the sparse nearest neighbor graph is defined
by W, this algorithm can be utilized.

Algorithm 1: Spectral clustering process with a metric ρ.

Input: (data) {xi}n
i=1, (kernel function) fσ, and (scaling parameter) σ > 0

Output: Y(labels) with clustered values

1. The weight matrix W ∈ <n×n is computed with Wij = fσ

(
ρ
(

xi, xj

))
.

2. The diagonal degree matrix D ∈ <n×n is computed with Dii = ∑n
j=1 Wij.

3. The symmetric normalized Laplacian LSYM = I − D−
1
2 WD−

1
2 is formed.

4. The eigendecomposition {(φk, λk)}n
k=1 is computed and sorted so that 0 = λ1 ≤ λ2 ≤ . . . ≤ λn.

5. The number of clusters K is estimated as: K̂ = argmaxkλk+1 − λk.
6. The row normalized spectral embedding is defined by

vi =
(
φ1(xi), φ2(xi), . . . , φk̂(xi)

)
/‖φ1(xi), φ2(xi), . . . , φk̂(xi)‖2 for 1 ≤ i ≤ n.

7. By implementing K-means on the data {vi}n
i=1, the labels Y are computed by utilizing K̂ as

the total number of clusters, thereby implementing the concept of clustering successfully.

2.1.3. Proposed PCA-Based Subspace Clustering

Subspace clustering is an important technique, and the mainstream approach has two
important phases, such as calculation of the affinity matrix, followed by the application
of spectral clustering [33]. To enhance the scalability of sparse subspace clustering, many
techniques have been proposed in the literature. A random subset of the whole dataset in
clustering is considered, and then it utilizes these clusters to group the output of sample
data points. When the random subset is small or large, this technique can be scaled well.
From the raw dataset X, which has N observations of various parameters as input, the
clustering assignment for each point is considered an output in the dataset. In the sample
clustering stage, a subset X̃ is drawn from n� N points. The (dmax + 1) nearest neighbor
points in X is found out for every point x̃i ∈ X̃. The index set of these points is denoted by
Ci. Therefore, the subclustering of x̃i is called Xci. The affirmative matrix D is computed
by each element [D]ij and is nothing but the similarity computed between Xci and Xcj.
By eliminating the spurious connections with the implementation of principal component
analysis (PCA), the affinity matrix is sparsified [34]. With the sparsified affinity matrix, the
spectral clustering on X̃ is conducted. To the clustered points in X̃, a classifier is fit, and
the points may be classified, but in our case, the dimensionality of it is still reduced, and
the best features are extracted and selected so that a very good classification accuracy can
be obtained at a later stage. A total of n subclusters are formulated with the help of the
sampled dataset. These n subclusters are divided and grouped into k clusters. The linear
model of subspaces is central to the concept of clustering. Around every sampled point,
the neighborhood of points is computed by applying a thresholding based on the similarity
score of inner products. There is huge dependence on the self-representative property of
linear subspaces here, and therefore, the concept of distance in between the subclusters
is developed to build an affinity matrix. The proposed PCA-based subspace clustering is
expressed in Algorithm 2 as follows.
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Algorithm 2: Proposed PCA-based subspace clustering.

Input: Data X, number of subspaces k, sampling size n, regularization parameter λ1 and λ2,
neighborhood threshold dmax, residual minimization parameter m, affinity threshold tmax.
Output: The label vector l of all points in X with clustered values.

1. The uniform sampling of n points X̃ from X is performed.
2. The subclusters are constructed.
3. Implement PCA on the subclusters.
4. An affinity matrix is constructed.
5. The adjacency matrix is sparsified.

For j = 1 to n do
w := [D]j
For i = 1 to n do
If [D]ij ≤ w(n− dmax), then

|D|ij := 0
End

End

6. Cluster X̃ : set D := D + DT .
7. Sample points in X̃ are clustered by implementing spectral clustering on D.
8. Indicate the labels of X̃ by lin.
9. The label of the entire dataset X is obtained by combining lin and lout so that the entire l can

be obtained and the clustering is performed successfully.

2.2. Dimensionality Reduction Techniques

To reduce the overall dimension, dimensionality reduction techniques are highly
useful, and techniques incorporated here are the proposed SVD-based spectral algorithm
and the standard variational Bayesian matrix factorization technique. Once the clustering
of the signals is done using the above three techniques, the dimensionality of it is reduced
so that the aim of achieving a high classification accuracy is achieved later.

2.2.1. SVD-Based Spectral Algorithm

Here in this approach, an undirected graph G = ([n], E) is initially assembled along
with an unknown vector r ∈ <n, where the score related with node i is expressed as ri
for the obtained clustered values. The assumption of G is considered G(n, p), where the
edges between the vertices have a huge independence with a probability p. For each i,
the assumption is that ri is handled uniformly, ri ∈ [0, M]. Therefore, ri − rj ∈ [−M, M]
for all i, j. M is not considered to be known to the algorithm. A noisy and independent
measurement Rij is obtained for every {i, j} ∈ E as

Rij =

{
ri − rj; w.p η

∼ U[−M, M]; w.p (1− η)
(2)

In order to control the noise level, the parameter η ∈ [0, 1] is used, and the indication
of the noise level in an explicit manner is performed by γ = 1− η. The parameters η and p
are not considered to be known to the algorithm.

The measurement matrix H ∈ <n×n is formed by initializing the following conditions:

Hij = 0, ∀i = 1, . . . , n (3)

Hij = Rij and Hji = −Rij, if (i, j) ∈ E (4)

Hij = 0, if (i, j) /∈ E (5)

where Rij denotes the independent measurements.
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The main intention is to recover the score vector r and also to recover the ranking
π, which is induced by r. The complete graph G along with the noise-free measurement
conditions makes H = reT − erT , which is nothing but a rank 2 skew-symmetric matrix.
By specifying α = rTe

n , it can be understood that the two nonzero left singular vectors are
u1 = e/

√
n, u2 = r−αe

‖r−αe‖2
with equal nonzero singular vector σ1 = σ2 = ‖r− αe‖2

√
n [35].

Training a vector orthonormal to e/
√

n is important for any orthonormal basis for
span {u1, u2} so that the candidate solutions ± r−αe

‖r−αe‖2
are obtained. In order to recover

the scale information of r, these candidates are multiplied by σ1/
√

n. By selecting the best
candidate that has high consistency among the measurements, the resolving of the sign
ambiguity is performed easily. Therefore, ranking and synchronization is implemented
here as it is a famous spectral technique to recover the ranks and scores of items. The
application of SVD for ranking and synchronization is expressed in Algorithm 3 as follows.

Algorithm 3: SVD for ranking and synchronization.

Input: Measurement graph G = ([n], E) and pairwise measurement Rij for {i, j} ∈ E assigned for
the clustered values.
Output: Rank estimates: π̂ and score estimates r̂ ∈ <n considered as the dimensionally
reduced values.

1. Measurement matrix formation H ∈ <n×n by utilizing Rij.
2. Trace the top 2 left singular vectors of H, namely, û1, û2.
3. As an orthogonal projection of u1 = e/

√
n onto space {û1, û2},obtain vector u1.

4. Unit vector ũ2 ∈ span{û1, û2} is obtained.
5. Rank recovery: induced by ũ2, the ranking π̃ is obtained.
6. Minimize the number of upsets and reconcile its global sign.
7. The ranking estimate π̂ is found out.
8. Score recovery: To recover the scale τ ∈ <, ũ2, H is utilized and the output is expressed,

giving the dimensionally reduced values as:

r̂ = rũ2 −
eT(Tũ2)

n
e

2.2.2. Variational Bayesian Matrix Factorization

In order to uncover a low-rank latent structure of data, matrix factorization is uti-
lized, where a product of two factor matrices is obtained by approximating the data
matrix [36]. For the purposes of collaborative prediction, the most famous technique uti-
lized is matrix factorization, where the user and item factor matrices are used to predict the
unknown ratings; therefore, the approximation of a user-item matrix as their respective
product can be analyzed well. Assuming that Z ∈ <P×Q indicates a user-item rating
matrix, Zpq of the (p, q) entry indicates the user rating p on item q. The factor matrices
U = [u1, . . . , uP] ∈ <K×P and V =

[
v1, . . . , vQ

]
∈ <K×Q are determined by the matrix

factorization so that the rating matrix Z is approximated by UTV.

Z ' UTV (6)

Here, the rank of the factor matrices is denoted by K.
The regularized squared error loss is minimized and expressed as:

∑
(p,q)∈Ω

[(
Zpq − uT

p vq

)2
+ λ

(
‖up‖2 + ‖vq‖2

)]
(7)

where a collection of indices of the observed entries in Z is represented by Ω and the
regularization parameter is represented by λ. By alternating the stochastic gradient descent
techniques or the least squares, the solving of the problem (7) can be performed in an
efficient manner. The metaparameters, such as learning rate, regularization parameters,
and the total number of iterations, should be carefully tuned so that the overfitting on
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the training data is avoided. All the model parameters are integrated so that the overfit-
ting problem is alleviated successfully by means of the implementation of the Bayesian
concept on matrix factorization. Thus, without the need for more parameter tuning, the
learning of the complex models can be conducted easily. The side information can be
easily incorporated by the Bayesian matrix factorization by implementing the Gaussian
priors on user and item factor matrices. To the respective side information, each prior can
be repressed so that the time and space complexity is reduced. With respect to the rank
K, a cubic time and quadratic space complexity is obtained by VBMF as the variational
distributions are considered to be matrixwise independent. An additional cubic time and
quadratic space complexity is necessary if the incorporation of the side information is
performed to the VBMF depending on the feature vector size obtained by the side informa-
tion. Thus, with the prohibition of the usage of rich side information, high-dimensional
feature vector is achieved, and the dimensionally reduced values are obtained. In order to
satisfy the element-wise independence, the full factorization of the variational distribution
is performed.

3. Feature Extraction and Selection Techniques

Once the dimensionality is reduced, the features have to be extracted and selected,
and therefore, the two techniques proposed here are the sparse group lasso technique
with dual-level implementation and a ridge regression technique with limiting optimal
weight scheme.

3.1. Proposed Sparse Group Lasso Technique with Dual-Level Implementation

To identify the significant groups and features in a simultaneous manner, the most
powerful regression technique utilized is sparse group lasso (SGL). The lasso and group
lasso are combined by the SGL so the sparsity can be yielded at both the individual and
group feature levels [37]. SGL has been implemented in machine learning, bioinformatics,
signal processing, and so forth. A two-layer feature screening technique called dual layer
features is proposed here. The inactive groups and features are quickly identified by this
method, and ultimately, zero coefficients are guaranteed in the solution. To deal efficiently
with multiple sparsity-inducing regularities, a dual-level technique is widely used. Through
the framework of Fenchel duality, the dual feasible solution of SGL is developed [38]. The
upper bounds should be estimated so that an efficient dual-level technique is developed.

Assume that ‖ · ‖1, ‖ · ‖, ‖ · ‖∞ is indicated as the l1, l2 and l∞ norms, respectively. The
unit l1, l2 and l∞ norm balls in <n are denoted by Bn

1 , Bn and Bn
∞, respectively. For set

C, assume that intC is its interior value. Assume that Γ0(<n) is the class of proper close
convex function on <n. The domain of f is the set dom f := {w : f (n) < ∞}. Assume
[w]i as the ith component for w ∈ <n. G ⊂{1, 2, . . . , n} is considered an index set, and the
corresponding subvector of w is denoted by [w]G ∈ <|G|, where the number of elements in
G is denoted by |G|.

Assume that y ∈ <N is the response vector and X ∈ PN×q is the matrix of features. The
SGL problem is expressed here with the group information available and represented as:

min
β∈<q

1
2
‖y−∑G

g=1 Xgβg‖
2
+ λ1 + ∑G

g=1
√

ng‖βg‖+ λ2‖β‖1 (8)

where the number of features in the gth group is represented as ng. The predictors in the
group with the respective coefficient vector βg are expressed as Xg ∈ <N×ng .

The positive regularization parameters are represented as λ1, λ2. Without loss of
generality, assume λ1 = αλ and λ2 = λ with α > 0. Equation (8), therefore, can be written
as follows:

min
β∈<q

1
2
‖y−∑G

g=1 Xgβg‖
2
+ λ

(
α∑G

g=1
√

ng‖βg‖+ λ2‖β‖1

)
(9)
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The dual problem of SGL can be obtained as follows using the Lagrangian techniques as:

sup
θ

1
2
‖y‖2 − 1

2
‖ y

λ
− θ‖

2
(10)

such that:
XT

g θ ∈ Dα
g := α

√
ngβ + β∞, g = 1, . . . , G (11)

The intersection of closed half spaces enables the dual feasible set of lasso. Us-
ing Fenchel’s duality theorem, the dual feasible set of SGL is analyzed well. For every
XT

g θ ∈ Dα
g , Fenchel’s duality leads to an explicit decomposition XT

g θ = b1 + b2, where one
belongs to α

√
ngβ and the other belongs to B∞. The procedure for developing dual-level

feature extraction and selection is expressed in Algorithm 4 as follows.

Algorithm 4: Procedure for developing dual-level feature extraction and selection.

1. Estimate a region θ that has dual optimum θ∗(λ, α) of Equations (10) and (11) for a given
pair of parameter values (λ, α).

2. The two optimization problems are solved as follows:

s∗g = sup
ξg

{
‖S1
(
ξg
)
‖ : ξg ∈ Ξg ⊇ XT

g Θ
}

, whereXT
g Θ =

{
XT

g θ : θ ∈ Θ
}

,

t∗gk = sup
θ

{∣∣∣xT
gkθ
∣∣∣ : θ ∈ Θ

}
, wherexgkisthekthcolumnofXg

.
3. The dual feature screening ensures the form as:

s∗g < α
√

ng ⇒ β∗g(λ, α) = 0

t∗gk ≤ 1⇒
[

β∗g(λ, α)
]

k
= 0,

where the optimal solution of SGL in (9) is expressed as β ∗ (λ, α), giving the best extracted and
selected features.

3.2. Proposed Ridge Regression Technique with Limiting Optimal Weight Scheme

For the dimensionally reduced values, a subset of samples is considered initially, and
then ridge regression is trained on these local data. The local dataset is arranged into a
feature matrix Xi, where every row has a sample or data point along with an outcome
vector Yi, where each entry is an outcome. The local ridge regression estimates [39] are
computed as follows:

β̂i =
(

XT
i Xi + λi Ip

)−1
XT

i Yi (12)

where the regularization parameter is termed as λi. By using a weighted combination,
the aggregation of them is performed so that a single-shot distributed ridge estimator is
constructed as:

β̂dist =
q

∑
i=1

wi β̂i (13)

where q represents the number of sites. By a finite sample analysis of estimation error in
linear models, the distributed ridge regression can be studied well. The standard linear
model is considered here as Y = Xβ + ε. For ′n′ independent samples, the n-dimensional
continuous outcome vector is represented as Y ∈ <n. X is the n× p design matrix having
the values of p features for each sample. The p-dimensional vector of unknown regression
coefficients is expressed as β =

(
β1, . . . , βp

)T ∈ <T . In order to predict the outcome
variable of future samples and to firmly estimate the respective coefficients, this technique
is used. Random noise can greatly affect the outcome vector ε = (ε1, . . . , εn)

T ∈ <n. The
coordinates of ε are assumed to be independent random variables with zero mean and
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variance σ2. For estimation and prediction purposes in linear models, the ridge regression
estimation is the most widely used. The ridge estimator of β is recalled as follows [39]:

β̂(λ) =
(

XTX + nλIp

)−1
XTY (14)

where λ denotes a tuning parameter. Many justifications are present in their estimation.
An improved estimation can be performed as the coefficient of the ordinary least squares
estimators are shrunk. Supposing that the distribution of the samples is performed across q
different sites or machines, the partitioning is performed and expressed as follows:

X =


X1
:
:

Xq

, Y =


Y1
:
:

Yq

, (15)

Therefore, for the sake of approximation in a distributed setting, ridge regression
estimation is widely used. When the ridge regression is performed locally on every subset
of the data, a one-shot weighting technique is given more focus, and finally, the regression
coefficients are aggregated by a weighted sum. The weighting technique is utilized as it
serves as a useful method of initialization to iterative techniques. Moreover, a variety of
new phenomena about one-shot weights can be discovered easily. Therefore, for every
dataset Xi, Yi, the local ridge estimators are defined with a regularization parameter λi and
are expressed as follows:

β̂i(λi) =
(

XT
i Xi + niλi Ip

)−1
XT

i Yi (16)

By using a weighted one-shot distributed estimation summation, the local ridge
estimators are combined and expressed as:

β̂dis tan ce(w) =
q

∑
i=1

wi β̂i (17)

The local ridge estimators are well defined, and they are not like ordinary least squares
(OLS). As the ridge estimators are biased, it is not necessary to consider whether any
constraints should be added on the weights or not. The proposed algorithm works well for
designs X with arbitrary covariance structures Σ. Assuming the samples distributed to be
n, it is considered that there is an equal distribution of the samples. A local ridge estimator
β̂1 is computed along with the local estimators σ̂2

i and α̂2
i of the SNR and the noise level.

The qualities necessary to find the optimal weights are m, m′ and λ. The procedure of Ridge
regression with limiting optimal weights is expressed in Algorithm 5 as follows.

The tuning parameter λ is chosen by the grid search process. Therefore, the limiting
optimal weights too are estimated successfully by this algorithm, and the best features are
extracted and selected through this technique.
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Algorithm 5: Ridge regression with limiting optimal weights.

Input: Data matrices (ni × p) and outcomes (ni × 1), (Xi, Yi) distributed across q sites.
Output: Distributed ridge estimator β̂dist of regression coefficients β indicating the best features
extracted and selected.

1. For i← 1 to q do.
Calculate the MLE θ̂i =

(
σ̂2

i , α̂2
i
)

locally.
Progress θ̂i to the global data center
End

2. Get a global estimator θ̂ =
(
σ̂2, α̂2) = q−1∑

q
i=1 θ̂i.

3. Tuning parameters S is chosen around the initial guess λ0 = qp/
(
nα̂2).

4. For λ ∈ S do.
For i← 1 to q do .

Compute the local ridge estimator β̂i(λ) =
(
XT

i Xi + niλIp
)−1XT

i Y.

The weight wi is computed for the ith local estimator as wi(λ) =
σ̂2 α̂2(1−λm)

F+qG .

Progress β̂i(λ) and wi(λ) to the global data center.
End
Terminate the performance of the distributed ridge estimator.
End

5. Select the best tuning parameter λ∗.
6. Output the respective distributed ridge estimator

β̂dist(λ
∗) = ∑q

i=1 wi(λ
∗)β̂i(λ

∗)

4. Classification Techniques

The features extracted and selected are then fed to the classification stage. The clas-
sification techniques proposed in this work are the multiclass Gaussian process classi-
fication (MGC), the proposed random arbitrary collective classification (RACC), deep
learning methods, and other standard conventional techniques. A standard 10-fold cross-
validation technique was utilized for all the implemented pattern recognition and machine
learning techniques.

4.1. Multiclass Gaussian Process Classification

The multiclass classification problems can be well addressed by Gaussian processes [40],
and it is as follows: a dataset comprising N instances with X = (x1, . . . , xN)

T as the
observed explaining attributes and y = (y1, . . . , yN)

T as the target class labels, where
yi ∈ {1, . . . , C} and C > 2 are the number of classes. Making predictions about the label y∗

of a new instance x∗ is the primary task of interest, given the observed data X and y. Every
class label has been obtained by utilizing the labelling rule for the multiclass classification
with the Gaussian process as follows:

yi = argmax
c

f c(xi) (18)

where f c(.), for c = 1, . . . , C are the various latent functions, and each of them communi-
cates with various class labels. By analyzing the latent function with the highest value at
the data point yi, the class label can be obtained. Assume fi =

(
f ′(xi), . . . , f C(xi)

)T . The
likelihood of the values of every latent function at a training point under this labelling rule
is expressed by:

p(yi| fi) = ∏
c 6=yi

Θ( f yi (xi)− f c(xi)) (19)

where the Heaviside step function is denoted as Θ(·). By analyzing and marginalizing
noise present around the latent functions f c(·), other likelihood functions, such as the
softmax likelihood, are considered. Around each f c, the Gaussian noise is considered. The



Sensors 2022, 22, 3557 13 of 24

actual class label yi, which is related to xi, is considered to account for the labelling errors,
and it could have been replaced with a particular probability ε so that some other class
labels are reached. Therefore, the likelihood becomes as follows:

p(yi| fi) = (1− ε)∏
c 6=yi

Θ
(

f (yi)(xi)− f c(xi)
)
+

ε

C− 1

[
1− ∏

c 6=yi

Θ( f yi (xi)− f c(xi))

]
(20)

For every latent function f c(·), the assumptions of a GP prior are performed so that
a multiclass classification with GPs is addressed. Therefore, it is represented as p( f c) ∼
GP(0, kθ(·, ·)), where kθc(·, ·) represents a covariance function with hyperparameter θc.
A famous example of covariance function includes the squared exponential covariance
function and is represented as follows:

kθc

(
x, x′

)
= σ2 exp

−1
2

d

∑
j=1

(
xj − x′j

)2

lj

+ I
[
x = x′

]
σ2

0 (21)

where the indicator function is represented as I[·] and θc =
{

σ2, σ0,
{

lj
}d

j=1

}
, which are

the hyperparameters. The length scale is represented by lj, the amplitude parameter is
represented by σ2, and the level of additive Gaussian noise and f c is represented by σ2

0 .
For each latent function f c(·), the hyperparameter will be quite different from each other.
The posterior distribution of f = { fi}

y
i=1 is computed so that the predictions about the

potential class label of a new data point x∗ is made. The latent function values that are
pretty compatible with the observed data are summarized by this distribution. Using
Baye’s rule, the computation of the posterior distribution is performed as follows:

p( f |y) = p(y| f )p( f )
p(y)

=

[
∏N

i=1 p(yi| fi)
][

∏C
c=1 p( f c)

]
p(y)

(22)

where f c = ( fc(x1), . . . , fc(xN))
T and p( f c) = N( f c|0, Kc) are a multivariate Gaussian

distribution with zero mean and covariance matrix Kc with Kc
i,j = kθc

(
xi, xj

)
. The nor-

malization constant is represented as p(y) =
∫

p(y| f )p( f )d f and is known as marginal
likelihood. In order to get good values for the model hyperparameters θc, it can be maxi-
mized well. Computing the marginal likelihood is slightly difficult, and so to approximate
the posterior, inference methods are utilized. A famously used inference technique is
variational inference technique. The main advantage of using variational inference is that it
can transform the approximate inference issue into a goal optimization problem, and it can
be solved easily using stochastic optimization techniques.

4.2. Proposed Random Arbitrary Collective Classification

For classification tasks, a very famous framework is ensemble classification, which is
nothing but a combination of the consequences of a lot of weak learners to get the ultimate
classification [41]. The stability and accuracy of weak classifiers are improved greatly,
always leading to a higher performance than the individual weak classifier. Here, a random
arbitrary collective classification (RACC) is proposed that can be hybrid with any base
classifier. The base classifier used here is SVM. RACC is thus a very flexible ensemble
classification framework. Assume that the observation pair (x, y) considers values from
X× {0, 1}, where X denotes an open subset of <q, q represents a positive integer, and the
class label is represented by y. A total of ′n′ observation pairs {(xi, yi), i = 1, . . . , n} are as-
sumed in the training set. To indicate the prediction result of the classifier, CS−T

n (x) ∈ {0, 1}
is utilized. B2 random subspaces

{
Sjk

}B2

k=1
are generated from the jth(j ∈ {1, . . . , B1}) weak

learner. The optimal one Sj∗ is chosen based on some criterion to be mentioned. By utilizing



Sensors 2022, 22, 3557 14 of 24

only a portion of training samples in this subspace Sj∗, the training of the weak learner
is performed. To form the decision function, the aggregation of the B1 weak classifiers

CS1∗−T
n , . . . , C

SB1∗−T
n is performed as:

CRACC
n (x) = 1

(
1
B1

B1

∑
j=1

C
Sj∗−T
n (x) > α

)
(23)

where α indicates a threshold, which has to be determined. A flexible framework can be
admitted here, where any selected classification techniques can act as the base classifiers,
such as LDA, KNN, SVM, QDA, and DT. The ranking on the significance of variables in the
B1 subspaces

{
bj∗
}B1

j=1 is explained by this ensemble process. The minimal discriminative
set for every learner can be covered easily with this procedure, and the methodology is
as follows.

Assuming that n pairs of observations are present {(xi, yi), i = 1, . . . n} ∼ (x, y) ∈
X × {0, 1}, where X denotes an open subset of <q, q indicates a positive integer and
y = {0, 1} is the class label. To specify the whole feature set, SFULL = {1, . . . , q} is utilized.
For classes 0 (y = 0) and 1 (y = 1), the marginal densities of x are assumed and expressed as
f (0) and f (1). The respective probability estimates they influence are indicated as p(0) and
p(1). Using the following mixture model, the joint distribution of (x, y) can be expressed
as follows:

x|y = y0 ∼ (1− y0) f (0) + y0 f (1), y0 = 0, 1 (24)

where the Bernoulli variable is represented as y with a success probability π1 = 1− π0 ∈ (0, 1).
To express the cardinality, |S| is used for any subspace S. The probability estimate

observed by the marginal distribution of x is indicated as Qx, which is expressed as
π0Q(0) + π1Q(1). For classes 0 and 1, the respective marginal densities are expressed as
f (0)s and f (1)s when they are restricted to the feature subspace S. The generation of the B2
independent arbitrary subspaces is performed as Sj1, . . . , SjB2 so that each weak learner
can be trained. Then the selection of the optimal subspace Sj∗ is performed based on some
important criterion, and only in Sj∗, the weak learners are trained, and therefore, the B1

weak classifiers
{

C
Sj∗−T
n

}B

j=1
are obtained. The final decision function is obtained by means

of aggregation of the outputs of
{

C
Sj∗−T
n

}B

j=1
by computing a simple average. Algorithm 6

expresses the whole procedure in detail.

Algorithm 6: RACC.

Input: Training data {(xi, yi)}n
i=1, new data x, type of base classifiers T, subspace distribution D,

integers B1 and B2, criterion C.
Output: Predicted label CRACC

n (x), the chosen proposition of every feature η.

1. Generate random subspaces independently, Sjk ∼ D, 1 ≤ j ≤ B1, 1 ≤ k ≤ B2.
2. For j← 1 to B1 do.

Choosing of optimal subspace Sj∗ is performed from
{

Sjk

}B2

k=1
based on C and T.

End
3. Develop the collective decision function as an ensembled one, and represent it as:

vn(x) =
1

B1
∑B1

j=1 C
Sj∗−T
n (x)

.
4. Based on Equation (2), the threshold is set.
5. The predicted label CRACC

n (x) = 1(vn(x) > α̂) is given as output, which is the chosen

proposition of every feature η =
(
n1, . . . , nq

)T .
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Hierarchical uniform distribution is used to choose the subspace distribution D. From
the uniform distribution over {1, . . . , D}, the generation of the subspace size ‘d’ is per-
formed. The adjustment of the subspace distribution could be performed if sufficient details
are present with respect to the data structure.

4.3. LSTM Recurrent Network

One of the famous time recurrent neural networks is LSTM [42]. For predicting the
time series of important events, LSTM is highly useful. The historical information can be
easily retained by this neural network, and therefore, the learning of long-term dependence
information is easily realized. An input gate, a forget gate, and an output gate are the most
common gates contained in an LSTM network. In order to update and retain the historical
information, a cell unit is utilized. Figure 2 shows the structure of an LSTM block.
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Figure 2. An LSTM representation.

By utilizing a simple single neuron, it helps to control the forget gate ft in the LSTM
memory block. To enable the historical information storage, it helps to assess which infor-
mation must be retained or discarded. The input gate it is a part where neurons and the
previous memory unit effects are used to create an LSTM block. To assess the historical
information of the LSTM block, it is activated widely. Using a tanh neuron, the calculation
of the candidate update content cin is performed. By utilizing the current candidate cell cin,
input gate information it, forget gate information ft, and the previous time state ct−1, the
current time memory cell state value ct is computed. The generation of ot for the LSTM block
in the current time is performed at the output gate. The amount of information about the
current cell state is determined by at, and it is the output. The calculation of the activation
of every gate along with the updation of the current cell state is performed as follows:

it = sigmoid(Wi.[at−1, xt, ct−1] + bi) (25)

ft = sigmoid
(

W f .[at−1, xt, ct−1] + b f

)
(26)

ot = sigmoid(Wo.[at−1, xt, ct−1] + bo) (27)

ct = ft · ct + it · cin (28)

at = ot.tanh(ct) (29)

cin = tanh(Wc · [at−1, xt, ct−1] + bc) (30)

For each position, the hidden vector is computed, and the last hidden vector is con-
sidered as the EEG signal representation. It is fed to a linear layer, and finally, a softmax
output layer is utilized to classify the EEG. A four-layer LSTM architecture was used in
this paper, which includes an input layer, an LSTM layer, and two fully connected (FC)
layers. The illustration of the proposed LSTM for the EEG signal feature extraction and
classification is shown in Figure 3.
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Focal Loss

To deal with imbalanced datasets, one of the most effective ways is focal loss [43]. By
transforming the cross-entropy (CE) loss function, it is obtained. The computation of CE is
performed as follows:

CE(ŷ) = − log(ŷ) (31)

A dynamically scaled CE is focal loss, where the confidence of the classification
increases when the scaling factor decays to zero. The contribution of EEG examples can be
automatically downweighed by this scaling factor when the model training focuses on the
hard examples. The computation of FL is performed as follows:

FL(ŷ) = −(1− ŷ)γ. log(ŷ), γ ≥ 0, (32)

where the modulating factor is denoted by (1− ŷ)γ, and the focusing parameter is ex-
pressed by γ. When the misclassification of EEG is performed and the value of ŷ is very
small, then the value of the modulation factor is close to 1, and in such cases, the loss is
barely affected. For the network parameters, optimization is important. Many kinds of
gradient descent optimization algorithms are present, such as Adam, Nadam, Adagrad,
and Adadelta. Here in this work, Adam is utilized.

5. Results and Discussion
5.1. Dataset Description

The sleep-EDF database contains raw physiological data having 61 data recordings
considered from 42 Caucasian subjects [44,45]. The initial 39 recordings are considered from
20 healthy volunteers (SC-PSG.edf files), and they do not have any sleep-related disease.
There were 10 males and 10 females, and at the time of recordings, the demographic range
was between 25 to 34 years. The rest, 22 data records, were obtained from 22 participants
(ST-PSG.edf files), and there were 7 males and 15 females within the demographic range
of 18–79. These 22 subjects had the problem of falling asleep. Dual-channel EEG from
FPz-Cz and Pz-Oz is considered in this database with a sampling rate of 100 Hz. Many
other physiological signals, such as EMG, EOG, and oronasal respiration, are present in
it. To understand the automatic sleep staging, dual-channel EEG data are utilized in this
work as they are effective for sleep stage classification. Based on the R and K standards, the
manual scoring of the 30 s epoch was performed, and the primary annotations are named
as AWA, REM, S1, S2, S3, S4, ‘Movement Time’ and ‘Unscored’. Based on the R and K
criteria, the total number of samples is expressed in Table 1. The total number of samples is
127,658 after movement time, and unscored categories are ignored.



Sensors 2022, 22, 3557 17 of 24

Table 1. Total number of samples in sleep-EDF dataset (R and K criteria).

Number of Classes AWA REM S1 S2 S3 S4

6 74,827 11,848 4848 27,292 5070 3773
5 74,827 11,848 4848 27,292 8843
4 74,827 11,848 32,140 8843
3 74,827 11,848 40,983
2 74,827 52,831

Once the clustering is done, a total of 90,000 samples are obtained, and once when
dimensionality reduction is obtained, a total of 30,000 samples are obtained as the dimen-
sionality is reduced by threefold time. When the feature extraction and selection techniques
are implemented, a total of 2000 samples are selected, and finally they are fed to classifica-
tion implementing a 10-fold cross-validation method. For the deep learning application
model, once the clustering is performed, all the 90,000 samples are provided to it, and the
classification results are obtained. The hyperparameter set for the LSTM deep learning is
as follows: The number of LSTM cells is set at 64, the network layers are 4, the optimizer
chosen is Adam, the dropout rate is set to 0.1 (after several trial-and-error experiments),
the batch size is 128, the cost function is focal loss, and the value of focusing on parameter
γ is set to 2 finally again after several trial-and-error experimentations.

Table 2 shows the results of the hierarchical clustering with SVD-based spectral algo-
rithm dimensionality reduction technique and its performance analysis with SGL-DLI and
RR-LWS for the different classifiers. When MGC is utilized, a high classification accuracy of
97.73% is obtained for two classes, 94.43% for three classes, 93.73% for four classes, 92.73%
for five classes, and 92.16% for six classes under SGL-DLI technique. Similarly, when RACC
is utilized, a high classification accuracy of 97.96% is obtained for two classes, 94.56% for
three classes, 92.99% for four classes, 92.96% for five classes, and 92.72% for six classes
under SGL-DLI technique. Similarly, when MGC is utilized, a high classification accuracy
of 96.68% is obtained for two classes, 92.84% for three classes, 92.31% for four classes,
92.67% for five classes, and 91.45% for six classes under RR-LWS technique. Similarly,
when RACC is utilized, a high classification accuracy of 97.55% is obtained for two classes,
91.78% for three classes, 93.56% for four classes, 91.34% for five classes, and 92.12% for six
classes under RR-LWS technique. All the present results surpassed the previous results to a
great extent.

Table 2. Hierarchical clustering with SVD-based spectral algorithm.

SGL-DLI RR-LWS

2 Classes 3 Classes 4 Classes 5 Classes 6 Classes 2 Classes 3 Classes 4 Classes 5 Classes 6 Classes

LDA 93.24 92.34 90.62 88.24 86.34 92.67 93.67 92.45 89.67 88.35
KNN 91.32 91.26 90.67 89.32 88.36 92.32 90.83 91.78 91.13 86.16
NBC 89.92 88.11 87.13 85.92 84.65 88.98 87.56 89.43 87.84 86.56
DT 89.27 88.69 87.57 86.27 83.68 88.27 88.31 88.21 87.79 81.26
RF 87.57 85.73 84.29 82.57 81.82 86.76 84.69 85.44 84.54 84.68

Adaboost 88.32 85.25 83.41 83.32 82.78 89.15 86.45 84.67 83.63 83.16
SVM 96.57 93.22 92.62 91.57 90.91 95.93 94.32 94.86 92.85 90.83
MGC 97.73 94.43 93.73 92.73 92.16 96.68 92.84 92.31 92.67 91.45
RACC 97.96 94.56 92.99 92.96 92.72 97.55 91.78 93.56 91.34 92.12

Table 3 shows the results of the spectral clustering with SVD-based spectral algorithm
dimensionality reduction technique and its performance analysis with SGL-DLI and RR-
LWS for the different classifiers. When MGC is utilized, a high classification accuracy of
95.87% is obtained for two classes, 92.56% for three classes, 93.81% for four classes, 93.07%
for five classes, and 93.51% for six classes under SGL-DLI technique. Similarly, when RACC
is utilized, a high classification accuracy of 94.34% is obtained for two classes, 91.34% for
three classes, 93.24% for four classes, 90.19% for five classes, and 91.20% for six classes
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under SGL-DLI technique. Similarly, when MGC is utilized, a high classification accuracy
of 95.74% is obtained for two classes, 90.80% for three classes, 90.01% for four classes,
89.12% for five classes, and 88.75% for six classes under RR-LWS technique. Similarly,
when RACC is utilized, a high classification accuracy of 95.68% is obtained for two classes,
91.01% for three classes, 90.35% for four classes, 88.38% for five classes, and 86.49% for
six classes under RR-LWS technique.

Table 3. Spectral clustering with SVD-based spectral algorithm.

SGL-DLI RR-LWS

2 Classes 3 Classes 4 Classes 5 Classes 6 Classes 2 Classes 3 Classes 4 Classes 5 Classes 6 Classes

LDA 92.46 90.21 88.67 89.45 85.09 94.08 92.22 91.01 87.11 86.22
KNN 93.78 89.32 91.53 91.21 89.86 93.87 88.81 89.92 86.58 84.79
NBC 87.45 87.91 85.59 87.48 87.82 87.61 86.39 88.61 85.31 83.53
DT 87.32 89.72 89.87 88.98 8.34 88.25 87.41 87.78 88.69 80.16
RF 86.12 86.78 87.51 84.32 84.57 87.68 85.37 86.92 82.83 80.81

Adaboost 87.35 85.16 85.34 85.57 83.81 88.93 87.28 83.53 81.47 81.21
SVM 95.69 94.83 91.69 92.89 89.24 93.26 91.61 92.80 90.84 89.34
MGC 95.87 92.56 93.81 93.07 93.51 95.74 90.80 90.01 89.12 88.75
RACC 94.34 91.34 93.24 90.19 91.20 95.68 91.01 90.35 88.38 86.49

Table 4 shows the results of the subspace clustering with SVD-based spectral algorithm
dimensionality reduction technique and its performance analysis with SGL-DLI and RR-
LWS for the different classifiers. When MGC is utilized, a high classification accuracy of
97.57% is obtained for two classes, 96.64% for three classes, 96.61% for four classes, 91.76%
for five classes, and 90.49% for six classes under SGL-DLI technique. Similarly, when RACC
is utilized, a high classification accuracy of 98.41% is obtained for two classes, 97.56% for
three classes, 97.21% for four classes, 94.78% for five classes, and 93.12% for six classes
under SGL-DLI technique. Similarly, when MGC is utilized, a high classification accuracy
of 92.26% is obtained for two classes, 92.25% for three classes, 91.47% for four classes,
91.07% for five classes, and 89.23% for six classes under RR-LWS technique. Similarly,
when RACC is utilized, a high classification accuracy of 96.78% is obtained for two classes,
95.97% for three classes, 94.32% for four classes, 93.89% for five classes, and 89.11% for
six classes under RR-LWS technique.

Table 4. Subspace clustering with SVD-based spectral algorithm.

SGL-DLI RR-LWS

2 Classes 3 Classes 4 Classes 5 Classes 6 Classes 2 Classes 3 Classes 4 Classes 5 Classes 6 Classes

LDA 93.34 91.01 90.11 89.09 88.21 95.11 94.21 92.34 91.11 89.89
KNN 95.57 92.43 91.24 90.01 87.65 96.87 95.58 92.52 91.36 88.36
NBC 92.97 91.99 91.67 88.81 86.79 93.62 92.97 91.67 90.87 89.72
DT 91.42 90.51 90.84 89.61 88.81 94.41 94.41 93.94 92.42 86.38
RF 92.56 92.12 91.57 88.54 88.27 94.64 93.46 92.28 92.19 88.67

Adaboost 94.89 93.95 92.82 89.34 88.75 93.98 93.87 92.41 91.82 89.93
SVM 96.42 95.58 95.43 92.72 90.43 94.73 92.54 91.86 91.34 88.67
MGC 97.57 96.64 96.61 91.76 90.49 92.26 92.25 91.47 91.07 89.23
RACC 98.41 97.56 97.21 94.78 93.12 96.78 95.97 94.32 93.89 89.11

Table 5 shows the results of the hierarchical clustering with VBMF dimensionality
reduction technique and its performance analysis with SGL-DLI and RR-LWS for the
different classifiers. When MGC is utilized, a high classification accuracy of 95.23% is
obtained for two classes, 91.35% for three classes, 91.45% for four classes, 89.31% for five
classes, and 90.34% for six classes under SGL-DLI technique. Similarly, when RACC is
utilized, a high classification accuracy of 95.11% is obtained for two classes, 92.22% for
three classes, 90.89% for four classes, 89.21% for five classes, and 92.24% for six classes
under SGL-DLI technique. Similarly, when MGC is utilized, a high classification accuracy
of 95.35% is obtained for two classes, 90.29% for three classes, 90.01% for four classes, 90.03
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for five classes, and 90.01% for six classes under RR-LWS technique. Similarly, when RACC
is utilized, a high classification accuracy of 96.11% is obtained for two classes, 90.83% for
three classes, 91.09% for four classes, 89.01% for five classes, and 90.12% for six classes
under RR-LWS technique.

Table 5. Hierarchical clustering with VBMF.

SGL-DLI RR-LWS

2 Classes 3 Classes 4 Classes 5 Classes 6 Classes 2 Classes 3 Classes 4 Classes 5 Classes 6 Classes

LDA 92.01 90.04 88.66 82.46 81.44 90.52 89.44 90.17 87.12 86.48
KNN 90.97 90.29 89.67 87.32 83.59 91.15 90.24 90.43 88.46 84.23
NBC 87.53 88.11 86.42 85.89 83.86 87.05 86.56 88.92 85.87 85.73
DT 87.73 86.75 86.31 83.26 83.31 86.53 85.14 87.36 85.63 80.56
RF 85.15 84.58 82.57 84.51 84.13 84.78 83.84 84.82 82.22 82.98

Adaboost 89.68 86.32 81.86 81.87 85.56 88.15 85.14 82.57 81.59 80.78
SVM 94.75 92.87 90.32 89.56 88.98 94.84 92.62 92.23 90.98 89.56
MGC 95.23 91.35 91.45 89.31 90.34 95.35 90.29 90.01 90.03 90.01
RACC 95.11 92.22 90.89 89.21 92.24 96.11 90.83 91.09 89.01 90.12

Table 6 shows the results of the spectral clustering with VBMF dimensionality reduc-
tion technique and its performance analysis with SGL-DLI and RR-LWS for the different
classifiers. When MGC is utilized, a high classification accuracy of 93.66% is obtained for
two classes, 90.23% for three classes, 90.15% for four classes, 90.34% for five classes, and
89.65% for six classes under SGL-DLI technique. Similarly, when RACC is utilized, a high
classification accuracy of 92.54% is obtained for two classes, 89.11% for three classes, 88.77%
for four classes, 88.02% for five classes, and 87.18% for six classes under SGL-DLI technique.
Similarly, when MGC is utilized, a high classification accuracy of 92.98% is obtained for
two classes, 90.55% for three classes, 90.02% for four classes, 88.98% for five classes, and
87.67% for six classes under RR-LWS technique. Similarly, when RACC is utilized, a high
classification accuracy of 93.09% is obtained for two classes, 89.67% for three classes, 88.11%
for four classes, 86.71% for five classes, and 85.45% for six classes under RR-LWS technique.

Table 6. Spectral clustering with VBMF.

SGL-DLI RR-LWS

2 Classes 3 Classes 4 Classes 5 Classes 6 Classes 2 Classes 3 Classes 4 Classes 5 Classes 6 Classes

LDA 90.09 88.87 86.11 87.02 83.22 92.25 91.04 91.01 85.12 81.47
KNN 91.03 87.31 88.36 89.49 87.45 91.04 89.56 89.24 85.45 82.32
NBC 86.23 85.65 84.89 83.23 85.66 85.09 85.78 8431 83.78 81.65
DT 85.56 86.98 85.03 85.98 83.78 85.30 84.92 84.89 81.74 79.87
RF 84.74 83.23 86.03 82.28 82.98 84.12 83.34 83.67 80.52 80.47

Adaboost 84.13 81.87 80.56 83.51 81.92 85.51 84.78 83.05 80.14 80.23
SVM 94.87 91.65 90.87 90.78 86.34 91.67 90.94 90.36 87.67 85.11
MGC 93.66 90.23 90.15 90.34 89.65 92.98 90.55 90.02 88.98 87.67
RACC 92.54 89.11 88.77 88.02 87.18 93.09 89.67 88.11 86.71 85.45

Table 7 shows the results of the subspace clustering with VBMF dimensionality reduc-
tion technique and its performance analysis with SGL-DLI and RR-LWS for the different
classifiers. When MGC is utilized, a high classification accuracy of 96.45% is obtained for
two classes, 95.26% for three classes, 94.08% for four classes, 90.45% for five classes, and
90.08% for six classes under SGL-DLI technique. Similarly, when RACC is utilized, a high
classification accuracy of 97.33% is obtained for two classes, 96.98% for three classes, 95.85%
for four classes, 93.84% for five classes, and 92.03% for six classes under SGL-DLI technique.
Similarly, when MGC is utilized, a high classification accuracy of 92.89% is obtained for
two classes, 91.02% for three classes, 90.74% for four classes, 90.56% for five classes, and
88.42% for six classes under RR-LWS technique. Similarly, when RACC is utilized, a high
classification accuracy of 95.01% is obtained for two classes, 94.05% for three classes, 93.13%
for four classes, 92.43% for five classes, and 89.85% for six classes under RR-LWS technique.
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Table 7. Subspace clustering with VBMF.

SGL-DLI RR-LWS

2 Classes 3 Classes 4 Classes 5 Classes 6 Classes 2 Classes 3 Classes 4 Classes 5 Classes 6 Classes

LDA 92.46 90.23 90.14 88.11 87.57 94.46 93.54 91.98 90.67 88.11
KNN 94.86 91.67 90.78 89.24 87.14 95.98 94.81 91.76 90.33 87.23
NBC 91.45 90.09 90.05 88.67 87.52 92.72 91.79 90.24 90.21 87.56
DT 90.02 89.35 88.41 88.89 86.89 93.14 93.46 92.57 91.98 85.78
RF 91.64 91.78 9059 87.43 86.57 93.69 92.93 91.89 91.56 87.33

Adaboost 93.05 92.06 90.23 88.60 87.23 92.03 92.57 91.35 90.12 88.24
SVM 95.89 94.81 93.01 90.02 89.95 93.26 91.34 90.25 90.75 87.78
MGC 96.45 95.26 94.08 90.45 90.08 92.89 91.02 90.74 90.56 88.42
RACC 97.33 96.98 95.85 93.84 92.03 95.01 94.05 93.13 92.43 89.85

Table 8 shows the results of the clustering methodology with deep learning LSTM
method. For the two-classes classification, the classification accuracies produced are 96.35%
for hierarchical clustering, 97.85% for spectral clustering, and 97.38% for subspace cluster-
ing. For the three-classes classification, the classification accuracies produced are 95.11% for
hierarchical clustering, 95.99% for spectral clustering, and 96.78% for subspace clustering.
For the four-classes classification, the classification accuracies produced are 94.71% for
hierarchical clustering, 95.37% for spectral clustering, and 96.42% for subspace clustering.
For the five-classes classification, the classification accuracies produced are 90.65% for
hierarchical clustering, 93.35% for spectral clustering, and 93.22% for subspace cluster-
ing. For the six-classes classification, the classification accuracies produced are 90.42% for
hierarchical clustering, 92.31% for spectral clustering, and 92.47% for subspace clustering.

Table 8. Results of the clustering methodology with deep learning LSTM.

2 Classes 3 Classes 4 Classes 5 Classes 6 Classes

Hierarchical clustering 96.35 95.11 94.71 90.65 90.42
Spectral clustering 97.85 95.99 95.37 93.35 92.31

Subspace clustering 97.38 96.78 96.42 93.22 92.47

5.2. Performance Comparison with Previous Works

The results obtained in this work are compared with the previous works and expressed
in Table 9.

Table 9. Comparison with previous works for two channels (Pz-Oz and Fpz-Cz).

Reference Methodology Number of Classes Accuracy (%)

[46]
(Pz-Oz and Fpz-Cz)

High-dimensional
FFT features with

SVM classifier

2 97.88
3 94.41
4 92.82
5 91.73
6 90.77

Proposed method
(Pz-Oz and Fpz-Cz)

Hierarchical
clustering with

SVD-based spectral
algorithm

2 97.96
3 94.56
4 93.73
5 92.96
6 92.72

Proposed method
(Pz-Oz and Fpz-Cz)

Spectral clustering
with SVD-based

spectral algorithm

2 95.87
3 92.56
4 93.81
5 93.07
6 93.51
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Table 9. Cont.

Reference Methodology Number of Classes Accuracy (%)

Proposed method
(Pz-Oz and Fpz-Cz)

Subspace clustering
with SVD-based

spectral algorithm

2 98.41
3 97.56
4 96.61
5 94.78
6 93.12

Proposed method
(Pz-Oz and Fpz-Cz)

Hierarchical
clustering with VBMF

2 96.11
3 92.22
4 91.45
5 90.03
6 92.24

Proposed method
(Pz-Oz and Fpz-Cz)

Spectral clustering
with VBMF

2 93.66
3 90.55
4 90.15
5 90.34
6 89.65

Proposed method
(Pz-Oz and Fpz-Cz)

Subspace clustering
with VBMF

2 97.33
3 96.98
4 95.85
5 93.84
6 92.03

Proposed method
(Pz-Oz and Fpz-Cz)

Clustering
methodology with

deep learning LSTM

2 97.85
3 96.78
4 96.42
5 93.35
6 92.47

In the literature, there was only one recently published paper reporting results from
two channels (Pz-Oz and Fpz-Cz), and so the present results were compared with it. Most
of the papers have concentrated only on a single-channel EEG or EOG, and some have
clubbed both EEG and EOG as reported in [21], and therefore, the current results obtained
cannot be compared with them. Moreover, many results have utilized the extended version
of sleep-EDF database, which has about 197 recordings released in 2018. It is a very huge
database, and it is rarely analyzed as a whole dataset, and most of the reports have analyzed
only a small portion or subset of it. Therefore, the current results cannot be compared with
those results too as the database itself was completely different and is an extended version
of the currently used database. Considering these points in mind, the hierarchical clustering
with SVD-based spectral algorithm methodology with suitable classifiers produced a classi-
fication accuracy of 97.96% for two classes, 94.56% for three classes, 93.73% for four classes,
92.96% for five classes, and 92.72% for six classes. The spectral clustering with SVD-based
spectral algorithm methodology with suitable classifiers produced a classification accuracy
of 95.87% for two classes, 92.56% for three classes, 93.81% for four classes, 93.07% for
five classes, and 93.51% for six classes, respectively. The subspace clustering with SVD-
based spectral algorithm methodology with suitable classifiers produced a classification
accuracy of 98.41% for two classes, 97.56% for three classes, 96.61% for four classes, 94.78%
for five classes, and 93.12% for six classes. The hierarchical clustering with VBMF produced
a classification accuracy of 96.11% for two classes, 92.22% for three classes, 91.45% for
four classes, 90.03% for five classes, and 92.24% for six classes. The spectral clustering with
VBMF produced a classification accuracy of 93.66% for two classes, 90.55% for three classes,
90.15% for four classes, 90.34% for five classes, and 89.65% for six classes. The subspace
clustering with VBMF produced a classification accuracy of 97.33% for two classes, 96.98%
for three classes, 95.85% for four classes, 93.84% for five classes, and 92.03% for six classes.
The clustering methodology with deep learning LSTM produced a classification accuracy
of 97.85% for two classes, 96.78% for three classes, 96.42% for four classes, 93.35% for
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five classes, and 92.47% for six classes. All the results obtained surpassed the previous
results, and this shows that the present work is quite a versatile methodology. The statistical
significance of the results too was analyzed. Cohen’s kappa coefficient was computed
for the extracted and selected features, and the values ranged in the category of 0.6 to 1,
proving that the values reached good agreement and sometimes very good agreement. The
Friedman test analysis too was conducted for the process, and distinct values were obtained,
proving the uniqueness in the selected features. The standard two-sided Wilcoxon test too
was conducted, and the obtained ρ value was less than 0.05 in our experiment, thereby
proving that a higher confidence level is achieved.

6. Conclusions and Future Work

Sleep disorder is a very common symptom of many neurological disorders that affects
the quality of life to a great extent. Some of the common problems created due to sleep
disorders are insomnia, narcolepsy, sleep-related breathing disorders, and sleep-related
movement disorders. The PSG recordings of subjects are the physiological signals that
are obtained during an entire night of sleep. The signal recordings, such as EEG, ECG,
EOG, and EMG, are found here as PSG is a multivariate system. Once the recording is
done, the scoring of sleep stages is performed on the PSG recordings by sleep experts
who evaluate and grade the sleep stages. The manual determination of sleep stages is
very complex and costly by means of visual inspection of PSG signals. Detecting the EEG
signal variations is hard as it has a random and chaotic nature. As a result, automated
sleep detection systems are developed so that the experts can be assisted well. The widely
used PSG signals for the purpose of sleep stage classification are the EEG data or one or
more channels. EEG is widely preferred as it is obtained using wearable technologies, and
it consists of more important information. In the EEG signal processing phase, factors
such as dimensionality reduction, feature extraction, and feature selection techniques are
quite important, and based on that, a novel attempt to implement an interesting flow of
methodology is proposed in this paper. Initially, three clustering techniques, followed
by two dimensionality reduction techniques and two feature extraction cum selection
techniques, were utilized and classified with around 10 classifiers to conduct an exhaustive
performance analysis. Among all the results, the best results were obtained when subspace
clustering with SVD-based spectral algorithm with suitable classification was performed
for a two-class classification problem reporting a classification accuracy of 98.41%. Future
works aim to work with many other modified versions of clustering algorithms, modified
versions of dimensionality mitigation schemes, and feature extraction techniques along
with plenty of other deep learning techniques to obtain a higher classification accuracy and
a faster execution time with much easier applicability.
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