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Recently, the behavior of essential trace metal elements in living
organisms has attracted more and more attention as their
dynamics have been found to be tightly regulated by
metallothionines, transporters, etc. As the physiological and/or
pathological roles of such metal elements are critical, there have
been many non-invasive methods developed to determine their
cellular functions, mainly by small molecule fluorescent probes. In
this review, we focus on probes that detect intracellular zinc and
monovalent copper. Both zinc and copper act not only as tightly
bound cofactors of enzymes and proteins but also as signaling
factors as labile or loosely bound species. Many fluorescent
probes that detect mobile zinc or monovalent copper are
recognition-based probes, whose detection is hindered by the
abundance of intracellular chelators such as glutathione which
interfere with the interaction between probe and metal. In
contrast, reaction-based probes release fluorophores triggered by
zinc or copper and avoid interference from such intracellular
chelators, allowing the detection of even low concentrations of
such metals. Here, we summarize the current status of the
cumulative effort to develop such reaction-based probes and
discuss the strategies adopted to overcome their shortcomings.
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E ssential trace metal elements have long attracted much
attention due to their nutritional importance. Recently, their

various biological roles have been studied at the molecular level.
Among them, zinc is the second most abundant metal element
after iron, and copper is the third. We focus on these two
elements in this review not only for their abundance among trace
elements but also for their critical physiological and/or patho‐
logical roles. In addition, crosstalk between and imbalance of
zinc and copper have received increasing attention mainly in the
area of the central nervous system,(1,2) providing further motiva‐
tion for us to discuss them.

First, we focus on zinc. Zinc is involved in biological
processes as a cofactor of various enzymes such as alkaline
phosphatase, carboxy peptidase, and carbonic anhydrase.(3) Zinc
works as a hydrolysis or hydration catalyst in these enzymes.
Zinc is also used as a component of the zinc finger domain, often
observed in transcription factors to maintain protein structure.(4)

Given the importance of zinc, it is not surprising that intracellular
zinc is tightly controlled. Zinc transporter proteins ([Zrt-, Irt-like

proteins (ZIPs)] and ZnTs) and zinc-transport proteins (metal‐
lothionines, etc.) closely regulate its dynamics. Recently, it has
been proposed that loosely bound or free zinc functions as a
mediator in signaling pathways, and there are many reports
which suggest the involvement of mobile zinc in the regulation
of mast cell-, basophil-, and T cell-mediated allergic responses,(5)

the secretion of insulin in pancreatic β cells,(6) intercellular
signaling in the central nervous system,(7) and the prognosis of
prostate cancer.(8)

Next, we discuss copper. Contrary to the oxidation state of
zinc which is constantly divalent, that of copper interconverts
between monovalent and divalent. This redox feature of copper
makes it a useful redox cofactor in many enzymes such as super‐
oxide dismutase, cytochrome c oxidase, and tyrosinase.(9) Reac‐
tions of copper entrapped in enzymes are controlled, but the
unregulated interaction of copper with oxygen molecules (O2)
generates reactive oxygen species (ROS, via the Fenton and
Haber–Weiss reaction) due to their close redox potential. These
ROS have toxic effects which lead to many disease states. To
harness such a dangerous metal and make it useful in biological
systems, many copper-related proteins such as copper trans‐
porters (CTR1, CTR2, ATP7A, and ATP7B), copper chaperones
(ATOX1, CCS, and COX17), and copper-transport proteins
(ceruloplasmin, metallothionein) work cooperatively.(10) Collapse
of copper homeostasis leads to many diseases such as the genetic
Menkes and Wilson’s diseases.(11,12) Additionally, copper dysreg‐
ulation is suspected as an accelerator or marker of neurodegener‐
ative diseases such as Alzheimer’s and Parkinson’s diseases. It is
thought that the formation of Amyloid beta (Aβ) peptide and α-
synuclein aggregates (Aβ plaque and Lewy bodies respectively)
are accelerated by copper which acts as an oxidative stress
inducer to form neurotoxic masses.(13) The role of copper
signaling is being investigated in neurobiology, immunology,
cancer biology, and the regulation of fat metabolism.(14) Also, as
the chemical properties of Cu(I) and Cu(II) are quite different, it
is critical to distinguish them from each other. In an intracellular
environment, copper exists almost exclusively as reduced Cu(I)
due to abundant glutathione (GSH), while copper in extracellular
environments exists mostly as oxidized Cu(II).(15)
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To quantitatively analyze zinc and copper in samples, induc‐
tively coupled plasma mass spectrometry (ICP-MS)(16) and
atomic absorption spectroscopy (AAS) have been used.(17,18)

These methods are well-known to be applicable to metals
including zinc and copper with high selectivity and sensitivity,
but they cannot be used with live samples. Moreover, they
are unable to distinguish between valence differences, making
it unsuitable for biological copper analysis. Alternatively,
bioimaging techniques have been developed to visualize zinc and
copper in living systems to sufficiently understand their intra‐
cellular functions.

Chemical Design and Working Principles of Synthetic
Fluorescent Probes for Metal Imaging

Much effort has been paid to developing fluorescence (FL)
imaging platforms to detect target analytes in vitro and in vivo
with high sensitivity and selectivity. With such a technique, we
can observe subjects of interest in its living state. FL imaging has
several advantages over other imaging modalities: low cost,
moderate sensitivity (10−9–10−12 M) and expedient resolution.(19)

Concerning sensitivity and resolution, FL imaging has no major
drawbacks compared to other analytical methods. There are
various methods for bioimaging other than fluorescent
probes, such as luminescence imaging,(20) positron emission
tomography,(21) single-photon emission computed tomography
(SPECT), and magnetic resonance imaging (MRI).(22,23) Each of
these has its own advantages and disadvantages, but neither
they nor fluorescent protein-based genetically-encoded sensors(24)

will be discussed in this review.
To monitor a target analyte selectively and sensitively with

fluorescent imaging probes, the molecules usually have at least
two substructures; first, a recognition site specific for the target
and second, a fluorophore moiety which changes emission inten‐
sity and/or wavelength of excitation/emission upon detection of
the analyte. When the target is a metal ion, chemists use their
knowledge of coordination chemistry (hard-soft acid-base theory,
coordination geometry, etc.) to design a recognition site using
suitable ligands. Notably, metal ions with unpaired electrons in
their d-orbitals such as divalent Cu(II) naturally quench the emis‐
sion of neighboring fluorophores.(25) Therefore, such targets are
essentially FL quenchers that fundamentally “turn-off” fluores‐
cent probes—a trait not amenable to bioimaging. To develop
“turn-on” fluorescent probes for such paramagnetic metal ions,
analyte-bound probe complexes are usually cleaved from the
quenched fluorophores, i.e., reaction-based probes. Nevertheless,

copper exists in its monovalent Cu(I) form in an intracellular
environment, and Cu(II) imaging in the field of molecular cell
biology is of little use. We will not present them in detail in this
review. Readers who wish to understand the current status of the
development of Cu(II) recognition-based fluorescent probes are
encouraged to refer to a recent review.(26) The majority are turn-
off probes with few examples of turn-on probes. In contrast,
much effort has been paid to developing reaction-based fluores‐
cent probes to visualize Cu(II). Typically, hydrolysis or an oxida‐
tion reaction is used to turn on FL.(27)

In the case of Zn(II) and Cu(I), which do not have quenching
properties, we can elaborate turn-on fluorescent probe mecha‐
nisms. FL is a phenomenon in which molecules excited by light
release energy as emitted light upon returning to their ground
state. A proximal free ligand can quench FL from the excited
fluorophore via photoinduced electron transfer (PET) (Fig. 1A) if
the frontier energy orbitals are in close proximity. In this state,
the excited fluorophore’s energy is converted to molecular kinetic
energy resulting in non-radiative relaxation. Once a complex
forms between the ligand and the target metal analyte, PET
quenching no longer occurs, and FL is restored (Fig. 1B).(28) This
is the most commonly used principle behind recognition-based
“turn-on” fluorescent probes, which are the most prevalent fluo‐
rescent metal ion probes. Internal charge transfer (ICT) and
Förster resonance energy transfer (FRET)(29) are also widely used
for the design principle of ratiometric probes(30) as they can
modulate the excitation/emission wavelengths. Ratiometric fluo‐
rescent probes are more quantitative than simple turn-on probes
as the FL intensity at multiple wavelengths provides an internal
standard.(31)

Many “recognition-based” probes for zinc and copper have
been developed and used to elucidate the metals’ biological func‐
tions using bioimaging techniques.(32,33) However, recognition-
based probes have major drawbacks in terms of sensitivity, as
described below.

As metal-ligand complex formation is reversible, dissociation
of the analyte metal ions from the ligand moiety of a probe and
capture by competing intracellular chelators hinders the FL
readout of the target analyte (Fig. 2A). In the case of zinc and
copper, which we highlight in this review, examples of such
intracellular chelators are GSH and metallothionein. Particularly,
intracellular GSH is present at concentrations up to 10 mM,(34)

interfering with recognition-based zinc or copper probes greatly.
As a result, the sensitivity of recognition-based fluorescent
probes in the intracellular environment decreases dramatically
compared to those in simple aqueous buffers, severely impairing
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the probes’ practicality for in-cell bioimaging. Also, one target
analyte can react to only one probe at best. Only dramatic intra‐
cellular changes (e.g., addition of large quantities of metal ions in
medium) of zinc or copper can be visualized. Although live-cell
imaging using recognition-based probes have revealed dramatic
states and roles of target analyte metal ions during physiological
and pathological events,(35–37) it is natural to imagine that even
low concentrations of zinc or copper, which recognition-based
probes cannot detect, play a role in the cellular environment.

Reaction-based fluorescent probes provide a promising
alternative that address this issue. Most of the reaction-based
probes are comprised of a recognition site for the target analyte,
a fluorophore moiety, and a cleavable moiety whose dissociation
is catalyzed by the bound target metal ion. Contrary to the
recognition-based fluorescent probes which provide an imme‐
diate FL readout upon metal complex formation, the fluorophore
and ligand components of reaction-based probes first must
dissociate via a chemical reaction (hydrolysis, oxidative elimina‐
tion, etc.) after metal binding. This is a disadvantage in terms of
response speed compared to the recognition-based probes. Also,
as reaction-based probes rely on an irreversible process for their
FL readout, they cannot track reversible changes of the target
analyte level over extended periods of time. Nevertheless, this
irreversibility minimizes the interference from intracellular
chelators and enables the highly sensitive FL readout of target
metal ions. To take advantage of this merit, efforts have been
made to develop reaction-based zinc and copper fluorescent
probes.

To design such reaction-based probes, chemists must be more
strategic than when designing recognition-based probes. In addi‐

tion to the conventional steps of designing recognition-based
fluorescent probes such as selecting a fluorophore with suitable
excitation/emission wavelengths, a recognition site for the target
analyte, good cell permeability and low cytotoxicity, the metal
binding moiety must be highly selective to ignite the chemical
reaction upon complex formation to release the fluorophore and
quickly elicit a FL response. An additional advantage is that
catalytic signal amplification by the target analyte metal ions is
possible as one metal ion can react with multiple fluorescent
probes, affording high sensitivity and superior detection limit
(Fig. 2B). In the case of subcellular investigation, organelle
specificity must also be considered.(38)

Overview of the Recognition-Based Synthetic
Fluorescent Probes for Zn(II)

N-(6-methoxyquinolin-8-yl)-4-methylbenzenesulfonamide (TSQ)
and its related analogues (e.g., Zinquin and its ethyl ester) are
spearhead molecules in the field of recognition-based probes for
Zn(II) (Fig. 3).(39–41) They bind to Zn(II) to form 2:1 complexes
and their FL turn-on mechanism is based on ICT and chelation-
enhanced FL. They are commercially available and useful for
histochemical applications. Although they can be used for live-
cell imaging,(42) they require ultraviolet light for excitation and
therefore are not ideal for such purposes. Such short wavelength
light is not only harmful to cells, it also induces autofluorescence
from intracellular components {e.g., reduced nicotinamide
adenine dinucleotide (phosphate) [NAD(P)H], flavins}. At the
beginning of 21st century, the Nagano and Lippard groups
developed ZnAFs and Zinpyrs probes, respectively, based on
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fluorescein, which are excitable with visible light and suitable
for application in live cells.(43–46) Once the Zn(II)-selective
di(2-picolyl)amine (DPA) moiety binds the target ion, the PET-
quenching is disengaged and FL is restored. These probes are
now commercially available. Subsequently, many successor
Zn(II) probes have been developed to yield various types of turn-
on probes such as ratiometric fluorescent probes, two-photon
fluorescent probes,(47) and panels of probes which emit at various
wavelengths. Many organelle-specific (mitochondria, lysosome,
etc.) probes have also been developed.(38) We also show commer‐
cially available FluoZin-3 and its cell permeable analogue,
FluoZin-3 acetoxymethyl (AM), which were developed by the
Kennedy group and Molecular Probes, Inc. to detect Zn(II) with
a distinct ligand moiety.(48) Readers who wish to gain detailed
insight into this field are encouraged to read some related
reviews.(33,49)

Overview of the Reaction-Based Fluorescent Probes for
Zn(II)

Zn(II) works as a Lewis acid to decrease the pKa of zinc-bound
water and increase its nucleophilicity.(50,51) Actually, a number of
enzymes use zinc as a cofactor to catalyze hydration (e.g.,
carbonic anhydrase) or hydrolysis (e.g., alkaline phosphatase)
reactions as has already been mentioned in the introduction.(3)

Exploiting this property of Zn(II), chemists can design a turn-on
fluorescent probe composed of a fluorophore and quencher,
which is cleaved by a Zn(II)-catalyzed reaction. Actually, aside
from those reported by the Lippard and our groups, very few
reaction-based probes for Zn(II) have been reported(52–55) in
contrast to the large number of recognition-based probes (Fig. 4).

The strategy used by the Lippard group is shown in Fig. 5.
DPA was employed as the PET-quenching Zn(II)-selective
ligand. Moreover, acetylation of the electron-donating aromatic
hydroxy group was performed for even more complete
quenching of the probe (Fig. 5A). In other words, diacetyl (DA)-
ZP1 is the diacetylated derivative of its predecessor ZinPyr-1.
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This ester is fairly robust and impervious to intracellular
esterases for over 90 min. Once a complex of the ligand moiety
and Zn(II) is formed, nucleophilic zinc-bound water attacks the
acetyl moiety to cause ester hydrolysis (Fig. 5B), leading to the
same fluorescent turn-on state as that of Zinpyr-1 (Fig. 5C). They
showed that DA-ZP1 accumulates in the Golgi apparatus of
HeLa cells and displays high FL in tissue slices from endogenous
zinc. Other probes based on the same mechanism, Ac-CM1 and
Ac-ZBR-1/3, have also been developed to emit blue and red light
to achieve multicolor imaging. Obviously, dissociation of zinc
from the hydrolyzed probe by competing intracellular chelators
such as GSH hinders FL readout (Fig. 5D). It is hard to say that
these probes are taking full advantage of the reaction-based probe
premise as their FL response is reversible and no signal amplifi‐
cation mechanism exists. In other words, these probes are
recognition-based probes, which depend on zinc-catalyzed
chemical reactions. The Lippard group also developed organelle-
localizable DA-ZP1 derivatives, DA-ZP1-TPP with triphenyl
phosphonium (TPP) as the mitochondrial targeting moiety,(52) and
DA-ZP1-peptides with modular targeting vector peptides which
were directed to the cytoplasm/nucleus, vesicles, or mitochondria
in live HeLa cells.(53) DA-ZP1-TPP proved to be a useful tool for

investigating mobile Zn(II) in the mitochondria of healthy versus
cancerous prostate cells.

As a Lewis acid, zinc can enhance the electrophilicity of
carbonyls as well as decrease water’s pKa, which we have
already seen in DA-ZP1. Taking advantage of these properties,
we have recently developed signal amplification zinc fluorescent
probes (Dpa-SoxLC and its cell permeable derivative, Dpa-LBC)
which employ a zinc-catalyzed hydrolysis reaction inspired by
β-lactamase (Fig. 6A). The probe is composed of an antibiotic
cephem core, a zinc-ligand moiety (DPA), and a FL-quenched
umbelliferone. Once Zn(II) forms a complex with DPA, it also
coordinates to the carbonyl of β-lactam to activate its reactivity.
Nucleophilic zinc-bound water attacks β-lactam to hydrolyze the
amide bond, leading to sequential electron transfer to release the
dye which fluoresces. Simultaneously, the remaining molecular
skeleton is broken down into small pieces to release Zn(II).
Therefore, a single atom of zinc is recycled and reacts with
numerous probe molecules in a catalytic cycle to enhance the FL
signal (see also Fig. 2B). The ability of this molecule to detect
zinc was maintained even in the presence of GSH at intracellular
concentrations, and it was possible to detect zinc sensitively with
a change in FL intensity of more than 40-fold. It was determined
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from the FL intensity that zinc reacts with 2.8 Dpa-SoxLC
molecules per hour, proving that the system is a catalytic reac‐
tion. The detection limit of Dpa-SoxLC was lower than that of
commercially available ZnAF-2 and Zinpyr-1 both with 2 mM
GSH and without. In the presence of GSH in living HeLa cells,
this molecule could detect intracellular zinc [administered as zinc
pyrithione (ZnPT)] at low concentrations (even 1 μM) with better
sensitivity than conventional fluorescent probes (e.g., ZnAF-2
DA, cell permeable derivative of ZnAF-2), indicating that this
molecular design is useful for creating highly sensitive fluores‐
cent probes (Fig. 6B–E). Also, we have found in our laboratory
that umbelliferone can easily be replaced in the synthetic route
with other fluorophores possessing various wavelengths for
further biological applications.

Overview of the Recognition-Based Synthetic
Fluorescent Probes for Cu(I)

Before we review reaction-based probes for Cu(I), we will
take a look at recognition-based probes for Cu(I). To achieve
selective recognition of Cu(I), many researchers have viewed the
extreme softness of Cu(I) as soft acidity,(56) pairing it with soft
base ligand moieties such as multidentate thioethers to tune the
coordination size and geometry over other soft acid analytes
[e.g., Ag(I), Pb(II), and Hg(II)]. One key feature in the design of
such Cu(I) turn-on probes is PET (Fig. 1A). These dyes are
composed of a PET-quenched fluorophore,(28) a thioether ligand
moiety, and a linker moiety that contains a nitrogen atom. The
highest occupied molecular orbital (HOMO) of the ligand moiety
plays a role as a PET modulator to cancel the FL emission from
the excited fluorophore. Once a complex forms between the

ligand moiety and Cu(I), PET quenching is disengaged, and FL is
restored (Fig. 1B).

Here we show representative recognition-based Cu(I) fluores‐
cent probes (Fig. 7). The Fahrni and Chang groups have mainly
explored these types of probes. Fahrni’s CTAP-1 and Chang’s
CS1 both visualized intracellular copper which was supple‐
mented in medium.(57,58) The Fahrni group later developed more
hydrophilic CTAP-2 for imaging in-gel protein-bound copper.(59)

The Chang group improved the efficiency of CS1 to give CS3,
which showed that the endogenous Cu(I) distribution depends on
calcium levels.(35) They also devised the machinery for devel‐
oping Mito-CS1 to visualize Cu(I) in mitochondria specifically
with the aid of a TPP moiety,(60) CS790AM for in vivo imaging
with the aid of a near infrared (NIR) cyanine fluorescent dye,(61)

and CR3/CF3, aided by the hydrophilic rhodol scaffold, to
establish the importance of copper as a fundamental and dynamic
component of brain circuitry.(37) Another NIR fluorescent
probe, Probe 3, and a two-photon fluorescent probe, ACu1, were
developed by the Lin and Cho groups respectively.(62,63) Readers
who wish to gain detailed insight into this field are encouraged
to read some related reviews.(32,64)

Overview of the Reaction-Based Fluorescent Probes for
Cu(I)

Taking advantage of the unique chemical reactivity of Cu(I)
to catalyze the azide-alkyne click reaction even in the biological
environment, Viguier and Hulme devised a combination of
an alkynyl Eu(III) complex and N-(2-azidoethyl)-5-
(dimethylamino)naphthalene-1-sulfonamide (“dansyl azide”) as
a Cu(I) fluorescent probe (Fig. 8).(65) A Huisgen 1,3-dipolar

NN B
R R

SS

S
N

S

N
N

CO2H

CTAP-1 CTAP-2

S
S

S

SN

Probe 3

NN+

S
N

S

SS

NN B
O F F

S
S

S

SN

Mito-CS1

R 
CS1 F
CS3 OMe

O
O

H
N PPh3

N S

S
S

S

ACu1

S
N

S

N
N

SO3H

NC

S

OH
OHHO

HO

N
S

S

SS

OO N

R

R
CR3 CH3
CF3 CF3

NN+

O

RO2C CO2R

H
N

S

Br−

R
CS790 H
CS790AM CH2OCOCH3

S
S

I−

NH
O

N

O

Br−

+

Fig. 7. Representative recognition-based Cu(I) fluorescent probes.

K. Okuda et al. J. Clin. Biochem. Nutr. | January 2023 | vol. 72 | no. 1 | 7
©2023 JCBN



cycloaddition reaction between them was catalyzed by micro‐
molar [GS−−Cu(I)], a common biological copper complex, to
emit a 10-fold enhancement of europium FL by energy transfer
from the dansyl moiety. However, they did not demonstrate
that it is applicable in live-cell imaging. Later, others reported
a similar fluorescent Cu(I) detection system comprised of
3-azido-7-hydroxycoumarin and propargyl alcohol, or azide-
modified Au@SiO2 and an alkyne group modified on carbon
dots using ascorbic acid as a reductant, without evidence of
utility for live-cell imaging.(66,67) Also, the Jiang group developed
a FL report system consisting of alkyne-functionalized graphene
oxide and 5/6-carboxyrhodamine 110-polyethylene glycol3
(PEG3)-azide in which Cu(I) triggered a click reaction to quench
the FL of rhodamine.(68) This system was applied successfully to
live-cell imaging, but a turn-off probe has limited value.

Recently, the Han and Bu group reported a turn-on fluorescent
sensor system triggered by a Cu(I)-catalyzed click reaction.(69)

They adopt gold nanoparticles (AuNP) as quenchers for the
conjugated fluorophores (Cy3), and Cu(II) reduced to Cu(I) by
exogenous ascorbic acid triggers the click reaction which
assembles the 3D DNA walker, which is subsequently nicked
by an endonuclease (N.BstNBI), releasing Cy3 to fluoresce.
Although the addition of ascorbic acid is required for this
sensor system, they successfully showed live-cell imaging of
exogenously administered Cu(II) with high sensitivity (as low as
6 μM).

Another reaction-based strategy to detect Cu(I) fluorescently is
Cu(I)-mediated biomimetic oxidative bond cleavage, which was
first applied successfully by the Taki group (Fig. 9).(70) Their
FluTPA1 and FluTPA2 consist of O-Me dihydrofluorescein
derivatives and tris(2-picolyl)amine (TPA) connected by a
benzylic ether tether at the fluorescein phenol group. Once the
complex between Cu(I) and the TPA moiety is formed, molecular
oxygen coordinated to Cu(I) is reductively activated via electron
donation by the metal, leading to oxidative C-O bond cleavage
to release the quenched fluorophore precursors which undergo
spontaneous oxidation to restore the fluorescent fluorescein
skeleton. Although the TPA ligand has high affinity to various
heavy metal ions including Zn(II),(71) the probe’s high Cu(I)
selectivity is ensured because only Cu(I) activates coordinated
O2 to ignite the reaction, yielding over a 100-fold increase in FL.
It should be noted, however, that high concentrations of GSH
(2 mM) is required for this reaction to report FL. Although there
is generally plenty of GSH (1–2 mM) in the intracellular environ‐

ment,(34) GSH fluctuations caused by various physiological and
pathological events will convolute Cu(I) analysis. Also, the need
for high levels of GSH implies that much of the activated O2 by
the redox-active Cu(I) (1 or 5 μM)-TPA complex generates ROS
with only a small portion performing the oxidative cleavage of
the linker. Therefore, repetitive regeneration of Cu(I) from Cu(II)
by GSH is necessary for the reaction to emit FL. In this process,
GSH is oxidized to glutathione disulfide (GSSG), and conse‐
quently the probe itself interferes with GSH/GSSG balance in the
presence of Cu(I). As the GSH redox status has widespread
influence on live cells,(72) such interference may complicate the
interpretation of FL imaging. Another concern is that hypoxic
conditions are not compatible with this probe as O2 is indispens‐
able for the reaction. Considering that copper interferes with the
adaptive response to hypoxia,(73,74) careful attention should be
paid to the FL response, especially in the field of hypoxia
biology.(75) Nevertheless, FluTPA2 was successfully applicable to
imaging Cu(I) fluorescently in living cells. FluTPA2 is now
commercially available as “BioTracker Green Copper Live Cell
Dye” (Merck KGaA, Darmstadt, Germany). Similarly, using this
Cu(I)-TPA complex-catalyzed oxidative cleavage reaction, the
Taki group subsequently reported a Cu(I) fluorescent probe
RdlTPA-Et2 and its mitochondria-targeted derivative RdlTPA-
TPP to visualize mitochondrial copper in live HeLa cells.(76) In
this probe design, they employed O-alkylated hydroxymethyl
rhodol to suppress background FL of the probe, which we also
employed in the design of a Fe(II) reaction-based fluorescent
probe.(77) The TPP moiety was employed as the mitochondrial
targeting component in the design of RdlTPA-TPP. There are
many successor probes employing this unique Cu(I)-specific
reaction, such as one equipped with a different fluorophore,
ResCu,(78) ratiometric fluorescent probes, HBTCu and Probe
1,(79,80) a two photon fluorescent probe, Xan-Cu,(81) and a NIR
fluorescent probe, TPACy.(82) Cu(I)-catalyzed oxidative cleavage
followed by Pinner cyclisation was employed as the turn-on
mechanism of CP1, another Cu(I) fluorescent probe.(83) The
Chang group developed a ratiometric FRET probe FCP-1
consisting of rhodamine, quenched fluorescein, and a TPA
moiety connecting the two fluorophores.(84) It revealed oncogene-
driven changes in labile copper pools induced by altered GSH
metabolism by live-cell imaging. Interestingly, substitution of
TPA with 2-hydroxyethyl[bis(2-picolyl)]amine converted the
Cu(I) probes to Co(II) probes.(78,79)

As we have seen so far, Taki’s Cu(I)-catalyzed oxidative
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cleavage strategy with TPA to develop a Cu(I) fluorescent probe
is quite useful for biological studies. Nevertheless, careful
attention should be paid to interpreting the FL response due to its
O2 dependence and interference of GSH metabolism, which we

have already discussed. To overcome this drawback, hydrolytic
cleavage-based turn-on fluorescent probes similar to the reaction-
based Zn(II) probes may be useful, in which Cu(I)-complex-
catalyzed hydrolysis(85) may be implemented.
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Conclusion and Perspectives

In this review article, we have summarized fluorescent probes
that detect Zn(II) and Cu(I) mainly based on a chemical reactions
to turn on FL. Recognition-based fluorescent zinc and copper
probes have proven to be useful imaging tools to analyze
biological events such as the zinc spark in fertilization(86) in
addition to those discussed in the preceding section.(35–37,52) We
suspect that there may be regions of zinc and copper signal
propagation that act at even lower concentrations than previously
thought, in which existing fluorescent probes cannot detect
because of insufficient sensitivity. Reaction-based fluorescent
probes, which have an advantage in terms of sensitivity, can be a
powerful tool for analyzing the biological functions of zinc
and copper at such low concentrations. As demonstrated by our
Dpa-SoxLC and Dpa-LBC probes,(55) reactive fluorescent probes
exhibit a much greater FL enhancement than recognition-based
probes and have a superior detection limit. Additionally, the
signal amplification system in which zinc or copper enhances the
signal as it reacts catalytically increases sensitivity further. The
major disadvantage of reaction-based probes (relatively slow
response times) can be addressed by adjusting the structure of the
ligand moiety to accelerate the necessary reaction. We are eager
for the opportunity to unravel unexplored biological phenomena
using such improved fluorescent probes.
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