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Abstract: Tooth regeneration is an important issue. The purpose of this study was to explore the
feasibility of using adult dental pulp stem cells on polylactic acid scaffolds for tooth regeneration.
Three teeth were extracted from each side of the lower jaws of two adult dogs. In the experimental
group, dental pulp stem cells were isolated and seeded in the 3D-printed hydroxyapatite/polylactic
acid (HA/PLA) scaffolds for transplantation into left lower jaw of each dog. The right-side jaw of
each dog was transplanted with cell-free scaffolds as the control group. Polychrome sequentially
labeling was performed for observation of mineralization. Dental cone beam computed tomography
(CBCT) irradiation was used for assessment. Nine months after surgery, dogs were euthanized, and
the lower jaws of dogs were sectioned and fixed for histological observation with hematoxylin and
eosin staining. The results showed that the degree of mineralization in the experimental group with
cells seeded in the scaffolds was significantly higher than that of the control group transplanted with
cell-free scaffolds. However, the HA/PLA scaffolds were not completely absorbed in both groups. It
is concluded that dental pulp stem cells are important for the mineralization of tooth regeneration. A
more rapid absorbable material was required for scaffold design for tooth regeneration.

Keywords: dental pulp stem cells; 3D printing; polylactic acid scaffolds; tooth regeneration

1. Introduction

Tooth plays an important role in overall health and activity. Tooth loss or damage is
quite frequent. Regenerative medicine has emerged as a novel therapeutic approach to
promote regeneration in a more predictable manner. It is an attractive medical alternative
to conventional treatment. With the increasing knowledge of stem cell biology, tooth
regeneration is one of the ultimate goals of restoring the loss of natural teeth. Compared
with the traditional oral restoration treatment, tooth regeneration has unique advantages
and is currently the focus of oral biomedical research. Studies have indicated that cell-
based strategies show promising potential for regenerating the whole tooth structure in
rodents [1]. In our previous study, we had obtained tooth germ cells from mini pigs
and implanted them in the alveolar bone of the original mini pigs after culture and have
successfully grown teeth the same size as those of the mini pigs. The use of scaffolds can
also regenerate structures that have dentin, cementum, and periodontal ligament as tooth
roots [2]. Our studies have also shown that the characteristics of materials can regulate
cell growth and differentiation [3], which has an important impact on the application for
tissue regeneration. The biggest challenge was to find a simple and rapid method to control
tooth development.
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The study of dental pulp stem cells (DPSCs) by Gronthos’s group [4] reported an
immunophenotype similar to that of bone marrow stem cells (BMSCs), along with the
formation of a calcified nodule upon treatment with differentiation medium in vitro. This
group transplanted DPSCs into the dorsal surface of immunocompromised mice with
DPSCs have the capacity to differentiate into odontoblast-like cells. This differentiation
capacity was revealed by the finding that DPSCs mixed with hydroxyapatite/tricalcium
phosphate (HA/TCP) were able to regenerate a dentin/pulp-like structure by transplan-
tation into immunocompromised mice, with the results showing that DPSCs were able
to regenerate a dentin/pulp-like complex. The research about dentin-pulp regeneration
had also been widely investigated [5–8]. The application of dental pulp stem cells for
regeneration is promising [9].

Fused filament fabrication (FFF), also called fused deposition modeling (FDM) is
one of the widely used 3D-printing techniques to fabricate the objectives composed of
thermoplastic polymers and composites. Polylactic acid (PLA) is a US-FDA approved
thermoplastic biodegradable polymer, but the acidic degradation product of PLA implants
may cause non-bacterial inflammation of the surrounding tissue [10]. Hydroxyapatite (HA)
has been intensively investigated and widely used in biomedical applications due to its
bioactivity and biodegradability. HA, like other bioceramics, performed the neutralizing
capacity to the acidic products from in vivo degraded biomedical polymers [11–13]. How-
ever, 3D printing of biomedical composite is always constrained by the capability of 3D
printers and material processing equipment. Generally, a lab-scale extruder to prepare
biomedical composite filaments of specific diameters was necessary for most FDM 3D
printers to fabricate scaffolds [14]. There were several bioprinters capable of fabricating the
scaffolds of various customized materials due to the variety of accessories [15]. However,
both the bioprinters and the lab-scale extruders were expensive. Therefore, we printed the
PLA scaffolds using a desktop FDM 3D printer, and then we coated HA on the scaffolds
via the dip-coating process to obtain HA/PLA scaffolds.

We also found that by isolating DPSCs with a fluorescence-activated cell sorting
system, about 1.22% STRO-1+ CD146+ cells from the mixture of isolated cells from eight
teeth were sorted as DPSCs [16]. In this study, we tried to challenge the tooth regeneration
in adult dogs with transplantation of dental pulp stem cells isolated from adult dogs and
inserted in the 3D-printed PLA scaffolds.

2. Materials and Methods
2.1. 3D-Printed PLA Scaffolds

Architectural Design of 3D-printed scaffolds was conducted using the software
Schetchup Make 2016 (Trimble Inc., Sunnyvale, CA, USA). Figure 1a–c shows the side view,
top view, and the dimension of scaffolds. The 3D structures exported to STL files were
sliced by Ultimaker Cura 2.7 (Ultimaker B.V., Utrecht, The Netherland) to create a g-code
for 3D printing. The print speed was 30 mm/min; the layer height and line widths were
100 and 250 µm, respectively. The scaffolds designed for incisor and premolar regeneration
were named the I-scaffold and P-scaffold, respectively.

An Ultimaker 2.0 Plus 3D printer equipped with a 250 µm copper nozzle and PLA
Transparent filament (Ultimaker) of 2.85 mm diameter were utilized to conduct 3D printing.
While printing, the build plate temperature and the nozzle temperature was set at 60 and
200 ◦C, respectively.

2.2. Dip-Coating HA on PLA Scaffolds

The dip-coating solution is composed of 70.0 wt.% tetrahydrofuran (THF, HPLC
grade, Thermal Fisher Scientific Inc., Waltham, MA, USA), 25.0 wt.% ethyl alcohol (EtOH,
99.5%, Shimakyu Co. Ltd., Osaka, Japan), 4.5 wt.% hydroxyapatite nanopowder (HA,
<200 nm, Sigma-Aldrich, St. Louis, MO, USA), and 0.5 wt.% polylactic acid cut from the
PLA Transparent filament. To prepare 100 g dip-coating solution, 0.5 g PLA was completely
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dissolved in 70 g THF. Then, 25 g EtOH and 4.5 g HA powder were poured into PLA/THF
solution and a HA dip-coating solution was obtained.

Figure 1. The architecture design of scaffolds and the 3D-printed scaffolds before and after HA
coating. (a) The basic units to compose scaffolds: the top ring (i), root-circle (ii), spacer (iii) and
bottom (iv). (b) The side view, the top view, and the cross-section of the designed scaffolds. (c)
was the side view and top view of I-scaffold and P-scaffold before and after HA coating. (d) The
cross-section of the HA-coated P-scaffold; the inserted image was the enlargement of the red square.
(e) The TGA curves of 3D-printed P-scaffold and both the root and the top ring of the HA-coated
P-scaffold.

The HA dip-coating process was conducted by a KSV Dip-Coater. The 3D-printed
sample was dipped into the dip-coating solution at a rate of 200 mm/min. After 10 s,
the sample was withdrawn at a rate of 200 mm/min, and then the dip-coated scaffolds
were placed on Kimwipes (Kimtech Science, Kimberly-Clark, Irving, TX, USA) for 10 min
to remove the excess dip-coating solution. Finally, the HA-coated scaffolds were put in
a desiccator to remove the solvent by vacuum at 10−2 mmHg for 4 h. Then, HA/PLA
composite coating formed on the surface of 3D-printed PLA lines.

2.3. Thermal Gravimetric Analysis (TGA) of Scaffolds

To determine the amount of HA coated on PLA scaffold via dip coating, thermal
gravimetric analysis was conducted with dried air purge on P-scaffolds before and after
HA coating using a thermal gravimetric analyzer (TGA Q50, TA Instruments, New Castle,
DE, USA). Before TGA test started, the sample was heated to 100 ◦C for 10 min to remove
moisture in the furnace of the thermal gravimetric analyzer. Then, the TGA test was
performed by heating the sample in dried air from 50 ◦C to 610 ◦C with a heating rate of
10 ◦C/min. In this study, the decomposition temperature (Td) of a sample was determined
as the temperature at which 5% weight loss happened. The amount of HA was calculated
according to the residual weight of samples that remained constant during the TGA test.
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2.4. Micro Structure Observation

A Leica DVM6 and a Leica DM2500 microscopes were used to observe the cross-
section of the HA-coated P-scaffold. An HA-coated P-scaffold was polished to obtain the
cross-section using 1000-grit sandpapers.

2.5. Animals

Two adult, male beagle dogs weighing 9 to 11 kg, about six months old, were used
for the research. The animals had intact dentition with healthy periodontia. The animal
research protocol was approved by the National Taiwan University College of Medicine and
College of Public Health Institutional Animal Care and Use Committee (IACUC approval
no. 20150320).

2.6. Extraction Tooth and Sequential Fluorochrome Labeling

Tooth extraction was performed according to the reported method [17]. In brief,
the animals were anesthetized using subcutaneous injection with a mixture of atropine
(0.04 mg/kg), zoletil (10 mg/kg), and rompun (0.5 mg/kg) to reduce vomiting and maintain
a regular heart rate. After 5–10 min, the animals were under general anesthesia. Local
anesthesia was then administered on the surgical field by using 1.8 mL of Xylestesin-
A containing epinephrine (1:100,000; 3 M ESPE, Seefeld, Germany). The animals were
anesthetized, and the bilateral premolars (P2 and P4) and third incisor (I3) were then
extracted using elevators and forceps. The wound was sutured using 3–0 absorbable
sutures, and the stitches were removed for better hygiene care after 7 days. The outline
of the experiment is shown in Figure 2. A polychrome sequential fluorochrome labeling
method was performed in the experimental dogs, the animals were euthanized at week
40 after surgery to observe the new mineralization of tooth regeneration. For polychrome
sequential fluorochrome labeling, each dog was injected by subcutaneous injections of
calcein, alizarin and tetracycline, respectively (20, 30 and 25 mg/kg of body weight; Santa
Cruz Biotechnology) at each time points of 0, 6, 12, 24, 30, 36 weeks after the surgery
sequentially as was shown in Figure 2. Before use, all fluorochromes were adjusted to pH
values of 7.2 and sterilized by filtration.

Figure 2. Outline of experiment. Animals n = 2. I3: the third incisor; P2: the second premolar; P4: the
fourth premolar. exp: experimental; con: control. L-side: left side; R-side: right side.

2.7. Cultivation of Dental Pulp Stem Cells of Dogs

Pulp tissues were isolated from the extracted teeth as follows. First, clean up the tooth
surface with sterile PBS (Phosphate Buffered Saline), physically knock the tooth open to
expose the pulp cavity, and carefully remove the pulp tissue from the pulp cavity with
tweezers and stored in Dulbecco’s modified Eagle medium (DMEM, Chemicon, Rolling
Meadows, Hurley, NY, USA) supplemented with 10% fetal bovine serum (FBS, Gibco-
BRL Life Technologies, Waltham, MA, USA), 1% antibiotic/antimycotic (Gibco-BRL Life
Technologies, Waltham, MA, USA) on ice. Subsequently, the pulp tissues were washed
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with Phosphate buffered saline (PBS) containing 2% antibiotic/antimycotic. After removal
of the wash solution, pulp tissues were mixed with 500 µL DMEM medium cut into small
fragments about 1 mm3 in size. The fragments were then placed in a 12-well cell culture
plate and cultured at 37 ◦C in 5% CO2 atmosphere in a humidified incubator and changed
medium every 2 days. Dental pulp stem cells of dogs (dDPSCs) were released from the pulp
tissues and were grown to confluence in approximately 10–12 days. At approximately 90%
confluence, pulp tissue fragments were removed and subcultured in 60-mm cell culture
dishes (Corning, NY, USA) with fresh culture medium for one week. The total number of
cells obtained from three extracted experimental teeth for primary culture was increased
to approximately 3 × 105 cells after 30 d in culture, and 1 × 105 cells were loaded in each
scaffold (I3, P2 and P4) separately for the experimental sides.

2.8. Surgical Procedures

After the extraction sockets had healed (Figure 3a) for 4 weeks, the animals were
subjected to a surgically created defect and 3D-printed HA/PLA transplantation. For each
surgery, the alveolar defects of post-extraction regions of the incisor (I3) were created about
3 mm in diameter and 8 mm in depth separately on both sides of the mandible of each dog.
The defects of post-extraction regions of premolars (P2 and P4) were created about 6 mm
in diameter and 8 mm in depth and 6 mm × 8 mm separately in both sides of the mandible
of each dog. The 3D-printed HA/PLA scaffolds with 3 mm in diameter and 8 mm in
length were used for transplantation into the incisor defects, and the 3D-printed HA/PLA
scaffolds with 6 mm in diameter and 8 mm in length were used for transplantation into
the premolar defects (Figure 3b). For each dog, the left side (L-side) of the mandible
was transplanted with 3D-printed HA/PLA scaffolds loaded with the dog’s dental pulp
stem cells in the third incisor (I3), and two premolar areas (P2 and P4) were used as an
experimental group. The right side (R-side) of the mandible transplanted with 3D-printed
HA/PLA scaffolds without cells loading in the third incisor (I3) and two premolar areas
(P2 and P4), were used as the control group. Primary wound closure was achieved with
mattress and interrupted sutures using 5-0 Dexon and 4-0 Nylon [18]. In order to reduce
the discomfort of the animals after the surgical procedures, both painkillers (PREVICOX
(Firocoxib), 5 mg/kg) and antibiotics (cephalosporin, 12.5 mg/kg) were used. Furthermore,
animals were fed with soft pet food pellets and canned pet food for one week after surgery.

2.9. Labeling
2.9.1. Cone Beam CT and Micro CT Observation

For dynamic observation of the mineralization for tooth regeneration, a dental cone-
beam computerized tomography scanner (CBCT, Soredex, Minray, NY, USA; 120 kVp,
23.87 mAs) was used for assessment. For taking images, the dogs were anesthetized
for investigation. Cone Beam CT images were taken for each dog before surgery and
every month after surgery (Figure 4a,b). Forty weeks after the surgery, the animals were
euthanized by intravenous injection of concentrated sodium pentobarbital (110–150 mg/kg
of body weight). The mandibles were block-resected about 5 mm distance away from the
spacing (around implant site) area and fixed in 10% formalin for further processing. For
the calibration of the implant site, the radio-opaque gutta percha was placed in parallel
positioned and imaged with microcomputed tomography, microcomputer tomography
(micro-CT system, SkysScan 1076, Bruker, Billerica, MA, USA; 60 kV, 167 µA), through
which the implant site was cut accurately for evaluation (Figure 4c).
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Figure 3. Macroscope observation for tooth regeneration. (a) The incisor and the premolar teeth in
the right and left mandibular jaw quadrants before and after teeth extraction. (b) After implantation
of 3D-printed HA/PLA scaffolds. L-side: left side; R-side: right side; I3: the third incisor; P2: the
second premolar; P4: the fourth premolar.

Figure 4. Photographs of the CBCT images and micro-CT observation of the tissue blocks. (a) The
schematic of the observation section zone of the animal’s jawbone. (b) The mandible images of the
animals were collected from CBCT before teeth extraction, after teeth extraction and after implantation
for 36 weeks. L: left side, R: right side; con.: control, exp.: experimental; red arrow indicates the
surgery area. (c) The micro-CT images of tissues blocks with radio-opaque gutta percha.
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2.9.2. Undecalcified Ground Sections

Specimens were prepared according to the previous reports [18]. In brief, each tissue
block specimen was sectioned into two halves with a diamond disc (Isomet, Buehler, IL,
USA) in a mesiodistal direction through the center and along the axis of the 3D-printed
HA/PLA implants. One half was sequentially dehydrated in ascending concentrations
of alcohols from 70% to 100%, infiltrated and embedded in methylmethacrylate resin.
Following complete polymerization overnight, the specimens were cut to a size of less than
1 mm using a saw microtome (Leica SP1600, Buffalo Grove, IL, USA). The thin sections were
then mounted on roughened glass slides and subsequently ground (PetroThin, Buehler, IL,
USA) and polished (Minimet 1000, Buehler, IL, USA) to a final thickness of approximately
40 µm.

2.10. Micro-CT and Fluorescence Analysis

Micro-CT measurement was performed using a micro-CT system for quantifying
mineralized tissue ingrowth inside the defect zones. To determine the amount and quality
of the newly formed mineralized tissue over time, a 3-mm circular region of interest (ROI)
inside the defect zones was chosen and three-dimensionally reconstructed using micro-CT
Analyzer software (CT Analyzer). Fluorochrome labeling patterns were examined with
a confocal laser scanning microscope (Carl Zeiss LSM880, White Plains, NY, USA) aided
with appropriate filters. The dynamics of the new mineralization of tooth regeneration
could be distinguished by green, red and, yellow fluorescence in accordance with calcein,
alizarin and tetracycline administered at 0, 6, 12, 24, 30 and 36 weeks, respectively. In three
images per sample, the areas occupied by each fluorochrome within the defect area. The
percentages of calcein, alizarin and tetracycline fluorochrome labeling per sample were
calculated using ImageJ software (NIH).

2.11. Decalcified Histology

The other half of each specimen was then demineralized in 14% (w/w) EDTA. The
specimens were then dehydrated, embedded in paraffin, and sectioned (4-µm thick) for
haematoxylin and eosin (HE) staining. All images were taken with Zeiss AxioImager (M1)
scanning microscope.

2.12. Statistical Analysis

Results are presented as the mean (±standard deviation, SD). Statistical significance
was calculated using one-way analysis of variance (ANOVA) followed by post-hoc proce-
dure (Bonferroni analysis), with p < 0.005 considered significant for all tests.

3. Results
3.1. 3D-Printed HA/PLA Scaffolds

The printed I-scaffold and P-scaffold before and after dip-coating are shown in
Figure 1c. The dimensions of printed scaffolds were similar to the design. The top ring
and the root, mainly composed of root-circle and spacer, were printed. From Figure 1d,
HA/PLA composite permeated the space between the printed PLA lines, so the 3D-printed
PLA scaffolds were permeable as designed. However, the inserted image of Figure 1d
shows the height of the oval cross-section, which was ~180 µm. Although the 100-µm gap
between the two root-circles was not as well-formed as designed, there were still pores
and gaps that remained and made the scaffold permeable. After dip-coating, the surface
was covered by HA/PLA composite, and the pores and gaps between PLA lines were also
filled. The 0.5 wt.% PLA in dip-coating solution acted as a binder that formed a composite
layer with HA and the HA/PLA composite layer well adhered on PLA lines’ surface.

According to the results of TGA tests in Figure 1e, the residual weight of P-scaffold
(3D-printed PLA), and both the top ring and root of the HA-coated P-scaffold was 0.01, 0.71,
and 2.28 wt.%, respectively. The Td was 320.15, 301.95, and 267.47 ◦C for the 3D-printed
P-scaffold and both the top ring and root of the HA-coated P-scaffold, respectively.
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3.2. Clinical Findings

During the experimental period, we noticed animal body weight and measured it
every six weeks. As shown in Figure 5a, animal body weight was increased after the exper-
imental period. The experimental procedures did not cause any change in the behavior
or eating habits of the dogs. Healing following tooth extraction was uneventful. The peri-
implant mucosa at 0 weeks was free from clinical signs of inflammation (Figure 5b–d). All
animals recovered well from the surgical procedures without significant complications after
forty weeks of implanting. No signs of infection were noted (Figure 5b–d). Digital images
of the buccal-lingual section of tooth engineered separated from beagle dogs were shown
in Figure 5d. Both of the implant zones in the experimental, 3D-printed HA/PLA plus
dDPSCs, and control, 3D-printed HA/PLA only groups, were similarly without infections
after 40 weeks.

Figure 5. (a) The body weight of the experimental animals after the experiment. (b,c) Photographs
from the tissues in dogs. Horizontal ramus of the dog mandible in lingual view. (d) Gross observation
of buccal-lingual section of tooth engineered. L-side: left side; R-side: right side; I3: the third incisor;
P2: the second premolar; P4: the fourth premolar. B: Buccal side; L: lingual side. Scale bar: 1 cm.

3.3. Micro-CT and Fluorescence Analysis

After the animals were euthanized, the tissue section blocks were analyzed by micro-
CT. New mineralized tissue in defect zones was measured by micro-CT analysis, as shown
in Table 1. The basic morphometric indices include the measurement of mineralization
tissue volume and the total volume of interest. The ratio of these two measures is termed
mineralization tissue volume fraction. The experimental group (3D-printed HA/PLA plus
dDPSCs) exhibited more mineralization tissue formation than the control group (HA/PLA)
at week 40 with higher mineralization tissue volume fraction, mineralization tissue number,
structure thickness, and lower structure model index. On the other hand, the structure
separation in the two groups was almost the same. The 3D reconstructed measurement
(Figure 6a) yielded the same results for the experimental group at Week 40 as the above
micro-CT evaluation. The new mineralized tissue was distributed in the defect zones due to
the infiltration and growth within interconnected pores of the 3D-printed HA/PLA scaffold
(Figure 6a). The overlay images of the three fluorochromes were displayed in Figure 6b.
Areas labelled with calcein (green), alizarin(red), and tetracycline(yellow) indicated min-
eralization tissue was formatted on the 3D-printed HA/PLA scaffold. Experimental and
control groups showed limited fluorochrome incorporation. At week 40, the higher magni-
fication of the fluorochrome area at defect zones (white boxes) areas was the incorporation
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of fluorescence in the experimental group was higher than that in the control group, in-
dicating tissue mineralization occurred in the experimental group. The morphometric
results of the fluorochrome-incorporated area in the experimental group showed higher
mineralization than that in the control group (Figure 6d).

Table 1. Micro-CT evaluation at 40 weeks.

Mineralization tissue volume/total volume (%) 10.79 ± 3.29 12.93 ± 2.43

Mineralization tissue number (1/mm) 0.69 ± 0.16 0.79 ± 0.12
Structure thickness (mm) 0.30 ± 0.05 0.32 ± 0.03
Structure separation (mm) 3.03 ± 0.58 3.03 ± 017

Structure model index 3.42 ± 0.80 3.27 ± 0.44

Figure 6. Micro-CT and merged confocal microscope images at 40 weeks. (a) 3D reconstruction
micro-CT images of new formation mineralization zone. (b) Mesiodistal section view of merged
confocal microscope images. The rectangle zone indicated the 3D-print HA/PLA scaffolds area. At
week 40, the 3D-print HA/PLA plus dDPSCs group showed higher fluorescence intensity and more
red fluorescence incorporation, which indicated tissue mineralization occurred at the defect zones.
Scale bar: 1000 µm. (c) The higher magnification of the fluorochrome area at defect zones (white
boxes) areas. Scale bar: 2 mm. (d) The percentage of fluorochrome area was calculated at defect zones
(white boxes areas in the draw). * p < 0.05.

3.4. Histological Observations

Hematoxylin and eosin staining were performed to observe the microstructure of
regenerated tissues. After 40 weeks, the spaces within the 3D-printed HA/PLA scaffold
showed more mineralization tissue in the experimental groups (Figure 7). Compared
to the control group implanted with scaffolds without cells at the P2 and P4 areas, the
experimental group with 3D-printed HA/PLA scaffolds plus dDPSCs exhibited more
mineralization tissue and showed much mature mineralized tissue in the spaces of scaffolds.
The 3D-printed HA/PLA scaffolds possessed good biocompatibility because there was no
evidence of inflammatory cell infiltration.
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Figure 7. Photographs of the buccal-lingual histologic section of second and fourth premolar at 40 weeks.
The (a) Mesiodistal section view. (b) Magnification. B: Buccal side; L: lingual side. Scale bar: 1 cm.

4. Discussion
4.1. 3D-Printed Scaffolds

In this study, we designed liquid-permeable scaffolds with alternate stacking archi-
tecture of a root-circle and spacer. However, the height (~180 µm) and of extruded PLA
lines were higher than that of our setting (100 µm in height), and thus, the gaps between
two root-circle were less than 20 µm. Generally, the cross-section of extruded polymeric
material lined is oval due to the cohesive force of melt polymeric materials before they
cooled down to solidification. In addition, gravity makes the oval cross-section with a
width higher than its height. The material flow of PLA has been controlled by the g-code
created by the slicing program (Ultimaker Cura 2.7). Therefore, the designed cross-section
area 2.50 × 104 µm2 (layer height of 100 µm × line width of 250 µm) could convert to the
theoretical diameter of the round cross-section of extruded PLA line, which was 178.41 µm.
While the PLA was just extruded from the hot nozzle to form the line, it had a round cross-
section before it made contact with the previous underneath layer. Then, the extruded
PLA was squeezed between the nozzle and the previous layer underneath due to the layer
height being set as 100 µm. However, the height of the oval cross-section (~180 µm) was
higher than the theoretical value (178.41 µm) of the PLA line with round cross-section, so
the actual material flow during printing was larger than our setting. Thus, the gap and the
space between the two root circles were compressed during 3D printing.

4.2. HA Coating on Scaffolds

According to the results of TGA tests, the amount of HA coated on the root and top
ring of P-scaffold was 2.28 and 0.71 wt.%, respectively. The top ring was printed as a dense
objective, so the HA/PLA composite was only coated on the surface. The designed root
was composed of the alternate stacking architecture of spacer and root-circle, so it had
larger surface area and more space than the top ring to coat HA/PLA composite. Although
the alternate stacking architecture was not well-established during the 3D printing process,
the scaffolds were liquid-permeable, as shown in Figure 1d, which demonstrates that the
HA/PLA composite permeated into the space between two layers of PLA lines during
dip-coating.

The 3D-printed PLA (P-scaffold without HA coating) showed good thermal stability
in air and the Td of scaffold samples decreased while HA amount increased, as shown
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in Figure 1e. The weight loss from 100 to 200 ◦C of HA coated root and top ring was
1.67 and 1.07 wt.%. Before TGA test, the dip-coated scaffold samples were processed
to remove solvent and moisture. The decrease of Td from the 3D-printed scaffold to
HA coated root was 52.68 ◦C. Therefore, the weight loss should come from the solvent
absorbed by the 3D-printed PLA lines. The Td decreased due to the absorbed solvent
decreased the compactness of PLA lines and started to burn in air at low temperatures. The
sample containing higher HA amount had higher surface area to contact and soaked the
solvent, which resulted in decreased thermal stability. The solvent absorbed by biomaterials
during processing might damage the loaded cell, the surrounding tissue, and the organ of
the patients.

The dip-coated HA/PLA composite seemed to be biodegradable and was substituted
by mineralized tissue, as shown in Figure 7. Originally, the liquid-permeable structures of
3D-printed PLA scaffolds were filled by HA/PLA composite after the dip-coating process.
However, the degradation of the 3D-printed PLA line of scaffolds seemed to be very slow.
The low in vitro degradation rate of 3D-printed neat PLA scaffolds in PBS at 37 ◦C has been
reported, which was similar to our finding [19]. The glass transition temperature (Tg) of
PLA is about 60 ◦C and the crystalline of PLA formed while the extruded hot melt PLA lines
cooled down to solidification on the heated build plate of 60 ◦C. Both the high Tg and the
crystalline of PLA hinder the degradation of PLA at a temperature below the Tg of PLA [20].
The dip-coated HA/PLA composite on the surface of 3D-printed PLA scaffolds was formed
after being dried in a vacuum at room temperature, which might inhibit the crystallization
of the PLA phase. The high content of HA in the HA/PLA composite increased the
surface area of PLA phase. Thus, the dip-coated HA/PLA composite performed good
biodegradability

This was the first study to challenge tooth regeneration in adult dogs with 3D-printed
HA/PLA scaffolds loaded with dental pulp stem cells. In this study, an innovative and
specially designed 3D-printed PLA scaffold with a similar root canal structure was used to
measure tooth spacing and root size and then covered collagen and HA in an infiltration
method to promote the differentiation of dental pulp stem cells. The size of the defect at
the implantation site can be accurately drilled before the experiment was carried out so
that the implant can be placed in the site very tightly and stably.

4.3. Evaluation

Before the experiment and after the operation, each dog was anesthetized first, and
then CBCT was used to irradiate the implant site to observe the progress of tooth regenera-
tion, which can be used for dynamic assessment.

The three-dimensional image of the craniofacial structure obtained through CBCT
can avoid the problem of planar image magnification. After the digital development of
dental imaging from the traditional film, the radiation exposure dose can be reduced by
about 50–75%; however, the CBCT and traditional CT imaging principles are different. The
latter uses a point source to obtain a cone-shaped beam after penetrating the object. For
imaging on the film, CBCT uses slot technology, which was the X-ray from the source was
passed through a linear slit to make the beam into a fan and then projected on the sensor
for imaging. CBCT three-dimensional images can provide much diagnostic information,
not only obtaining three-dimensional images but can also be further compressed into
two-dimensional X-ray images that are normally used. The tube and the detector rotate to
obtain projected images from various angles. Finally, the 3D image was reconstructed by
the Feldkamp algorithm.

In this study, polychrome labeling with sequential fluorochrome was performed by
subcutaneous injections of calcein, alizarin, and tetracycline, respectively, at each time
point of 0, 6, 12, 24, 30, 36 weeks after the surgery sequentially. The technique of fluo-
rochrome sequential labeling using calcium-binding fluorescent dyes was widely used for
addressing different questions concerning the process of mineralization. It was simple and
efficient for the investigation of the dynamics of mineralization in combination with plain



Cells 2021, 10, 3277 12 of 16

histology [21]. Fluorochrome labels, when bound to calcium ions, can be incorporated at
sites of mineralization in the form of hydroxyapatite crystals Ca5(PO4)3(OH) [22,23]. This
means that the label indicates all sites of mineralization in the body, including a site of bone
formation or dentin deposition, and also hypertrophic cartilage in the growth plate. In the
first 24–36 h after administration, the label was stabilized. The unincorporated label was
rapidly excreted by the kidneys, which resulted in a peak concentration in urine, ranging
from 225 min in monkeys [24] to 30 min in mice [23]. As a result, the fluorescent label
demarcates the mineralization front at the time of administration and can be detected in
histological sections without any further staining or decalcification. By administrating
different labels at specific time intervals, mineralization can be followed in time. In general,
emission spectra of tetracyclines are in the yellow range (dimethyltin dichloride [DMTC]
being orange-yellow), calcein green fluorochromes exhibiting a high calcium affinity label
a broader fluorescent band. Calcein has a high calcium affinity which translates into a
relatively broad fluorescent band [21–24]. Fluorochrome labeling allows the determination
of the onset time and location of mineralization and the direction and speed of mineral-
ization [25–27]. In this study, the method of intravenous injection of concentrated sodium
pentobarbital for the sacrifice of dogs can effectively maintain the characteristics of the
tissues, and it was not easy to cause deformation after sacrifice.

In this study, the implant site images were calibrated by using the radio-opaque gutta
percha for parallel positioning, which can be used for accurately positioning and cutting
the implant sites for evaluation.

Different techniques have been used to evaluate the mineralization tissue repair, as
histomorphometry and morphometric analysis using micro-CT reconstructions. The basic
morphometric indices include the measurement of mineralization tissue volume and the
total volume of interest. The ratio of these two measures is termed mineralization tissue
volume fraction [28].

One of the highlighted findings of the present study was the mineralization volume
fraction and mineralization tissue numbers were higher on the HA/PLA+ dDPSCs groups
than on the control (HA/PLA) groups. Mineralization tissue number, structure thickness,
and structure separation were based on 3D calculations, namely, a sphere-fitting method,
where for thickness measurement, the spheres are fitted to the object, and for separation,
the spheres are fitted to the background [28]. The structure model index refers to the
presence of plaques and rods in a 3D structure such as the mineralization tissue. Studies
had used this index and revealed a negative correlation of structure model index with
mineralization tissue volume fraction [29], compared with our results.

Micro-CT is a non-destructive 3D imaging technology that can clearly depict the
internal microstructure of the sample without destroying the sample. There are three major
hardware components, including the X-ray vacuum tube, the X-ray detection and recording
device, and the device of the rotating mechanism.

The target object was first placed on the stage to be still, and the X-ray vacuum tube
and the detector are driven to rotate by the rotating mechanism to obtain projection images
from various angles. Finally, the 3D image was reconstructed by the Feldkamp algorithm.
The biggest difference between it and ordinary clinical CT was its extremely high resolution.
It uses a micro-focus X-ray tube that was different from ordinary clinical CT, which can
reach the micrometer (µm) level. Micro-CT usually uses Cone Beam. Using cone beams not
only can obtain truly isotropic volumetric images, improve spatial resolution, and increase
ray utilization, but also the speed of acquiring the same 3D image was much faster than
fan beam CT. Micro-CT can provide geometry information, including sample size, volume,
and spatial coordinates of each point and structure information. Micro-CT can also provide
material information such as attenuation value, density, and porosity of the sample, or
mechanical parameters such as the elastic modulus, Poisson’s ratio, etc., analyze the stress
and strain of the sample and perform non-destructive mechanical tests.
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4.4. Clinical Findings

We found that the experimental group of implantations with dental pulp stem cells
loaded on the scaffolds showed more mineralization than the control group of implanta-
tions without dental pulp stem cells.

The dog’s dental pulp stem cells isolation and cultivation were performed according
to our team’s previous experiences in the research of human dental pulp stem cells. After
the dental pulp tissues were isolated, single-cell colonies were collected and subcultured.

For reducing the sacrifice of animals, only two dogs were used for the experiment.
For each dog, three teeth (I3, P2 and P4) from both sides of the lower jaw were extracted
for study; one side was used for the experimental group and the other side for the control
group. In the experimental group, three defects in the left-lower jaw of each dog were
transplanted with dental pulp stem cells loaded on 3D-printed HA/PLA scaffolds and
have a total number of six. In the control group, three defects in the right lower jaw of
each dog were transplanted with a 3D-printed HA/PLA scaffold without cells and had a
total number of six. We compared the results of transplantation of 3D-printed HA/PLA
scaffolds with and without dental pulp stem cells. Using fluorescent dyes injected in
different periods can determine the amount of tissue mineralization accumulation so as
to identify the effect of tissue mineralization regeneration. Of course, mineralized tissue
does not represent teeth but only shows the differentiation potential of dental pulp stem
cells. In the previous study, we used tooth germ cells to successfully regenerate tooth roots
with pulp, dentin, cementum, and periodontal tissues, and the scaffold was completely
absorbed [2], which may be due to the greater potential of tooth germ stem cells. Since
it is not easy to obtain tooth germ cells in adults, this study was designed to investigate
whether adult tooth missing can be regenerated with dental pulp stem cells that are easier
to obtain from adults in real life. In this study, we found that the degradation of PLA was
slow, so there was still some material remaining in the implantation site. However, it was
clear that the addition of dental pulp stem cells can promote material degradation and the
formation of mineralized tissue.

Previous research on the use of dental pulp stem cells for tooth regeneration has also
shown that dental pulp stem cells have the potential to form tooth-like tissues by Gronthos’s
group [4] and others [5–8]. When DPSCs were transplanted into immunocompromised
mice, they generated a dentin-like structure lined with human odontoblast-like cells that
surrounded a pulp-like interstitial tissue [4]. Other researchers also found the potential
of DPSCs for dentinogenesis or dentin-pulp-like tissue regeneration but also only used
mice as an animal model [5,8]. Our study is the first study using dogs as animal models
for dental pulp stem cells tooth regeneration with a designed, 3D-printed root like an
HA/PLA scaffold.

Advances in regenerative medicine with stem cells have led to clinical trials. Den-
tal/oral tissues are emerging as promising cellular sources of human mesenchymal stem
cells. Recently, dental tissue-derived cells have been used clinically due to their great
potential, easy accessibility, and ability to be obtained via methods with low invasive-
ness [30]. Dental pulp stem cells (DPSCs) are the first discovered dental stem cells. DPSCs
are ectoderm-derived stem cells isolated from the human permanent tooth pulp. These cells
originate from migrating neural crest cells and have similar characteristics as mesenchymal
stem cells (MSCs) [9]. They have already been shown to be capable of differentiation into
several lineages, such as odontoblasts, osteocytes/osteoblasts, adipocytes, chondrocytes,
and neural cells. DPSCs are peri-vascular located and express a number of mesenchymal
stem cell (MSC) markers such as CD105, CD146, CD44, and Stro-1 [31]. The human tooth
consists of enamel, pulp tissue, dentin, and cementum, and DPSCs have the capability to
differentiate into all these four tissues, which make bio-tooth a potential reality.

Many studies have shown that cytokines/growth factors such as BMPs, FGFs, SHHs,
WNTs and TNFs, play an important role during tooth development. Moreover, the ex-
pression of these cytokines is characterized by spatiotemporal specificity. The aberrant
expression may lead to tooth development abnormalities. The spatiotemporal control of
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the developmental cues might be the future for tooth regeneration applications [1]. The
3D-printing technology is a rapid prototyping and additive manufacturing technology,
which manufactures complex architecture via a layer-by-layer building process and with
high precision [32]. The flexibility and controllability of 3D bioprinting enable complex and
customized release profiles of multiple cytokines to achieve spatiotemporal gradients that
regulate cellular functions in tissue or organ regeneration [33,34]. Moreover, many studies
have promoted the application of 3D printing technology in cytokine sustained-release
by improving processing, advancing technology, or allowing combinations with other
forms of carriers [35–37]. Tooth regeneration with dental pulp stem cells and using more
rapid degradable biomaterials for 3D printing scaffolds with cytokines/growth factors
sustained-release effects should also be considered for further studies.

5. Conclusions

In this study, we challenged the use of dental pulp stem cells loaded in a 3D-printed
HA/PLA scaffold for tooth regeneration research. It was found that after transplantation,
the degree of mineralization in the experimental group with dental pulp stem cells seeded
in the scaffolds was significantly higher than that of the control group transplanted with
cell-free scaffolds. Dental pulp stem cells are important for the mineralization of tooth
regeneration. It was also demonstrated that a 3D-printed HA/PLA scaffold designed
as a root-like structure promotes mineralization of dental pulp stem cells; the use of
polychrome labeling was helpful in exploring the process of mineralization. Dental CBCT
also was important for dynamic observation of the mineralization process. However,
the degradation rate of hydroxyapatite/polylactic acid was too slow and was not fully
absorbed even after nine months. Tooth regeneration with dental pulp stem cells and using
more rapid degradable biomaterials for 3D printing scaffolds with cytokine/growth factors
sustained-release effects should also be considered for further studies.
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