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Abstract: For drugs with high hydrophilicity and poor membrane permeability, absorption enhancers
can promote membrane permeability and improve oral bioavailability. Sodium N-[8-(2-hydroxybenzoyl)
amino]caprylate (SNAC) is a new kind of absorption enhancer that has good safety. To investigate
the absorption enhancement effect of SNAC on non-polar charged and polar charged drugs and
establish the absorption enhancement mechanism of SNAC, SNAC was synthesized and characterized.
Two representative hydrophilic drugs—notoginsenoside R1 (R1) and salvianolic acids (SAs)—were
selected as model drugs. In vitro Caco-2 cells transport and in vivo rat pharmacokinetics studies
were conducted to examine the permeation effect of SNAC on R1 and SAs. R1, rosmarinic acid (RA),
salvianolic acid B (SA-B) and salvianolic acid B (SA-A) were determined to compare the permeation
enhancement of different drugs. The MTT assay results showed that SNAC had no toxicity to Caco-2
cells. The transepithelial electrical resistance (TEER) of Caco-2 cell monolayer displayed that SNAC
facilitated passive transport of polar charged SAs through the membrane of epithelial enterocytes.
The pharmacokinetics results demonstrated that area under the curve (AUC) of RA, SA-B and SA-A
with administration of SAs containing SNAC was 35.27, 8.72 and 9.23 times than administration of
SAs. Tmax of RA, SA-B and SA-A were also prolonged. The AUC of R1 with administration of R1
containing SNAC was 2.24-times than administration of R1. SNAC is more effective in promoting
absorption of SAs than R1. The study demonstrated that SNAC significantly improved bioavailability
of R1 and SAs. What’s more, the effect of SNAC on absorption enhancement of charged drugs was
larger than that of non-charged drugs. The current findings not only confirm the usefulness of SNAC
for the improved delivery of R1 and SAs but also demonstrate the importance of biopharmaceutics
characterization in the dosage form development of drugs.

Keywords: notoginsenoside R1; salvianolic acids; Caco-2 cells; pharmacokinetics; sodium
N-[8-(2-hydroxybenzoyl)amino]caprylate (SNAC); molecule polarity

1. Introduction

There is considerable interest in delivery platforms that can improve the oral bioavailability of
poorly absorbed drugs, because the oral route can improve patient compliance, and oral formulations
can also reduce the costs associated with sterile manufacturing and use of healthcare professionals.
The intestinal absorption of hydrophilic drugs is usually limited by their poor membrane permeability.
Therefore, absorption enhancers (AEs) have often been studied to improve the absorption of these
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poorly permeable drugs. These AEs include surfactants, bile salts, chelating agents, fatty acids and
coco-glucoside [1–3].

These different types of AEs have been shown to increase the intestinal absorption of poorly
permeable drugs by various mechanisms. They do this by either opening epithelial tight junctions
(TJs—the paracellular route), mildly perturbing the mucosal surface (transcellular permeation
enhancement), or by non-covalent complexation with the payload. However, the AEs that are highly
effective often cause damage to and irritate the intestinal mucosal membrane [4–6]. Therefore, effective
and less toxic AEs must be developed and used in clinical practice. Sodium N-[8-(2-hydroxybenzoyl)
amino]caprylate (SNAC) is a delivery agent that has been reported to enhance the permeability of
a diverse spectrum of molecules, including proteins, such as insulin [7], calcitonin [8] and other
macromolecules such as heparin [9]. SNAC has not been reported to be associated with significant
disruption of the tight junctions, change in membrane fluidity, and toxicity, among others [10–12].
SNAC has both an absorption enhancement effect and low toxicity. It has been used in clinical
studies [13,14].

Notoginsenoside R1 (R1) is an effective and structurally representative bioactive constituent of
Radix notoginseng. Studies have reported that R1 has various activities such as protecting against
cardiac hypertrophy in ApoE-/- mice [15], suppressing wear particle-induced osteolysis and RANKL
mediated osteoclastogenesis in vivo and in vitro [16], inhibiting oxidized low-density lipoprotein
induced inflammatory cytokines production in human endothelial EA.hy926 cells [17], attenuating
amyloid-β-induced damage in neurons by inhibiting reactive oxygen species and modulating MAPK
activation [18], regulating human colorectal cancer metastasis [19]. R1 is a saponin (Figure 1A), it
has good water solubility, and the solubility and dissolution rate are not the main factors affecting
drug absorption, low membrane permeability and high molecular weight are the main factors
resulting in poor bioavailability [20,21], which restricts clinical use. Salvianolic acids (SAs) is effective
components of Salvia miltiorrhiza, it have various activities such as antioxygenation [22], improving the
cognitive function of rats with chronic stress-induced depression [23], cardioprotection [24], protecting
brain endothelial cells after treatment with deprivation and reperfusion of oxygen-glucose [25],
anti-emphysema [26], attenuating limb ischemia/reperfusion injury in skeletal muscle of rats [27],
promoting functional recovery and neurogenesis via sonic hedgehog pathway after stroke in mice [28].
SAs are water-soluble components which are mainly composed of rosmarinic acid (RA, Figure 1B),
salvianolic acid B (SA-B, Figure 1C) and salvianolic acid A (SA-A, Figure 1D). However, the
bioavailability of salvianolic acid B in rats is only 2.3%. The extremely low oral bioavailability is
mainly caused by poor biomembrane penetration [29], which has limited clinical application.

SNAC has been reported to act as an absorption enhancer (Figure 1E), but there have been few
reports about the absorption enhancement effects on polar charged drugs and non-polar charged
drugs. Polar charged SAs and non-polar charged R1 were thus chosen as model drugs. The effect of
SNAC on SAs or R1 transport across Caco-2 cell monolayer in vitro was tested. The transepithelial
electrical resistance (TEER) during the exposure to SNAC of Caco-2 cell monolayer was tested to study
whether the absorption-enhancing effect of SNAC involved tight junction complex opening or not.
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Figure 1. The chemical structures of sodium N-[8-(2-hydroxybenzoyl)amino]caprylate (SNAC) and
drugs. (A) notoginsenoside R1. (B) rosmarinic acid. (C) salvianolic acid B. (D) salvianolic acid A.
(E) SNAC.

The pharmacokinetics of SAs or R1 in rats was tested and compared when SAs containing SNAC
and SAs or R1 containing SNAC and R1 were administered. The work aimed to investigate and
compare the impact of SNAC on the oral absorption of drugs with different polar charged properties.
This will provide a research basis for drug selection using SNAC as absorption enhancer to improve
drugs’ oral bioavailability.

2. Results and Discussion

2.1. Sodium N-[8-(2-hydroxybenzoyl)amino]caprylate (SNAC) Characterization

The 1H-NMR spectrum of SNAC is shown in Figure 2. The peak at δ (ppm) 9.876 (s, 1H)
corresponded to the amide (-NH-). The phenolic hydroxyl (OH-) peak appears at 4.959 (s, 1H).
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Figure 3. Caco-2 cells were pre-incubated with notoginsenoside R1, Salvianolic acids and Sodium N-
[8-(2-hydroxybenzoyl)amino]caprylate (SNAC) for 24 h, and cell viability was assessed by the MTT 
assay. Values were represented as mean ± SD (n = 6, each group). 
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Figure 2. 1H-NMR characterization of SNAC.

The peaks at 6.606, 6.624, 6.642 (t, 1H), 6.803,6.823 (d, 1H), 7.167, 7.185, 7.202 (t, 1H) and 7.804,
7.821 (d, 1H) ppm are the peaks of the hydrogens on the benzene, while the peaks at 1.287 (s, 1H),
1.487, 1.500 (d, 1H), 2.003, 2.021, 2.039 (t, 1H), 2.508 (s, 1H) and 3.266, 3.282, 3.298 (t, 1H) ppm are the
peaks of the hydrogens on the alkyyl chain.

2.2. Cytotoxicity Study (MTT Assay)

The use of absorption enhancers is one of effective methods to improve poorly absorbed drugs’
oral bioavailability. However, the absorption enhancers that are highly effective often cause damage
and irritate the intestinal mucosal membrane [30–32]. Therefore, to evaluate the toxicity of SNAC,
MTT assay on Caco-2 cells was carried out. When the culture time was 24 h (Figure 3), the cytotoxicity
of R1, SAs and SNAC appeared as concentration-dependent. When R1 was 400 µg·mL−1, the survival
percentage was still above 90%. When SNAC was 200 µg·mL−1, the survival percentage was above
90%. When SAs was 50 µg·mL−1, the survival percentage was above 90%.
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Figure 3. Caco-2 cells were pre-incubated with notoginsenoside R1, Salvianolic acids and Sodium
N-[8-(2-hydroxybenzoyl)amino]caprylate (SNAC) for 24 h, and cell viability was assessed by the MTT
assay. Values were represented as mean ± SD (n = 6, each group).
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2.3. Caco-2 Cell Transport

Transport Papp of R1 or SAs containing SNAC across Caco-2 cell monolayer was shown in
Figure 4A,B. The TEER showed no obvious change after transport across the Caco-2 cell monolayer,
which suggested that the transport process did not involve the paracellular route. After incubation for
2 h and 24 h, TEER restored to its original state, which indicated drugs had no toxicity to cells. As was
shown in Figure 4C,D, comparing with the Papp of R1 solution, the Papp of R1 containing SNAC
had no significant difference. Comparing with the Papp of SAs solution, the Papp of RA and SA-B
improved by 2.14-fold and 3.68-fold when cells were treated with SAs containing SNAC. The possible
mechanism of AEs increasing oral bioavailability of poorly permeated therapeutic molecules includes
the transcellular route, enhancing the transport across the epithelial membrane, the paracellular
route or modifying the epithelial intercellular tight junctions [33–36]. SAs containing SNAC did not
transport across Caco-2 cell monolayer by opening tight junctions, which indicated the pathway was
transcellular route.
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Figure 4. The transport across Caco-2 cell monolayer. (A) The transepithelial electrical resistance
(TEER) change of Caco-2 cell monolayer treated with notoginsenoside R1 (R1) and R1 containing
Sodium N-[8-(2-hydroxybenzoyl)amino]caprylate (SNAC). (B) TEER change of Caco-2 cell monolayer
treated with salvianolic acids (SAs) and SAs containing SNAC. (C) Papp of R1 transport across Caco-2
cell monolayer. (D) Papp of rosmarinic acid (RA) and salvianolic acid B (SA-B) of SAs transport across
Caco-2 cell monolayer. Values were represented as mean ± SD (n = 3, each group). * p < 0.05 vs.
RA group. # p < 0.05 vs. SA-B group. Note: 200 µg·mL−1 for R1; 50 µg·mL−1 for SAs; R1 or SAs:
SNAC (1:1).
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2.4. Chromatographic Condition

To obtain satisfactory chromatographic separations, UPLC conditions were optimized by selecting
columns and adjusting the gradient elution for the separation of all of the compounds in this study [37].
A Phenomenex Kineter EVO C18 (2.1 × 50 mm, 2.6 µm) and an optimized gradient elution program
was selected for the analysis of R1 and saikosaponin (IS) to achieve smooth baseline separation and
produce the highest MS intensity and the best resolutions for most of the peaks tested (Figure 5A).

In order to represent the pharmacokinetic of the whole herb extract, it is better to select several
effective ingredients as the target to investigate the pharmacokinetics. The content of RA, SA-B and
SA-A in SAs is much higher than other components, therefore, RA, SA-B and SA-A were selected as
the object molecules to study the pharmacokinetic of SAs.

To obtain satisfactory chromatographic separations, HPLC conditions were optimized by selecting
columns and adjusting the gradient elution for the separation of all of the compounds in this
study [38,39].

The chromatogram peaks of RA, SA-B and SA-A had good peak shapes, no interference from
miscellaneous peaks, and a stable baseline, as shown in the following Figure 5B.
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Plasma sample after oral administration of SAs containing SNAC (B3). 1. Rosmarinic acid, 2. Salvianolic
acid B, 3. Salvianolic acid A.

2.5. Validation of Analytical Methods

Calibration curves of R1 were linear over the concentration range of 1.97–964 ng·mL−1. Good linearity
with a correlation coefficient r = 0.9997 was observed. Standard curve equation was y = 279.08x + 439.26,
y represented peak area of R1/ peak area of IS, × represented concentration of R1/concentration of IS.

Calibration curves of RA, SA-B and SA-A were linear over the concentration range of
0.055–28.4 µg·mL−1, 0.19–12.16 µg·mL−1 and 0.058–29.9 µg·mL−1, respectively. Good linearity with
a correlation coefficient r = 0.9996, r = 0.9998, r = 0.9996 was observed, respectively. Standard curve
equation was y = 41536x − 3928.9 for RA, Y= 71971x + 13966 for SA-B, y = 59541x − 11430 for SA-A.
y represented peak area of RA, SA-B or SA-A, x represented concentration of RA, SA-B or SA-A.

The absolute recovery of RA, SA-B, SA-A and R1 from plasma was determined to 80–120%.
This method showed good precision, the precisions were measured to be less than 15%.

The limit of quantification (LOQ), defined as the lowest quantification concentration of R1, which
could be detected in plasma was 1.97 ng·mL−1. The LOQ of RA could be detected in plasma was
55.47 ng·mL−1. The LOQ of SA-B could be detected in plasma was 190 ng·mL−1. The LOQ of SA-A
could be detected in plasma was 58.40 ng·mL−1.
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2.6. Pharmacokinetic Study

The concentration-time curve of R1 in plasma is shown in Figure 6A. The AUC chart of SA is
shown in Figure 6B. The detailed pharmacokinetic parameters are shown in Tables 1 and 2. It was
evident that AUC of R1 with administration of R1 containing SNAC was 2.24-times administration of
R1. However, AUC of RA, SA-B and SA-A with administration of SAs containing SNAC was 35.27,
8.72 and 9.23-times higher than administration of SAs. AUC of RA is larger than SA-B and SA-A.
The possible reason was that the molecular weight of RA is smaller than that of SA-A and SA-B, SNAC
could improve the absorption enhancement of RA more than SA-A and SA-B. Tmax was prolonged
with significant differences (p < 0.05), and the internal absorption time was prolonged. The results
demonstrated that SNAC could improve the oral absorption of both R1 and SAs, but SNAC improved
the oral absorption of SAs more than that of R1. The SAs showed significant slow release and enhanced
absorption after adding the SNAC. Cmax values of R1, RA, SA-B and SA-A were increased significantly
with drugs containing SNAC as compared that of crude drugs-treatment.

There was a relatively lower enhancement effect on neutral R1, and a relatively higher promoting
effect on ionic SAs. It may be because the ionic interaction makes it easier to form a complex that
mimics the body’s natural biomolecular transport mechanisms [40]. The interaction helps to protect
drugs from digestive enzymes and increases hydrophobicity so the moiety can passively permeate,
after which the complex dissociates into the respective components. Thereby, SNAC can promote
ionized molecules’ membrane permeability at a larger extent.

In this study, SNAC was added to improve the absorption of low permeability drugs. SNAC may
work via transcellular pathway of cells, promoting transmembrane transport of SAs, significantly
improving the absorption of SAs and enhancing bioavailability. The specific absorption enhancement
mechanism needs further study.
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Figure 6. The concentration-time curve of drugs in blood after oral administration of notoginsenoside
R1 (A) and salvianolic acids (B). Values were represented as mean ± SD (n = 6, each group).
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Table 1. Pharmacokinetic parameters of R1 after oral administration of R1 and R1 containing SNAC
(n = 6).

Parameter R1 R1 containing SNAC

Cmax (ng·mL−1) 119.40 ± 9.86 1061.40 ± 443.60
Tmax (min) 42.50 ± 11.29 20.00 ± 7.74

AUC0→t/(ng/mL·min) 37,991.01 ± 2746.71 84,930.61 ± 14,364.23
Fr/% 100 223.55

Table 2. Pharmacokinetic parameters of RA, SA-B and SA-A after oral administration of SAs and SAs
containing SNAC (n = 6).

Parameter RA RA Containing
SNAC SA-B

SA-B
Containing

SNAC
SA-A

SA-A
Containing

SNAC

Cmax
(µg·mL−1) 1.02 ± 0.51 20.06 ± 5.79 2.29 ± 0.77 5.62 ± 0.85 1.61 ± 0.44 11.19 ± 4.84

Tmax (min) 10 ± 5 63.75 ± 18.87 7.5 ± 2.74 57.5 ± 17.54 8.75 ± 2.5 67.5 ± 15
AUC0→t/

(µg/mL·min) 193.79 ± 51.78 6835.35 ± 946.52 214.46 ± 37.86 1871.38 ± 424.47 478.54 ± 28.93 4416.15 ± 706.94

Fr/% 100 3527.21 100 872.30 100 922.83

3. Materials and Methods

3.1. Chemicals, Reagents and Animals

Saikosaponin A and notoginsenoside R1were bought from the National Institute of the Control
of Pharmaceutical and Biological Products (Beijing, China). Salvianolic acid A was bought from
Biopurify Phytochemicals Ltd. (Chengdu, China). Rosmarinic acid was bought from Shanghai Yuanye
Biotechnology Co., Ltd. (Shanghai, China). Salvianolic acid B was bought from Shanghai Ronghe
Pharmaceutical Technology Co. Ltd. (Shanghai, China). Salvianolic acid extract of Salvia miltiorrhiza
was bought from Xian Xiaocao Botanical Development Co. Ltd. (Xian, China). N-[8-(2-Hydroxybenzoyl)
amino]caprylate (SNAC) was provided by Shanghai Synmedia Chemical Co., Ltd. (Shanghai, China).
Acetonitrile and methanol (UPLC-MS grade) were purchased from Fisher Scientific (Waltham, MA, USA).
Heparin sodium was purchased from Beijing Yaobei Biological and Chemical Reagents Company
(Beijing, China).

Sprague-Dawley rats, male, healthy, weighing 250 ± 20 g, were purchased from Vital River
Laboratory Animal Technology Co. Ltd. (Beijing, China) for the animal experiments. Experimental
animals were maintained in accordance with internationally guidelines for laboratory animal use,
and the study was approved by the Ethical Committee of Experimental Animal Center of Institute
of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical
College (No. SLXD-201807070364, Institute of Medicinal Plant Development, Chinese Academy of
Medical Sciences and Peking Union Medical College, Beijing, China).

3.2. SNAC Synthsis

In brief, the raw material was dissolved in methanol, thionyl chloride was added dropwise into the
solution that was then stirred overnight. The intermediate product was dissolved in dichloromethane
and an accurate amount of trimethylamine was added. Aspirin was dissolved in dichloromethane
and oxalyl chloride was added dropwise, followed by addition of triethylamine. Then dissolving in
methanol, sodium hydroxide solution was added. Then the acidity was adjusted to excessive acid.
Dissolving in the ethanol and then adding concentrated sodium hydroxide solution. Drying overnight
and getting the final product.
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3.3. 1H-NMR Characterization

SNAC was analyzed with DMSO-d6 as solvent using an Avance II (400 MHz) 1H-NMR instrument
(Bruker, Dresden, Germany).

3.4. Cytotoxicity Study (MTT Assay)

Caco-2 cells were plated at a cell density of 4 × 105 cells per well in 96-well plates and incubated
at 37 ± 1 ◦C in an atmosphere of 5% CO2. After 24 h of culture, the medium was replaced with
SNAC, R1 or SA. After 24 h, the medium was discarded and the wells were washed twice with hanks
balanced salt solutions (HBSS). 200 µL MTT solution (0.5 mg·mL−1 in PBS) was added to each well,
and incubated 4 h at 37 ± 1 ◦C for MTT formazan formation. Subsequently, the supernatant was
carefully removed and the wells were washed twice with PBS. DMSO (200 µL) was added to each
well and the plates were then mildly shaken for 15 min to ensure the dissolution of formazan crystals.
The optical density values were measured by using MQX200 microplate reader (Bio-Tek, Shoreline,
WA, USA) at wavelength 570 nm. Six replicates were read for each sample and mean value was used
as the final result. The spectrophotometer was calibrated to zero absorbance using culture medium
without cells.

3.5. Caco-2 Monolayer Transport

To investigate the influence of SNAC on the absorption properties of R1 and SA-A, SA-B and RA
were used as an in vitro model of the gastrointestinal epithelium. To evaluate the transport, SNAC
with R1 or SAs (1:1) were diluted with HBSS solution to a final concentration of 200 µg·mL−1 R1 or
50 µg·mL−1 SAs (SA-A: 6.07 µg·mL−1; SA-B: 8.31 µg·mL−1) as the test solutions. A 1.5 mL volume
of sample was taken from the basolateral side at 2 h. Sample aliquots of 500 µL were mixed with
500 µL of methanol, shaken for 1 min using a vortex mixer, and centrifuged at 8000 rpm for 10 min.
The supernatant was injected into the HPLC system for measuring R1, RA, SA-B and SA-A content.
The apparent permeability coeffcient (Papp) was calculated according to the following equation:
Papp = dQ/dt × 1/(AC0), where dQ/dt is the permeability rate, C0 is the initial concentration at the
apical side, and A is the surface area of a monolayer. TEER was determined using a Millicell-ER system
(Millipore Corporation, Bedford, MA, USA) before and after membrane absorption. After membrane
absorption, the cells were washed three times with HBSS solution, complete media was added for
2 h or 24 h, and the TEER was then determined, the cell toxicity of test drugs and regeneration of cell
membrane were also investigated.

3.6. Chromatographic System and Conditions

3.6.1. Chromatographic System and Conditions of Notoginsenoside R1

The assay was performed on a Waters UPLC-MS system (ACQUITY UPLC I ClASS/SCIEX
QTRAP 4500, Waters, Milford, MA, USA). A Phenomenex Kineter EVO C18 (2.1 × 50 mm, 2.6 µm)
was used. The temperature was 30 ◦C. The mobile phase with the flow rate of 0.4 mL·min−1 consisted
of 0.1% formic acid in water (A) and 0.1% formic acid in methanol (B). The elution was carried out
as follows: 20% A at 0–1.0 min; 20% A to 100% A at 1.0–3.0 min; 100% A at 3.0–4.0 min; 100% A
to 20%A at 4.0–4.10 min, 20% A at 4.1–7 min. The injection volume was 10 µL and the partial loop
with needle overfill mode was used for sample injection. The mass spectrometer was operated in
negative ionization mode using MRM to assess the R1: m/z 931.9→637.5 for R1 and m/z 779.7→617.4
for saikosaponin (IS). The optimized cone voltage and collision energy were 295 V and 52 eV for R1,
290 V and 48 eV for IS, respectively. A spray voltage of 4500 V was used, and the capillary temperature
was 550 ◦C. The scanning range was selected as m/z 100→1200: no interference was observed around
target compound peaks. Data acquisition and processing were accomplished on a 4500 Q TRAP®mass
spectrometer (Applied Biosystems, Foster, CA, USA).
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3.6.2. Chromatographic System and Conditions of SAs

The HPLC system consisted of a LC-10AT series quaternary LC pump from Shimadzu Technology
(Kyoto, Japan), with a SPD-10 AVP ultraviolet detector, CTO-10ASV column oven, SCL-10AVP
controller and CLASS-VP work station. The mobile phase consisted of methanol: acetonitrile (3:1) (A)
and 0.3% phosphoric acid in water (B). The flow rate was kept at 1.0 mL·min−1. The system was run
with a gradient program of 83% B to 60% B at 0–10 min, 60% B to 50% B at 10–20 min, 50% B to 35% B
at 20–30 min, 35% B to 83% B at 30–31 min, 83% B at 31–41 min. The detection wavelength was 286 nm.

3.7. Preparation of Calibration Standard and Quality Control Samples

3.7.1. Notoginsenoside R1

Calibration standard of R1 at concentrations of 1.97, 5.15, 10.6, 18.2, 51.9, 94.8, 211, 505,
and 964 ng·mL−1 were prepared by spiking the appropriate amount of saikosaponin A (50 ng·mL−1)
standard solutions in blank plasma obtained from healthy rats. Similarly, quality control samples
(QC) at low concentration (6 ng·mL−1), medium concentration (60 ng·mL−1) and high concentration
(800 ng·mL−1) were also prepared as described.

3.7.2. Salvianolic Acids

Calibration standard of SA-B at concentrations of 0.19, 0.38, 0.76, 1.52, 3.04, 6.08, 12.16 µg·mL−1

were prepared in blank plasma obtained from healthy rats. Similarly, quality control samples (QC)
at low concentration (0.19 µg·mL−1), medium concentration (0.76 µg·mL−1) and high concentration
(3.04 µg·mL−1) were also prepared as described. Calibration standard of SA-A at concentrations of
0.058, 0.12, 0.23, 0.47, 0.93, 1.87, 3.74, 7.48, 14.95, 29.9 µg·mL−1 were prepared in blank plasma obtained
from healthy rats. Similarly, quality control samples (QC) at low concentration (7.48 µg·mL−1), medium
concentration (3.74 µg·mL−1) and high concentration (0.93 µg·mL−1) were also prepared as described.
Calibration standard of rosmarinic acid at concentrations of 0.055, 0.11, 0.22, 0.44, 0.89, 1.78, 3.55,
7.1, 14.2, 28.4 µg·mL−1 were prepared in blank plasma obtained from healthy rats. Similarly, quality
control samples (QC) at low concentration (7.1 µg·mL−1), medium concentration (3.55 µg·mL−1) and
high concentration (0.89 µg·mL−1) were also prepared as described.

3.8. Preparation of Blood Samples

3.8.1. Notoginsenoside R1

Ten µL saikosaponin A (50 ng·mL−1 in acetonitrile, IS) was added to 100 µL of blank blood.
Then, the analytical sample was vortexed with 0.39 mL acetonitrile for 5 min and centrifuged at
14,000 r × min−1 for 10 min. The supernatant was collected, transferred to a clean centrifuge tube,
and evaporated to dryness using a vacuum centrifugal thickener (Centrivap, LABCONCO, Kansas,
MO, USA). The resulting residue was dissolved in 100 µL 20% acetonitrile, vortexed for 3 min and
centrifuged at 14,000 r·min−1 for 10 min for twice, and injected into UPLC-MS/MS system for analysis.

3.8.2. Salvianolic Acids

Thirty µL hydrochloric acid (2 mol·L−1) was added to 200 µL of blank blood. Then, the analytical
sample was vortexed with 2 mL ethyl acetate for 90 s and centrifuged at 12,000 r·min−1 for 5 min.
The supernatant was collected, transferred to a clean centrifuge tube, and evaporated to dryness.
The resulting residue was dissolved in 100 µL methanol, vortexed for 20 s and centrifuged at
12,000 r·min−1 for 5 min, and injected into HPLC system for analysis.
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3.9. Method Validation

3.9.1. Specificity

The specificity of the method was investigated by analyzing blood from rats, spiked blood samples
and blood samples after oral administration of drugs, to exclude any endogenous co-eluting interference.

3.9.2. Recovery Rate

The extraction recovery at three different concentrations (low, medium and high concentrations)
was determined. The absolute recovery was determined in three replicates by comparing the peak areas
of the extracted samples to the peak areas obtained from the organic solutions at the same concentration.

3.9.3. Precision

The precision of the method was determined by analyzing six replicates at low, medium and high
concentrations with the same analytical run on three consecutive days, respectively.

3.9.4. Lower Limit of Quantitation (LOQ)

The LOQ of R1, RA, SA-B and SA-A under chromatographic conditions were determined at an
S/N (Signal/Noise) of about 10, respectively

3.10. Administration of Drugs Containing SNAC

Male Sprague-Dawley rats with a mean body weight of 250 ± 20 g were randomly divided into 6
groups (n = 6). The animals were fasted 12 h prior to oral administration and had free access to water
during the experiment. All groups were treated by oral administration via oral gavage and dosing
volume of 10 mL·kg−1. R1 was oral administrated with 200 mg·kg−1. SAs was oral administrated with
500 mg·kg−1. Blood samples of 200 µL were withdrawn from the eye socket according to the specific
time intervals of at 0, 0.25, 0.5, 1, 1.5, 2, 4, 6, 8, 12 h after administration and immediately mixed with
10 µL of 1% heparin sodium to prevent clotting. Blood samples were centrifuged (10 min, 3000 rpm)
and plasma was collected and stored at 20 ◦C until analysis.

3.11. Data Processing

Pharmacokinetics parameters were processed by non-compartmental analysis using the Phoenix
WinNonlin 6.0 (Pharsight, Princeton, NJ, USA). Statistical analyses were performed using SPSS16.0.
Statistical significance was considered to be reached at p < 0.05.

4. Conclusions

In this article, a novel absorption enhancer (SNAC) was synthesized and its absorption
enhancement effect on drugs with different polarity properties were studied. Caco-2 cell transport
in vitro and pharmacokinetics in vivo experiments were conducted. The administration of SAs and R1
in the presence of SNAC resulted in an enhancement of membrane transport. TEER values during the
exposure of Caco-2 cells to SNAC suggested that the absorption-enhancing effect of SNAC may not
involve tight junction complex opening. The in vivo results demonstrated that SNAC could promote
oral absorption of both R1 and SAs. What’s more, it could prolong the retention time in vivo and
promote oral absorption of polar molecules to a greater extent. The possible mechanism is ions interact
to form complexes between the polar molecules and SNAC. The current work demonstrates the
capability of SNAC to increase the epithelial permeability of small hydrophilic molecules, especially
for polar molecules.
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