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The influence of the environment 
and indoor residual spraying 
on malaria risk in a cohort 
of children in Uganda
Margaux L. Sadoine1,2*, Audrey Smargiassi1,2, Ying Liu1,2, Philippe Gachon3, 
Guillaume Dueymes3, Grant Dorsey4, Michel Fournier5, Joaniter I. Nankabirwa6,7, John Rek6 & 
Kate Zinszer1,2

Studies have estimated the impact of the environment on malaria incidence although few have 
explored the differential impact due to malaria control interventions. Therefore, the objective of 
the study was to evaluate the effect of indoor residual spraying (IRS) on the relationship between 
malaria and environment (i.e. rainfall, temperatures, humidity, and vegetation) using data from 
a dynamic cohort of children from three sub-counties in Uganda. Environmental variables were 
extracted from remote sensing sources and averaged over different time periods. General linear 
mixed models were constructed for each sub-counties based on a log-binomial distribution. The 
influence of IRS was analysed by comparing marginal effects of environment in models adjusted 
and unadjusted for IRS. Great regional variability in the shape (linear and non-linear), direction, and 
magnitude of environmental associations with malaria risk were observed between sub-counties. 
IRS was significantly associated with malaria risk reduction (risk ratios vary from RR = 0.03, CI 95% 
[0.03–0.08] to RR = 0.35, CI95% [0.28–0.42]). Model adjustment for this intervention changed the 
magnitude and/or direction of environment-malaria associations, suggesting an interaction effect. 
This study evaluated the potential influence of IRS in the malaria-environment association and 
highlighted the necessity to control for interventions when they are performed to properly estimate 
the environmental influence on malaria. Local models are more informative to guide intervention 
program compared to national models.

Uganda is one of six countries accounting for half of the global malaria cases, with more than 14 million cases 
confirmed in  20201. The disease is endemic in 95% of the country and accounts for a significant portion of the 
disease burden with 27–34% of outpatient visits and 19–30% of hospitalizations due to  malaria2. Malaria control 
in Uganda is oriented in indoor residual spraying (IRS) program targeting epidemic-prone areas since 2006, 
and nationwide campaigns have been conducted in 2013–2014 and 2017–2018, aiming to achieve universal 
insecticide-treated nets (ITN) coverage. By 2018–2019, 83% of households owned at least one ITN and 74% of 
households in districts targeted by indoor residual spraying measures had received the  intervention3. Following 
the sustained malaria control efforts, there has been evidence of a significant decrease in malaria burden over 
the last decade, with a reduction of nearly 1.5 million cases between 2017 and 2018 4.

While the main determinants of malaria risk are known, there is a large temporal and spatial (intra- and 
inter-regional) variability in the influence of these factors that requires in-depth analyses at sub-national scales to 
orient interventions. Indeed, patterns of association between malaria and weather rely on geographic and climatic 
 context5, as the effectiveness of vector control  interventions6,7. A few studies have demonstrated that adherence to 
certain interventions depends on environmental conditions, for example, high temperatures negatively influence 
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the use of long-lasting insecticidal nets (LLINs)8,9, while increase rainfall positively influence net use through 
perceived malaria risk associated to mosquito  abundance10.

Additionally, it is possible that control interventions may impact the influence of the environment on malaria, 
which has been highlighted in only two  studies11,12. Chaves and al.11 showed a reduction of between 30 to 80% 
of the average effect of temperatures on malaria prevalence for P. falciparum and P. vivax following a mass 
distribution campaign of ITN, while Carrasco-Escobar and al.12 showed a time-varying change in slope in the 
dose–response association between environmental factors and malaria prevalence after community interventions.

The analysis of the effect of interaction between environment and interventions, as well as their joint effect 
on malaria, are therefore, often not considered in the  literature13.

The majority of studies that have analyzed meteorological factors and malaria risk averaged the environmental 
and/or meteorological measures over a one week or one month period, with or without lags. Lags or delays are 
typically investigated up to 12 weeks for weekly data and up to 12 months for monthly data and most studies 
showed a lag period of between 7 to 12 weeks for temperature and 8 to 12 weeks for  precipitation14. However, 
the use of weekly or monthly lagged environmental covariates does not allow for the timeframe necessary to 
account for the cumulative effects of environmental  covariates15. Malaria symptom onset is a result of several 
processes including the developmental period of the mosquito and parasite within the mosquito, and the incuba-
tion period of parasites within the human body. Averaging climatic factors over several months may be necessary 
to account for these biological mechanisms and has been used to analyse mosquito  density16–18, but rarely for 
symptomatic cases of  malaria19,20.

An often important and overlooked aspect of environmental and meteorological measures and malaria risk 
is non-linearity. There are optimal and sub-optimal temperature, precipitation, and humidity thresholds for the 
development of mosquitoes and  parasites21,22. Not considering the non-linear trend of malaria risk factor can 
result in biased estimates of association, leading to inaccurate  projections5.

Therefore, in this study, the joint effects of IRS and different environmental factors averaged over different 
time periods were examined in a cohort of Ugandan children. The nonlinear relationships between environmental 
factors and malaria incidence were explored and comparisons between the average periods of 20 days to 120 days 
and the weekly and bi-weekly averages lagged up to 16 weeks were made. A comparison between the results of 
a pooled model and regional models was also conducted.

Results
Descriptive results. A total of 1090 children from 331 total households were followed between July 2011 
and July 2017 (Table 1). The mean duration of follow-up was 3.3 years, with an average of 35 total visits and 5 
malaria episodes per child. The proportion of malaria episodes represented 17% of the total visits. Households 
had an average of 6.55 individuals and 540 participants (49.5%) were female.

Nagongera experienced more precipitation with an average of 86 mm of cumulative precipitation over 20 days 
and up to 519 mm over 120 days, compared to 73 mm and 436 mm over 20 days and 120 days respectively in 
Kihihi; 77.5 mm and 458 mm over 20 days and 120 days respectively in Walukuba (Supplementary Table S2). 
Walukuba had higher minimum temperatures (20-day average: 19.5˚C, range: 17.9–21.7˚C), while maximum 
temperatures were higher in Nagongera (20-day average: 29˚ C, range: 26.7–33.9˚C) (Supplementary Table S2).

For LLINs, self reported use was > 99% in every sub-county during follow up for all three sites (Supplementary 
Fig. S1). LLIN use was therefore not considered in the models as there was no variation in the response. The 
proportions of households sprayed in Nagongera were 96.9%, 95.6%, 96.8% proportion of households sprayed 
respectively (data not available for the phase 4).

Bivariate analysis. Analysis of the bivariate relationships between malaria and meteorological variables for 
the clustered sub-counties showed nonlinear relationships for cumulative precipitation and humidity averaged 
between 20 and 120 days. Nonlinear trends were also observed for maximum temperatures, most apparent at a 
120-days average (Supplementary Fig. S2). Analysis by subcounty showed greater variations between subcoun-
ties and between different averaging periods for the same subcounty (Figs. S3–S5).

Multivariable analysis for pooled and sub-counties models. Pooled models with meteorological 
variables averaged over 1 or 2 weeks, lag up to 16 weeks, showed higher AIC than pooled models with unlagged 
environmental variables averaged between 20 and 120 days (Supplementary Tables S3–S5). The lowest AIC for 
lagged environmental variables was obtained at 13 weeks for a 7-days average and 16 weeks for a 14-days average. 
However, among all pooled multivariate models (lagged and unlagged environmental variables), the smallest 
AIC was obtained for the meteorological variables unlagged, averaged over a 90-days period . For models at each 
subcounty, the smallest AIC was obtained for the meteorological variables averaged over a 120-days period for 
Walukuba, over a 90-days period for Nagongera, and over a 20-days period for Kihihi (Supplementary Table S3).

Comparing the marginal effects of environmental variables on malaria at each subcounty, large variations 
in the direction and shape of the relationships were observed between regions (Fig. 1). Linear trends were 
observed for all environmental variables in Walukuba, for rainfall, humidity and EVI in Kihihi, for maximum 
and minimum temperatures and EVI in Nagongera. Coefficients of environmental variables with linear trends are 
presented in Tables 2, 3, 4 and 5. Malaria risks significantly increased with the increase in rainfall in Walukuba 
(RR = 13.59, 95% CI [4.25–43.50]) with the increase in EVI (RR = 12.80, 95% CI [4.71–34.81]) and humidity in 
Kihihi (RR = 5.36, 95% CI [3.31–8.67]) (Tables 3 and 4). An increase in minimum temperatures and rainfall were 
significantly associated with risk reduction in Walukuba and Kihihi, respectively (RR = 0.13, 95% CI [0.02–0.67]; 
RR = 0.08, 95% CI [0.05–0.12]).
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Non-linear relationships were observed for precipitation and humidity in Nagongera (Fig. 1). Percentage 
change in risk between percentiles for nonlinear variable are presented in Table 6. As an example, an increase 
from 246 to 355 mm in cumulative rainfall over 90 days resulted in a 48.1% increase in malaria risk, and a 57% 
decrease in risk between 457.5 and 737 mm (Table 6). Minimum and maximum temperatures at Kihihi also 
exhibited nonlinear trends (Fig. 1 and Table 6). The magnitudes of environmental influences were higher in 
Kihihi compared to other sub-counties and lowest in Walukuba (Fig. 1).

Comparison of the marginal effects of meteorological variables for the pooled model with and without IRS 
showed a reduction in the magnitude of the effect of all variables when considering IRS, with a greater reduc-
tion for humidity (− 37.2%) and EVI (− 29.6%) (Fig. 2 and Supplementary Table S6). The influence of minimum 
temperature changed direction in the model controlling for IRS, compared to the model without IRS. The same 
comparison was done for Nagongera (the only sub-county to have received IRS during the study period) and 
results showed a change in the direction of the influence of minimum temperatures and vegetation on malaria 
(Fig. 3). In Nagongera model not controlling for IRS, minimum temperatures significantly decreased the risk of 
malaria (RR = 0.01, 95% CI [0.01–0.02]) and EVI significantly increased the risk of malaria (RR = 15.99, 95% CI 
[7.10–36.01]). When controlling for IRS, these associations were in opposite directions (increased risk associated 
with an increase in minimum temperature and decreased risk associated with an increase in EVI) and they also 
lost their statistical significance (Fig. 3 and Table 2). The maximum effect of humidity, rainfall, and maximum 
temperature were reduced by 43.8%, 20.2% and 23.6%, respectively, when controlling for IRS (Supplementary 
Table S6).

Regarding interventions in Nagongera, each round of spraying was significantly associated with risk reduction 
(risk ratios vary from RR = 0.03, CI 95% [0.03–0.08] to RR = 0.35, CI 95% [0.28–0.42]), with the biggest reduction 
observed during the third round of spraying (Table 2). Phase 5 was marked by a slight increase in risk (Table 2).

Results of the models’ diagnosis are presented in Supplementary Figs. S10–S13. Diagnosis showed no evidence 
of overdispersion in the residuals of the pooled and individual sub-county models.

Discussion
The results demonstrated that there is important regional variability in the shape (linear and non-linear), direc-
tion, and magnitude of environmental associations with malaria risk in Uganda. The results have also shown 
that in the context of a stable and perennial transmission setting, IRS was effective in reducing malaria risk and 
adjusting models for IRS modifies the magnitude of environmental effects.

Malaria transmission is characterized by complex and sometimes non-linear relationships with its deter-
minants. The development and survival of mosquitoes depend on optimal thresholds of temperatures and 

Table 1.  Characteristics of study participants and households.

Kihihi
(N = 377)

Nagongera
(N = 375)

Walukuba
(N = 338)

Total
(N = 1090)

Sex

Female 199 (52.8%) 174 (46.4%) 167 (49.4%) 540 (49.5%)

Male 178 (47.2%) 201 (53.6%) 171 (50.6%) 550 (50.5%)

Age at enrollment

Mean ± SD 4.54 ± 2.81 4.16 ± 2.74 3.97 ± 2.65 4.23 ± 2.74

Min–Max 0.500–9.87 0.500–9.98 0.480–9.96 0.480–9.98

Household wealth index

Poorest 122 (32.4%) 176 (46.9%) 95.0 (28.1%) 393 (36.1%)

Middle 128 (34.0%) 124 (33.1%) 87.0 (25.7%) 339 (31.1%)

Least poor 127 (33.7%) 75.0 (20.0%) 156 (46.2%) 358 (32.8%)

Household size

Mean ± SD 6.51 ± 2.29 6.95 ± 3.44 6.15 ± 2.96 6.55 ± 2.95

Min–Max 2.00–12.0 2.00–23.0 2.00–17.0 2.00–23.0

Dwelling type

Modern 95.0 (25.2%) 64.0 (17.1%) 158 (46.7%) 317 (29.1%)

Traditional 282 (74.8%) 311 (82.9%) 180 (53.3%) 773 (70.9%)

Number of visits during follow-up

Mean ± SD 31.0 ± 17.2 48.2 ± 29.4 24.8 ± 14.8 35.0 ± 23.8

Min–Max 2.00–83.0 3.00–130 2.00–67.0 2.00–130

Number of malaria episodes

Mean ± SD 6.44 ± 7.64 7.82 ± 7.50 0.837 ± 1.49 5.18 ± 7.00

Min–Max 0–43.0 0–35.0 0–14.0 0–43.0

Follow-up duration (year)

Mean ± SD 3.38 ± 1.46 3.73 ± 1.75 2.78 ± 1.57 3.31 ± 1.65

Min–Max 0.0384–4.86 0.142–5.86 0.104–4.88 0.0384–5.86
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 precipitation23,24, which has been shown both experimentally and epidemiologically, and underscores the impor-
tance of considering these thresholds. Historically, studies have tended to overlook this aspect, although there 
has been an increase in the use of distributed lag non-linear models (DLNMs)25. Exploring non-linear associa-
tions between the environment and malaria can reveal important information about malaria epidemiology and 
ultimately, aid in planning and optimizing control measures. For example, IRS has been demonstrated to be 
more effective if conducted early in the transmission cycle and during high transmission  years7, which could 
suggest that the effectiveness of interventions may depend on the level of intensity of environmental variables. 
Specifically, high humidity levels have been shown to play a major role in the long-term residual effectiveness 
of indoor  spraying26. Other studies have demonstrated that temperatures variations can affect both mosquito 
 physiology27,28 and the toxicity of chemicals used for malaria control (i.e. IRS, ITNs and LLINs)29,30.

The variations in environmental associations with malaria are often observed between regions, due to dif-
fering contexts as well as methodological differences between  studies5,14,31. The results of the present study have 
shown that the time periods for considering the influence of environmental variables vary by region, such as the 
magnitude and the direction of environmental effects.

The need for local models has been demonstrated by other  studies32–34. Risk factors not only differ between 
regions but also at a smaller scale, on relatively short  distances34. Local conditions are the main drivers of 
malaria  transmission35 and include, among others, vector population characteristics, biophysical environment, 
and  seasonality32. High-resolution analysis of local variations of malaria risk in endemic and epidemic regions 
may be more informative to guide control programs.

Lagged environmental variables did not necessarily provide better statistical models in terms of model fit 
compared to averaging periods. This may suggest that long averaging periods could be suitable to capture both 
the different stages of the transmission cycle and the environmental mechanisms that influence the different 
stages. For example, the influence of precipitation may need to be analyzed over long periods given the time 
required for water to accumulate in breeding sites and its influence that can persist for up to several  weeks14. Some 
studies have investigated the effect of longer lag lengths to analyze exposure effects over  time31 and found up to 
20–28 weeks lag of the association between malaria and precipitation 14. In our analysis, long averaging periods 
for environmental effects were identified for Walukuba and Nagongera (120 days and 90 days, respectively). 

Figure 1.  Marginal effects of environmental variables on malaria risk from GLMM models for each subcounty: 
Kihihi (A), Walukuba (B) and Nagongera (C). Models are adjusted for maximum and minimum temperatures, 
rainfall, humidity, EVI, age at visit, sex, housing type, household wealth index, number of persons living in the 
house, number of meat meal in all three models and Nagongera model is additionally adjusted for IRS. Models 
in red are not adjusted for intervention (IRS); models in blue are adjusted for IRS.
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Other  studies20,36 in Uganda have reported significant associations for long periods such as precipitation aver-
aged over 4 months, as well as surface temperatures averaged over 2-months with variable temporal associations 
according to transmission setting.

Findings from this study also have shown the effectiveness of IRS, which has been supported by several other 
 studies37–43, and recent work by our group demonstrated the critical role of continuous spraying in achieving 
global malaria  targets44. Interestingly, when comparing pooled models not controlling and controlling for IRS, 
the influence of all environmental variables on malaria risk were attenuated in the latter. For the Nagongera 
model with IRS, the influence of minimum temperature and EVI were in the opposite direction to those of 
the Nagongera model without IRS, while the other variables (rainfall, humidity, maximum temperatures) were 
attenuated. The difference in estimates between models with and without IRS indicates a certain level of residual 
confounding, and the association between environment and malaria would be inaccurate or overestimated if IRS 
was not properly captured. It could also suggest an interaction effect between environment and interventions. 
This would imply that the influence of the environment on malaria risk could be modulated by the IRS and/or 
that the influence of the IRS varies according to the intensity of the environmental variables. Disregarding the 
interaction of two variables would lead to an incomplete conclusion of their influence, as it would be solely based 
on their main effects. Therefore, the results of our study should be interpreted with caution.

This study has several limitations. First, the influence of weather was studied using the same period for 
averaging each meteorological variable in each model. This type of assumption limits the consideration of the 
different biological mechanisms as the time between the onset of the disease and the weather varies according to 
the type of meteorological  variable45. For example, longer times periods can be expected for precipitation than 
for temperatures due to the time required for rainwater to accumulate and supply breeding  sites46. Fixed lags 
also limit the plausibility of associations at the population level and may lead to inconsistent results between 
study  sites47. Analysing the patterns of associations individually between environmental variables and malaria 
would be an improvement to correct for potential biases. Secondly, the independent impact of LLINs could not 
be estimated, as all participants reported sleeping under a mosquito net throughout the study period. Self-report 
measurement of net use is often biased in favour of greater use than actual use and a very recent study from 
this cohort showed that non-adherence was high among both children (< 5 years) and school-aged children 
(5–17 years) when adherence was assessed at the home rather than at the  clinic9. This implies that the variation 
in use was not properly captured and that LLIN may represent an important residual  confounder48,49. Having 
data on LLIN hung inside houses could be used as a proxy of LLIN usage, but they are rarely available due to 

Table 2.  Summary of GLMM models for Nagongera. Significant values are in bold. *Risk ratio of malaria 
when the meteorological linear variable changes from its minimum to its maximum value.

Predictors

Nagongera (without IRS) Nagongera (with IRS)

Risk ratios CI (95%) P-Value Risk ratios CI (95%) P-Value

Intercept 0.01 0.00 – 0.02  < 0.001 0.08 0.04 – 0.18  < 0.001

Sex [Male] 1.18 1.04 – 1.35 0.011 1.16 1.01 – 1.32 0.031

Age at visit (years) 0.93 0.91 – 0.95  < 0.001 0.96 0.94 – 0.99 0.001

Dwelling type [Traditional] 1.10 0.87 – 1.39 0.431 1.11 0.88 – 1.41 0.374

Meal with meat per week 0.98 0.93 – 1.02 0.308 0.98 0.93 – 1.03 0.433

Household wealth index [Middle] 1.24 0.96 – 1.59 0.099 1.22 0.94 – 1.57 0.132

Household wealth index [Poorest] 1.16 0.91 – 1.48 0.236 1.16 0.90 – 1.48 0.251

Number of persons living in house 1.02 0.99 – 1.05 0.128 1.02 0.99 – 1.05 0.141

Enhance vegetation index 15.99 7.10 – 36.01  < 0.001 0.66 0.25 – 1.72 0.395

Minimum temperatures (90 days) (˚C) 0.01* 0.01 – 0.02  < 0.001 1.03* 0.49 – 2.19 0.936

Maximum temperatures (90 days) (˚C) 1.31* 0.81 – 2.12 0.275 1.12* 0.61 – 2.03 0.721

IRS [Phase 1] 0.35 0.28 – 0.42  < 0.001

IRS [Phase 2] 0.19 0.15 – 0.24  < 0.001

IRS [Phase 3] 0.05 0.03 – 0.08  < 0.001

IRS [Phase 4] 0.09 0.06 – 0.12  < 0.001

IRS [Phase 5] 0.21 0.15 – 0.30  < 0.001

Random effects

σ2 3.29 3.29

τ00
0.14 Participants 0.15 Participants

0.06 Households 0.06 Households

ICC
0.04 Participants 0.04 Participants

0.01 Households 0.01 Households

N
375 Participants 375 Participants

107 Households 107 Households

Observations 18,071 18,071

Marginal  R2/Conditional  R2 0.236/0.281 0.333 / 0.374
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Table 3.  Summary of GLMM model for Walukuba. Significant values are in bold. *Risk ratio of malaria when 
the meteorological linear variable changes from its minimum to its maximum value.

Predictors

Walukuba

Risk ratios CI (95%) P-Value

Intercept 0.01 0.00 – 0.06  < 0.001

Sex [Male] 1.01 0.73 – 1.40 0.929

Age at visit (years) 0.98 0.92 – 1.04 0.515

Dwelling type [Traditional] 0.91 0.51 – 1.65 0.769

Meal with meat per week 1.03 0.90 – 1.18 0.658

Household wealth index [Middle] 1.18 0.62 – 2.26 0.618

Household wealth index [Poorest] 1.91 0.93 – 3.95 0.079

Number of persons living in house 0.95 0.87 – 1.04 0.247

Enhance vegetation index 2.89 0.01 – 667.58 0.702

Minimum temperatures (120 days) (˚C) 0.13* 0.02 – 0.67 0.015

Maximum temperatures (120 days) (˚C) 2.25* 0.45 – 11.32 0.327

Cumulative rainfall (120 days) (mm) 13.59* 4.25 – 43.50  < 0.001

Humidity (120 days) (kg.kg-1) 2.53* 0.72 – 8.93 0.149

Random effects

σ2 3.29

τ00 Participants 0.18

τ00 Households 0.84

ICC Participants 0.05

ICC Households 0.20

N Participants 338

N Households 117

Observations 8355

Marginal  R2/Conditional  R2 0.069/0.289

Table 4.  Summary of GLMM model for Kihihi. Significant values are in bold. *Risk ratio of malaria when the 
meteorological linear variable changes from its minimum to its maximum value.

Predictors

Kihihi

Risk ratios CI (95%) P-Value

Intercept 0.03 0.01 – 0.07  < 0.001

Sex [Male] 1.13 0.96 – 1.32 0.157

Age at visit (years) 1.01 0.98 – 1.03 0.655

Dwelling type [Traditional] 1.61 1.09 – 2.38 0.018

Meal with meat per week 0.84 0.71 – 1.00 0.053

Household wealth index [Middle] 1.73 1.17 – 2.56 0.006

Household wealth index [Poorest] 1.88 1.23 – 2.87 0.004

Number of persons living in house 1.07 1.00 – 1.15 0.054

Enhance vegetation index 12.80 4.71 – 34.81  < 0.001

Cumulative rainfall (20 days) (mm) 0.08* 0.05 – 0.12  < 0.001

Humidity (20 days) (kg.kg-1) 5.36* 3.31 – 8.67  < 0.001

Random effects

σ2 3.29

τ00 Participants 0.19

τ00 Households 0.47

ICC Participants 0.05

ICC Households 0.12

N Participants 377

N Households 107

Observations 11,667

Marginal  R2/Conditional  R2 0.120/0.267



7

Vol.:(0123456789)

Scientific Reports |        (2022) 12:11537  | https://doi.org/10.1038/s41598-022-15654-0

www.nature.com/scientificreports/

Table 5.  Summary of pooled GLMM model with and without IRS. Significant values are in bold. *Risk ratio of 
malaria when the meteorological linear variable changes from its minimum to its maximum value.

Predictors

Global model (without IRS) Global model (with IRS)

Risk ratios CI (95%) P-Value Risk ratios CI (95%) P-Value

Intercept 0.02 0.01 – 0.03  < 0.001 0.04 0.02 – 0.07  < 0.001

Sex [male] 1.15 1.04 – 1.27 0.007 1.13 1.02 – 1.25 0.020

Age at visit (years) 0.97 0.96 – 0.99  < 0.001 0.99 0.97 – 1.01 0.194

Dwelling type [Traditional] 1.28 1.03 – 1.60 0.026 1.28 1.02 – 1.59 0.029

Meal with meat per week 0.96 0.90 – 1.01 0.134 0.96 0.90 – 1.01 0.135

Household wealth index [Middle] 1.46 1.16 – 1.84 0.001 1.42 1.13 – 1.80 0.003

Household wealth index [Poorest] 1.53 1.19 – 1.96 0.001 1.53 1.19 – 1.97 0.001

Number of persons living in house 1.02 0.99 – 1.06 0.223 1.02 0.99 – 1.06 0.252

Enhance vegetation index 15.76 8.68 – 28.61  < 0.001 3.26 1.69 – 6.31  < 0.001

Minimum temperatures (90 days) (˚C) 0.08* 0.06 – 0.12  < 0.001 2.38* 1.51 – 3.76  < 0.001

Maximum temperatures (90 days) (˚C) 0.32* 0.22 – 0.46  < 0.001 0.28* 0.18 – 0.42  < 0.001

Subcounty [Nagongera] 1.10 0.86 – 1.40 0.459 1.72 1.34 – 2.21  < 0.001

Subcounty [Walukuba] 0.34 0.25 – 0.47  < 0.001 0.11 0.08 – 0.15  < 0.001

IRS [Phase 1] 0.45 0.38 – 0.55  < 0.001

IRS [Phase 2] 0.17 0.13 – 0.21  < 0.001

IRS [Phase 3] 0.03 0.02 – 0.05  < 0.001

IRS [Phase 4] 0.08 0.06 – 0.11  < 0.001

IRS [Phase 5] 0.26 0.19 – 0.34  < 0.001

Random effects

σ2 3.29 3.29

τ00
0.18 Participants 0.18 Participants

0.37 Households 0.37 Households

ICC
0.05 0.05 Participants

0.10 0.10 Households

N
1090 Participants 1090 Participants

331 Households 331 Households

Observations 38,093 38,093

Marginal  R2/Conditional  R2 0.230/0.340 0.282/0.385

Table 6.  Percentage change in risk between the 25th and the 50th, the 50th and the 100th percentile for 
nonlinear predictors. * Units are ˚C for temperatures, kg.kg-1 for humidity and mm for rainfall.

Q1* Q2* Q4* Risk at Q1 Risk at Q2 Risk at Q4
Difference in risk between Q1 and 
Q2 (%)

Difference in risk between Q2 and 
Q4 (%)

Pooled model (without IRS)

Cumulative rainfall 246.1 355.2 737.0 0.079 0.117 0.043 48.1 − 63.2

Humidity 0.0122 0.0132 0.0172 0.087 0.121 0.031 39.1 − 74.4

Pooled model (with IRS)

Cumulative rainfall 246.1 355.2 737.0 0.072 0.100 0.045 38.9 − 55.0

Humidity 0.0122 0.0132 0.0172 0.087 0.102 0.077 17.2 − 24.5

Nagongera model (without IRS)

Cumulative rainfall 246.1 355.23 737.0 0.101 0.180 0.078 78.2 − 56.7

Humidity 0.0122 0.0132 0.0172 0.144 0.194 0.021 34.7 − 89.2

Nagongera model (with IRS)

Cumulative rainfall 246.1 355.23 737.0 0.099 0.149 0.084 50.5 − 43.6

Humidity 0.0122 0.0132 0.0172 0.112 0.153 0.076 36.6 − 50.3

Kihihi model

Minimum temperature 17.2 17.3 18.4 0.219 0.215 0.447 − 1.8 107.9

Maximum temperature 25.9 26.3 28.6 0.158 0.222 0.024 40.5 -89.2
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Figure 2.  Marginal effect of environmental variables on malaria risk from global GLMM model not controlling 
for IRS (A) and controlling for IRS (B). Models without interventions include maximum and minimum 
temperature, rainfall, humidity, EVI, age at visit, sex, housing type, household wealth index, number of persons 
living in the house, number of meat meal. Models with intervention additionally include the spraying variable.

Figure 3.  Marginal effect of environmental variables on malaria risk from Nagongera model not controlling 
for IRS (A) and controlling for IRS (B). Models without interventions include maximum and minimum 
temperature, rainfall, humidity, EVI, age at visit, sex, housing type, household wealth index, number of persons 
living in the house, number of meat meal. Models with intervention additionally include the spraying variable.
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the difficulty of collecting such information. Finally, although the data are from various transmission settings, 
they are limited to three regions and a young population, which limits the generalizability of the results. Using 
data from several regions would provide a better picture of the characteristics that distinguish the regions or 
make them comparable.

Conclusion
Significant progress has been made in the fight against malaria and improved knowledge of the determinants of 
the infection and their dynamics have been key to malaria control progress. This study is one of the few to have 
considered the joint effects of vector interventions and multiple environmental factors, as well as the potential 
influence of IRS on the malaria-environment relationship. Results showed a great variability in the environment-
malaria association according to various transmission settings. Indoor residual spraying was effective in reducing 
the burden of malaria in high transmission intensity areas and model adjustment for this intervention changed 
the magnitude or direction of environmental associations with malaria. Therefore, when interventions against 
malaria have been conducted, it is important to appropriately consider it in statistical analyses to avoid incor-
rect estimates of the environmental influence. Further research should explore the possibility of using averaging 
periods with distinct pattern for each environmental variables instead of lags and consider building local models 
versus national models.

Methods
Study site and population. This study is based on data collected from a prospective cohort of children 
from three sub-counties in Uganda, that were chosen to represent various transmission settings. Walukuba is a 
peri-urban area in South Central Uganda with a low malaria transmission intensity; Kihihi is a predominantly 
rural area in southwestern Uganda with moderate malaria transmission; and Nagongera is a predominantly rural 
area in southeastern Uganda with very high transmission  intensity50. Transmission in all these areas is perennial, 
with two annual peaks following the rainy seasons (March to May and August to October).

Details on participants selection have been described  elsewhere50. Briefly, all eligible children aged 0.5–10 y 
and their primary caregiver were enrolled in August–September 2011 from 300 households (100 per site) ran-
domly selected from enumeration surveys conducted in the three sub-counties. Recruitment was dynamic such 
that all newly eligible children were enrolled during follow-up. Children from 31 randomly selected additional 
households were enrolled between August and October 2013 to replace households in which all study participants 
had been withdrawn and were followed using the same procedures described above.

Written informed consent was provided by parents/guardians. At enrolment, study participants were given 
a long-lasting insecticide net (LLIN) and underwent a standardized evaluation including a history, physical 
examination, and collection of blood for hemoglobin. Cohort participants received no incentives to participate 
other than receiving all medical care free of charge at designated study clinics open every day and were reim-
bursed for clinic travel expenses. Participants were invited for routine visits to the study clinic every 3 months, 
with the frequency of routine visits increasing to every 30 days from December 2014. Parents or guardians were 
encouraged to bring their children to the clinic any time they were ill and participants who required inpatient 
care were referred to the local district hospital. At each of these visits, blood was obtained by pricking the finger 
for a thick blood smear. Episodes of malaria were diagnosed by the detection of asexual parasites via micros-
copy with the presence of fever within the past 24 h or an elevated temperature (≥ 38.0 ℃ tympanic). Study 
participants were withdrawn from the study for (a) permanent move out of the sub-county, (b) inability to be 
located for > 4 months, (c) withdrawal of informed consent, (d) inability to comply with the study schedule and 
procedures, or (e) reaching 11 y of age. Flow diagram of participants included in the analyses can be found in 
ClinEpiDB repository at https:// cline pidb. org/ ce/ app/ record/ datas et/ DS_ 0ad50 9829e .

Malaria control interventions. Every study participant was provided a LLIN at enrolment. LLIN use was 
captured during each clinic visit and defined as whether the participant reported sleeping under an LLIN the 
previous night.

Indoor residual spraying (IRS) program has been carried out in high-transmission areas since 2006. Concern-
ing our study sites, Walukuba sub-county did not receive IRS and Kihihi sub-county received a single round of 
IRS using the pyrethroid lambda-cyhalothrin in February–March 2007, over 4 years before the launch of the 
cohort, which was therefore not considered in our analysis. IRS was introduced for the first time in Nagongera 
sub-county in December 2014. Four rounds of spraying were delivered during the study period: December 
2014–February 2015 (phase 1), June–July 2015 (phase 2), November–December 2015 (phase 3) and June–July 
2016 (phase 4). The first three rounds were administered using the carbamate bendiocarb, and the last one using 
the organophosphate Actellic CS. As determined by a previous  study37 significant resurgences of incidence began 
at week 24 for IRS 1, week 32 for IRS 3, and week 44 for IRS 4, but none was detected after round 2. This informa-
tion was used in this current study to create a factor type variable, using the start date of each spraying round as 
the starting point of each phase: no spraying, phase 1 (from IRS round 1 starting date to 24 weeks after), phase 
2 (from IRS round 2 to IRS round 3), phase 3 (from IRS round 3 to 32 weeks after), phase 4 (from IRS round 
4 to 44 weeks after), phase 5 (beyond the changepoint of round 4). The “no spraying” phase was defined as the 
reference for statistical analysis.

Environmental data. Environmental variables were extracted from remote sensing sources. Daily pre-
cipitation (mm/day) for Uganda during 1989–2020 at 0.1° spatial resolution were obtained from The Africa 
Rainfall Climatology Version 2 (ARC2)51. Daily maximum and minimum temperature datasets at 0.25° × 0.25° 
spatial resolution from years 1979–2018 and the hourly near-surface specific humidity dataset for Uganda dur-

https://clinepidb.org/ce/app/record/dataset/DS_0ad509829e
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ing 1979–2018 at 0.5° × 0.5° spatial resolution were obtained from reanalysis product—the European Centre for 
Medium-Range Weather Forecasts (ECMWF) Reanalysis 5 (ERA5). These datasets were produced by applying 
the WATCH Forcing Data methodology to the surface meteorological variables from the ERA5 reanalysis, and 
correspond to bias-corrected reconstruction of near-surface data downgraded at a resolution of around 0.5°52. 
The gridded hourly datasets were further aggregated into daily averages.

The 16-day Enhanced Vegetation Index (EVI) dataset with a spatial resolution of 0.05 × 0.05° for Uganda was 
extracted from the Moderate Resolution Imaging Spectroradiometer vegetation indices products (MOD13A1)53. 
This dataset was available from the U.S. Geological Survey (USGS: https:// modis. gsfc. nasa. gov/ data/). The EVI 
imagery products collected between January 1 to January 16 and June 10 to June 26 of each year from 2010 to 
and 2020 were downloaded to represent the vegetation coverage for the dry and rainy seasons, respectively.

Daily weather variables data were produced for the three sub-counties of interest by averaging data from par-
ishes within the sub-counties; there were 3, 14 and 7 parishes in Walukuba, Kihihi, and Nagongera, respectively. 
Daily temperatures (mean, minimum and maximum) and humidity were then averaged over 20, 30, 60, 90 and 
120 days prior to each clinic visit of each individual. Cumulative rainfall (mm) for the same time periods were 
created. Two other averaging periods for these variables were also produced for 7 and 14 days and lagged by one 
week up to 16 weeks, to perform sensitivity analyzes by comparing lags to averaging periods.

Statistical analysis. The first step of analysing the association between environmental covariates, IRS, and 
the risk of malaria positivity during multiple visits of children consisted in investigating the shape of the rela-
tionship between meteorological variables averaged for each period and malaria risk, through bivariate analy-
sis. Non-linear relationships were subsequently considered in multivariable models using natural cubic splines. 
Spearman correlation analysis was conducted to examine correlation between weather variables. Mean tempera-
tures presented relatively high correlations with maximum temperatures (> 0.7) and minimum temperatures 
(> 0.5). It was therefore chosen to only consider maximum and minimum temperatures in the subsequent ana-
lyzes.

Generalized linear mixed models (GLMMs) were created to analyze the risk of malaria in the three sub-
counties combined (pooled model) and in each sub-county separately. The models were based on a log-binomial 
distribution and accounted for repeated measures and clustering by household with random effects. Multivariable 
models included the environmental variables (maximum and minimum temperatures, rainfall, humidity, and 
EVI) with the same averaging period or lag for each of the environmental variables for a specific model, vector 
control interventions (IRS—no spraying, phase 1 to 5), age at visit, sex, housing type (traditional vs modern—
traditional houses are characterized by thatched roofs, mud walls and open eaves while, modern houses have 
metal roofs, brick or concrete walls and closed eaves), household wealth index (poorer, middle, less poor—the 
wealth index was developed in a previous study 54 based on principal component analysis of various households 
assets of this population), and the number of persons living in the house. The number of meat meals per week 
was also included as a previous study in this cohort showed that protein-energy malnutrition was associated 
with a higher incidence of clinical malaria 55. In the pooled model, sub-counties were included as fixed effect 
given the small number of sub-counties and the absence of regional predictors. Variables included in GLMMs 
are also described in Supplementary Table S1.

Environmental variables (except EVI) were scaled from 0 to 1, where 0 corresponds to the minimum observed 
value and 1 to the maximum. This standardization was done to obtain comparable estimates of the coefficients 
and to avoid convergence problems. Therefore, coefficients represent the risk ratios of malaria for a given change 
in meteorological variable from its minimum to its maximum value. In model outputs only coefficients for linear 
predictors were presented. The percent change in malaria risk between the 25th and the 50th percentile, and 
between the 50th and the100th percentile were presented for non-linear predictors.

Model selection was based on the Akaike Information Criterion (AIC)56, by considering the smallest AIC to 
identify the best models, as well as the difference (Δi) between the AICs of each of the models and the minimum 
AIC found for the set of models compared. Values of Δi higher than 7 indicate models that have poor fit relative 
to the best model, whereas values less than 2 indicate models that are equivalent to the minimum AIC  model57.

Model fit assessment was based on DHARMa residual diagnostics for hierarchical models. A comparison 
between the pooled models controlling (with IRS) and not controlling (without IRS) for residual spraying was 
also conducted to evaluate the influence of IRS on the malaria-environment relationship. To this end, the change 
in the marginal effects at the mean of the environmental variables was analyzed and the percentage difference 
between the maximum risk for a given environmental variable in the model without IRS and the maximum risk 
of this variable in the model with IRS was calculated. The same comparison was made for Nagongera models 
with and without IRS. The analyses were performed using R Studio version 3.6.3 (https:// www.r- proje ct. org/). 
Marginal effects at the mean were produced with the effect  package58 which allowed predictor effect plots based 
on 50 points covering the observed range of values of the focal predictor (i.e. a given environmental variable), 
while the other predictors are kept constant at their mean  value59. The mgcv  package60 was used to analyze 
nonlinear relationships.

Ethical approval. Ethical approval for the cohort study was granted by the Makerere University School of 
Medicine Research and Ethics Committee, the Uganda National Council for Science and Technology (UNCST), 
the London School of Hygiene & Tropical Medicine Ethics Committee, the Durham University School of Bio-
logical and Biomedical Sciences Ethics Committee, the University of California, San Francisco Committee on 
Human Research and The University of Pennsylvania. Written informed consent to participate in the study was 
obtained from all study participants (or their designate). The cohort study was conducted according to the prin-
ciples of the Declaration of Helsinki, UNCST National Guidelines for Research involving Humans as Research 

https://modis.gsfc.nasa.gov/data/
https://www.r-project.org/
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Participants, National and International Ethical Guidelines for Biomedical Research Involving Human as par-
ticipants, the Belmont Report, and the European Convention on Human Rights and Biomedicine. The present 
study used secondary data from the cohort study, obtained ethical approval from the School of Public Health of 
the Université de Montréal Ethics Committee, and complies with to the Tri-Council Policy Statement: Ethical 
Conduct for Research Involving Humans.

Data availability
Cohort data are available in ClinEpiDB repository at https:// cline pidb. org/ ce/ app/ record/ datas et/ DS_ 0ad50 
9829e . Environmental data were accessed through MODIS (https:// modis. gsfc. nasa. gov/ data/) and Corperni-
cus (https:// clima te. coper nicus. eu/).
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