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Abstract

Parasitic nematodes have evolved powerful immunomodulatory molecules to enable their

survival in immunocompetent hosts by subverting immune responses and minimizing patho-

logical processes. One filarial molecule known to counteract host immune responses by

inducing IL-10 and regulatory macrophages in mice is filarial cystatin. During a patent filarial

infection monocytes encounter microfilariae in the blood, an event that occurs in asymptom-

atically infected filariasis patients that are immunologically hyporeactive. The microfilarial

larval stage was formerly shown to induce human regulatory monocytes and macrophages.

Thus, here we aim was to determine how filarial cystatin of the human pathogenic filaria Bru-

gia malayi (BmCPI-2) contributes to immune hyporesponsiveness in human monocytes and

macrophages elicited by microfilaria. For this purpose, filarial cystatin was depleted from

microfilarial lysate (Mf). Detecting the immunomodulatory potential of cystatin-depleted

Mf revealed that IL-10, but not IL-8 and IL-6 induction in monocytes and macrophages is

dependent on the presence of cystatin. In addition, the Mf-induced expression of the regula-

tory surface markers PD-L1 and PD-L2 in human monocytes, but not in macrophages, is

dependent on cystatin. While Mf-treated monocytes result in decreased CD4+ T-cell prolifer-

ation in a co-culture assay, stimulation of T-cells with human monocytes treated with cysta-

tin-depleted Mf lead to a restoration of CD4+ T-cell proliferation. Moreover, IL-10 induction

by cystatin within Mf was dependent on p38 and ERK in macrophages, but independent of

the ERK pathway in monocytes. These findings indicate that filarial nematodes differentially

trigger and exploit various signaling pathways to induce immunomodulation in different mye-

loid cell subsets.

Introduction

Helminths play a central role in causing infections among communities living in tropical and

subtropical regions, and about one third of the world population is infected with one or more

parasitic helminths[1]. The two major classes of helminths are nematodes and platyhelminths,

both of which contain causative agents of a variety of acute debilitating diseases and chronic

conditions[2]. In general, helminth infections are well characterized by strong Th2 immune

responses, and are able to down-regulate host immune responses[1,3,4].
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Lymphatic filariasis (LF) is one of seventeen Neglected Tropical Diseases (NTDs) classified

by the World Health Organization (WHO)[5], and is the third leading parasitic cause of morbid-

ity and disability worldwide. LF is normally associated with varied clinical outcomes and accord-

ing to WHO Global Health Estimates (GHE), in 2015 alone LF contributed close to 2 million

Disease Adjusted Life Years (DALYs)[6]. The causative agents of human LF are three species of

parasitic nematodes, namely Wuchereria bancrofti, Brugia malayi, and Brugia timori. Over 120

million people around the world are infected with either of these parasites and about 40 million

people suffer from disfigurement and incapacitation for work as a result of LF-induced symp-

toms like lymphedema, elephantiasis or hydrocele[7]. The lifecycle of these filarial worm species

comprises of both mosquito (Aedes, Anopheles, Culex or Mansonia spp.) and human stages.

Infection with the parasite is initiated when an infected mosquito deposits the infective larvae

stage on the skin of a human host during a blood meal. The parasite larvae then reach the affer-

ent lymphatic vessels, where they are able to undergo two moulting stages and eventually mature

to adult worms. After mating, females start producing microfilariae, which are then able to cir-

culate in the peripheral blood of the human host. During a subsequent blood meal the mosquito

vector is therefore able to pick up circulating blood microfilariae, thus initiating the development

of the infective L3 stage larvae and completing the transmission cycle of the parasite.

The host-parasite interaction in LF often results in a chronic infection associated with a

wide clinical spectrum, characterized by functional dysregulation of both the innate and the

adaptive immune responses[8]. Three of the key clinical manifestations of this disease include

asymptomatic infection, despite the presence of the larval blood stages (microfilariae) caused

by hyporesponsiveness towards the parasite, chronic pathology with hydrocele, or elephantia-

sis, with or without active infection displaying a Th1/Th17-biased immune response, and

endemic normality, where the host is putatively immune against the parasite.

The longevity of helminth parasites in the mammalian host is primarily determined by

their capacity to modulate the immune system. Immunomodulatory helminth-derived prod-

ucts such as protease inhibitors[9–14] and homologues of mammalian cytokines and chemo-

kines[15–18] induce a modified Th2-type immune response, which creates a beneficial

microenvironment for the parasite[19,20]. Cystatins, a family of cysteine protease inhibitors,

are known to regulate cysteine protease functions such as protein catabolism, antigen process-

ing, inflammation, dystrophy and metastasis in viruses, bacteria, protozoa, fungi, plants and

mammals [21–24]. Helminth cystatins are highly expressed protease inhibitors and they have

been shown to possess strong immunomodulatory properties. They have a dual function, due

to their ability to inhibit both parasite and host cysteine proteases. Cystatins are reversible

competitive inhibitors of cysteine proteases and control protein processing and turnover,

thereby inhibiting antigen processing[10,11], leading to diminished T cell priming. Secondly,

they induce the immunosuppressive cytokine IL-10[9] and nitric oxide-producing regulatory

macrophages[25], which can result in the inhibition of T cell proliferation, as shown in previ-

ous studies on cystatins from the filarial rodent parasites Acanthoceheilonema viteae [9] and

Litomosoides sigmodontis [14], and the human filarial nematode Onchocerca volvulus [12].

We could show in previous studies that monocytes and macrophages are target cells of filar-

ial cystatins in vitro and in vivo[12,13]. Moreover, monocytes from asymptomatic individuals

harbouring microfilariae from Brugia malayi upregulate programmed-death ligand 1 (PD-L1),

IL-10 and IL-8, which is recapitulated in experiments using human monocytes and macro-

phages from non-endemic healthy donors stimulated with microfilarial lysate (Mf) in vitro.

Importantly, macrophages differentiated in the presence of Mf lysate respond poorly to LPS,

and Mf-stimulated monocytes are able to suppress CD4+ T cell functions[26]. This is in line

with the finding that patent lymphatic filariasis patients have impaired monocyte and CD4+ T

cell function, reflected by their inability to produce inflammatory cytokines in response to
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activating stimuli[27,28], while elevated levels of IL-10 are observed in asymptomatic patients

[26,29]. The anti-inflammatory cytokine IL-10 plays a major role in regulating inflammatory

diseases such as allergies and autoimmune disorders[30], while IL-8 is an important chemo-

kine with a key role in the pathogenesis of filarial diseases[31] and it displays elevated levels in

patients with and without circulating microfilariae[32].

There are three known cystatins from the human filarial nematode Brugia malayi (BmCPI-

1, -2 and -3). Among these three types, BmCPI-2 is expressed both in the vector and in the

mammalian life stages while BmCPI-1 and -3 are exclusively expressed in the mosquito stages

of the parasite [10,33]. Most importantly, BmCPI-2 is released in greater amounts by Brugia
malayi microfilaria compared to adults stages[34]. This prompted us to investigate the immu-

nomodulatory potential of BmCPI-2 on human monocytes and macrophages. Furthermore,

we tried to determine the contribution of Brugia malayi cystatin in Mf-induced immunomo-

dulation of human monocytes and macrophages, and to further demonstrate the key host sig-

nalling events used by BmCPI-2 and Mf to modulate these host cell types. In the present study,

we demonstrate that the expression of IL-10 by Mf-stimulated monocytes and macrophages is

dependent on cystatins. Moreover, we show that IL-10 expression in monocytes, but not in

macrophages, is independent of ERK signalling, suggesting different pathways of IL-10 induc-

tion in these cell populations.

Materials and methods

Human blood samples

Human blood cells were derived from the German Red Cross and all experiments were

approved by the ethics committee of the Charite University, Berlin, Germany.

Filarial lysate preparation

Live Brugia malayi microfilariae were kindly donated by the NIAID/NIH Filariasis Research

Reagent Resource Center in Athens, Georgia, USA. The worms were initially washed twice in

RPMI medium containing 1% glucose, 200 U/ml penicillin and 200 μg/ml streptomycin, and

incubated with the same medium at 37˚C and 5% CO2 for 24h, followed by washing in phos-

phate buffered saline (PBS). To prepare the filarial lysate, microfilariae worms were homoge-

nised directly in a glass homogeniser and ultrasonicated on ice at an intensity of 10% for 3

min. The homogenate was centrifuged at 12,000 rpm at 4˚C for 10 min and sterile filtered

through a 0.22 μm filter. Protein concentration from the filtered homogenate was determined

by using the Pierce™ BCA protein assay kit (Thermo Scientific, Rockford, IL, USA), as per the

manufacturer’s guidelines.

Immunoprecipitation of Brugia malayi cystatin

An immunoprecipitation technique was performed to deplete Brugia malayi cystatin from

protein mixtures of microfilarial lysate (Mf) by using rabbit polyclonal antibodies raised

against BmCPI-2, recombinantly expressed in E. coli. The assay was performed using an

immunoprecipitation kit from Novex (Thermo Fisher Scientific, Waltham, MA, USA), as per

the manufacturer’s guidelines. Briefly, 50 μl of protein G-coupled Dynabeads1 were added to

the buffer containing anti-BmCPI-2 antibodies (1:1000). After 10 min incubation, the superna-

tant was removed and beads were washed twice. Then, 100–150 μl of Mf was added to the

beads. After 10–15 minutes incubation, the beads were removed, cystatin-depleted Mf was col-

lected and the protein concentration was determined using the Pierce™ BCA protein assay kit

(Thermo Scientific, Rockford, IL, USA), as per the manufacturer’s guidelines.
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Cloning of the BmCPI-2 sequence into the LEXSY expression system

and purification of BmCPI-2

The nucleotide sequence of BmCPI-2 was amplified from Brugia malayi microfilaria cDNA

using specific primers (forward: 5’-gTCgACgCTTTgATTCATCgACgAg-3’, reverse:

5‘-ggTACCTACTgACgAgAgTACCTTTg-3‘) including restriction sites for cloning the

sequence into the pLEXSY-sat2 plasmid of the LEXSYcon2 Expression Kit (Jena Bioscience

GmbH, Jena, Germany). The amplified sequence did not include the coding region for the spe-

cific signal peptide of BmCPI-2. Cloning procedures followed the manufacturer’s instructions

and resulted in a monoclonal LEXSY cell strain expressing and secreting BmCPI-2 with a C-

terminal hexa-histidine tag into the culture medium. Purification of the protein was performed

via affinity chromatography using HisTrap™excel columns and the ÄKTA™ pure chromatogra-

phy system (GE Healthcare Bio-Science AB, Uppsala, Sweden) with a non-denaturing proto-

col, with imidazole as a competitive eluent. The purified protein was dialysed against PBS and

sterile filtered. The protein concentration was determined using the Pierce™ BCA Protein

Assay Kit (Pierce Biotechnology, Rockford, USA).

Immunoblot analysis

SDS-PAGE was performed in 12% separating gel with 6% stacking gel. 15 μg of protein from

each sample was applied per lane. Proteins were transferred to a nitrocellulose membrane for

immunodetection. After blocking with 5% non-fat dry milk in TBS-Tween, membranes were

incubated with rabbit anti-BmCPI-2 (1:50,000), followed by incubation with horseradish per-

oxidase conjugated anti-rabbit IgG (1:15,000) (Cell signalling, Danvers, MA, USA). Signals

were detected by a chemiluminescence reaction using the ECL kit (Amersham, GE Healthcare

Europe, GmBH). All bands were visualized by an enhanced chemiluminscence system (PEQ-

LAB, Erlangen, Germany).

Protein detection by silver staining

Silver staining was performed to detect proteins separated in SDS-PAGE by using Thermo

Scientific Pierce Silver Stain kit (Thermo scientific, Rockford, IL, USA) using the manufactur-

er’s protocol. Briefly, 15 μg of protein from each sample was applied per lane in SDS-PAGE.

After running the gel for 1 h, the gel was washed twice with ultrapure water and then fixed

twice by adding 30% ethanol and 10% acetic acid for 15 min each. After 30 min of fixation, the

gel was washed twice, first with 10% ethanol then with ultrapure water. After the washing step,

the gel was sensitized quickly for 1 min using silver stain sensitizer then washed twice with

ultrapure water. The gel was then incubated for 30 min with a silver stain enhancer and

washed briefly with ultrapure water. The gel was developed using silver stain developer solu-

tion and the development procedure was stopped immediately after the desired band intensity

was achieved using 5% acetic acid. After the addition of stop solution, the gel was washed

briefly with ultrapure water and incubated for 10 min at room temperature.

Isolation of CD14+ monocytes and differentiation protocol for monocyte-

derived macrophages from human PBMCs

Peripheral blood mononuclear cells (PBMCs) were isolated from buffy coats by density gradi-

ent centrifugation using Pancoll human (PAN Biotech, Aidenbach, Bayern, Germany). To

positively select for CD14+ monocytes, 200 μl of anti-CD14 beads (Miltenyi Biotec, Bergisch-

Gladbach, Germany) were added to 5-10x108 PBMCs for 20 min and cells were separated by

an autoMACS classic (Miltenyi Biotec, Bergisch-Gladbach, Germany) using the program

Filarial cystatin induced immunomodulation in monocytes
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‘Possel’. Macrophages were generated in vitro by culturing CD14+ monocytes in complete

RPMI containing 10 ng/ml human M-CSF in 6-well cell culture plates at a cell concentration

of 0.33 x 106/ml and a density of 0.1x106/cm2 for 6 days, at 37˚C and 5% CO2.

Cell culture and stimulation of monocytes and macrophages

The CD14+ monocytes and monocyte-derived macrophages were stimulated with parasite

material or recombinant BmCPI-2 and kept for 24 h at 37˚C and 5% CO2. The supernatant

was collected after 24 h and stored at -20˚C for further analysis. In experiments including

inhibitors, the inhibitors were added to the cell culture 60 min before stimulation. The follow-

ing inhibitors were used in our study: p38 inhibitor (SB203580), and MEK1/2 inhibitor

(U0126) (both from Calbiochem, Merck, Darmstadt, Germany).

Flow cytometry

Monocytes and macrophages were analysed for surface expression of PD-L1 and PD-L2. Cells

were treated with FcR blocking reagent (Miltenyi Biotec, Bergisch-Gladbach, Germany),

stained with fixable viability dye eFluor 780 (eBiosciences, San Diego, USA) and additionally

stained for the following markers: anti-274-PE (clone MIH1), anti-273-PE (clone MIH18).

Fixed cells were acquired using the FACS Canto II (BD, Franklin Lakes, USA) and analysed

using FlowJo, version 10.2 (Tree Star, Ashland USA).

Co-culture of CD4+ T cells and monocytes

To perform the co-culture experiments for a functional assay of T cell proliferation, CD4+ T

cells were isolated from PBMCs using the CD4+ T cell microbeads (Miltenyi Biotec, Bergisch-

Gladbach, Germany) according to the manufacturer’s instructions and sorted on an auto-

MACS classic (Miltenyi Biotec, Bergisch-Gladbach, Germany) using the program ‘Possel’. The

autologous CD4+ T cells were stained for CFSE and rested in complete RPMI for 24 h at 37o C

and 5% CO2.

Monocytes were left unstimulated or stimulated with 20 μg/ml of Mf or cystatin-depleted

Mf lysate for 24 h in a 5% CO2 incubator at 37o C in 24 well plates. 5x105 CFSE-labelled CD4+

T cells were co-cultured with 1x105 stimulated monocytes in 96 well flat bottom plates in the

presence of 2 μg/ml soluble anti-CD3 (OKT3, eBioscience, San Diego, USA). After 5 days, the

cells were washed and stained with fixable viability dye eFluor 780 (eBioscience, San Diego,

USA) and anti-CD4-PerCP (clone RPA-T4, BioLegend, San Diego, USA). Fixed cells were

acquired using the FACS Canto II (BD, Franklin Lakes, USA) and analysed using FlowJo, ver-

sion 10.2 (Tree Star, Ashland USA).

Cytokine detection by ELISA

IL-10, IL-8, IL-6 and TNFα proteins were measured using commercial enzyme-linked immu-

nosorbent assay (ELISA) kits (eBioscience, San Diego, CA, USA). IL-12p40 was also measured

using an ELISA kit (BioLegend, San Diego, CA, USA). All samples were measured in dupli-

cates. Absorbance was read at 450nm with background wavelength subtracted at 570nm using

a Synergy HT plate reader (BioTek, Winooski, VT, USA).

Statistical analysis

All statistical analyses were performed using GraphPad Prism version 7.0 (GraphPad Software,

Inc., CA, USA). Comparisons between groups were performed using the Wilcoxon signed

rank test.
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Results

BmCPI-2 from Brugia malayi induces IL-10, IL-8, IL-6 and PD-L1/L2

We have previously shown that Brugia malayi microfilarial lysate (Mf) induces a regulatory

subset of human monocytes expressing IL-10 and PD-L1 leading to inhibition of CD4+ T-cell

proliferation and cytokine secretion[26]. In the present study, we hypothesized that the

observed immunomodulation seen might be due to the presence of Brugia malayi cystatin, as

the immunomodulatory potential of cystatin has been demonstrated in murine macrophages

[9,14]. First, to determine the potential of BmCPI-2 to induce a regulatory phenotype in

human monocytes and macrophages, we tested if BmCPI-2 is able to induce inflammatory

and anti-inflammatory cytokines and programmed death-ligands in human monocytes and

macrophages of healthy blood donors in a similar fashion as Mf[26]. To this end, we used

recombinant BmCPI-2 (rBmCPI-2) that was expressed in a eukaryotic protein expression sys-

tem. rBmCPI-2 stimulated monocytes to secrete IL-10, IL-8 and IL-6 in a dose-dependent

manner, while IL-12p40 and TNFα were not induced (Fig 1A). Likewise, rBmCPI-2 induced

IL-10, IL-8 and IL-6 in a similar fashion in human macrophages (Fig 1B). The observed

increase in IL-12p40 production in human macrophages was not significant between unstimu-

lated cells and cells stimulated with 20 μg/ml of rBmCPI-2 (Fig 1B). Moreover, rBmCPI-

2-stimulated monocytes and macrophages showed significant up-regulation of PD-L1 and

PD-L2 (Fig 2).

Fig 1. Brugia malayi cystatin-2 (rBmCPI-2) induces IL-10, IL-8 and IL-6 in human monocytes and

macrophages. Human monocytes (A) and macrophages (B) were stimulated with different concentrations

[μg/ml] of recombinant BmCPI-2 for 24h. Cytokines in the supernatant were detected by ELISA. Data are from

12 donors and shown as mean ±SEM. Statistical analysis was done using the Wilcoxon matched-pairs signed

rank test in reference to the unstimulated control. *p<0.05, **p<0.01.

https://doi.org/10.1371/journal.pone.0188138.g001
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Induction of IL-10 and PD-L1 and PD-L2 in human monocytes by Brugia

malayi microfilarial lysate is dependent on cystatins

To determine if IL-10 production by microfilarial lysate (Mf) in human monocytes and macro-

phages is dependent on the presence of filarial cystatin, we depleted all three forms of cystatins

from Mf (termed here ΔMf) by immunoprecipitation using polyclonal antibodies raised

against recombinant BmCPI-2. BmCPI-2 was indicated by a black arrow in Fig 3A. Successful

depletion of Brugia malayi cystatins from Mf was obtained without altering the overall protein

composition of Mf (Fig 3A and 3B). Monocytes and macrophages stimulated with ΔMf did no

longer produce significant amounts of IL-10, similar to unstimulated controls, in contrast to

non-cystatin-depleted-Mf-stimulated monocytes (Fig 3C) and macrophages (Fig 3D), which

induced significant amounts of IL-10. These data suggest that IL-10 induction by Mf is strictly

cystatin-dependent in monocytes and macrophages.

On the other hand, Mf-induced IL-8 was not strictly dependent on cystatins, since IL-8 lev-

els were lower but not significantly different in ΔMf- versus Mf-stimulated monocytes and

macrophages. Similarly, Mf-induced IL-6 in monocytes was not dependent on cystatins,

whereas in macrophages Mf did not induce IL-6 (Fig 3C and 3D). Notably, our results show

that Mf-induced expression of PD-L1 and PD-L2 in monocytes is partially dependent on

cystatins (Fig 4A). On the other hand, expression of PD-L1 in human macrophages was not

dependent on cystatins (Fig 4B). Next, we employed a functional assay for CD4+ T-cell prolif-

eration using autologous monocytes treated with Mf or ΔMf and co-cultured both cell types

with anti-CD3. We observed a significant reduction of proliferation when T-cells were co-

Fig 2. rBmCPI-2 induces expression of PD-L1 and PD-L2 on human monocytes and macrophages. Monocytes (A) or

macrophages (B) were left unstimulated or stimulated for 24 h with 20 μg/ml of recombinant BmCPI-2 (n = 12). Surface

expressions of PD-L1 and PD-L2 were measured by flow cytometry. Histograms in the upper panel show representative plots of

unstained (grey tinted), unstimulated (grey line) and stimulated cells (black line). Bar graphs in the lower panel show the mean

fluorescence intensity (MFI). All data are represented as mean ±SEM. P values were calculated using Wilcoxon signed-rank

test. **p<0.01, ***p<0.001.

https://doi.org/10.1371/journal.pone.0188138.g002
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cultured with Mf-treated monocytes compared to unstimulated monocytes as described before

[26]. Strikingly, when T-cells were co-cultured with ΔMf-stimulated monocytes proliferation

was not significantly altered with respect to co-culture with unstimulated monocytes. More-

over, ΔMf-stimulated monocytes significantly restored T-cell proliferation compared to Mf-

stimulated monocytes (Fig 4C).

Hence, IL-10 induction by Mf, but not IL-8 or IL-6, appears dependent on cystatins in both

myeloid cell types. Furthermore, PD-L1 and PD-L2 expression of monocytes but not macro-

phages is dependent on cystatins. Most importantly, cystatins mediate the inhibitory potential

of monocytes, which leads to reduced CD4+ T-cell proliferation.

Differential induction of IL-10 by rBmCPI-2-stimulated myeloid cell

population

Previous studies indicate that the increased production of IL-10 in murine macrophages by

cystatin from the rodent filarial nematode Acanthocheilonema viteae was critically dependent

on two mitogen-activated protein kinases, ERK and p38[35]. Nevertheless, the immune

Fig 3. Brugia malayi microfilaria lysate induced IL-10 is dependent on the presence of filarial cystatins. Western

Blot (A) and Silver gel (B) showing Brugia malayi microfilaria lysate (Mf) and microfilaria lysate depleted of filarial cystatins

(ΔMf). The black arrow indicates BmCPI-2. C) Human monocytes, and D) monocyte-derived macrophages were stimulated

with 20 μg/ml of Mf or ΔMf for 24 h. Cytokines in the supernatant were detected by ELISA. Data are from 8–9 donors and

shown as mean ±SEM. Statistical analysis was done using the Wilcoxon matched-pairs signed rank test. *p<0.05,

**p<0.01.

https://doi.org/10.1371/journal.pone.0188138.g003
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signalling events exploited by human filarial cystatin to induce IL-10 in human monocytes and

macrophages is still elusive. This directed us to investigate the signalling events activated or

altered by rBmCPI-2 and Mf, and leading to IL-10 and IL-8 production in human monocytes

and macrophages. To this end, we used various concentrations of inhibitor molecules known

to be involved in the regulation of IL-10 production[35].

Firstly, we determined the role of the MEK-dependent signalling pathway to induce IL-10

and IL-8 in rBmCPI-2-stimulated human monocytes and macrophages. Monocytes (Fig 5A)

and macrophages (Fig 5B) were incubated with rBmCPI-2 for 24 h in the presence of various

concentrations U0126, which is a specific inhibitor of MAP kinase kinases, MEK1 and MEK2,

and thus ERK activation. Notably, rBmCPI-2-induced-IL-10 production was independent of

ERK signalling, as MEK inhibition did not alter the production of IL-10 in human monocytes

(Fig 5A), a finding also seen with Mf-stimulated monocytes (S1 Fig). In contrast, rBmCPI-

2-induced IL-10 production in macrophages was dependent on ERK signalling, as we have

observed a significant reduction of IL-10 levels in MEK inhibition (Fig 5B). Moreover, we

Fig 4. Mf-induced PD-L1 and PD-L2 on monocytes is dependent on the presence of filarial cystatins. A) Human

monocytes, and B) monocyte-derived macrophages were stimulated with 20 μg/ml of Mf or ΔMf for 24 h. Surface expression of

PD-L1 and PD-L2 was measured by flow cytometry. Bar graphs show the mean fluorescence intensity (MFI). Data are from 16

(monocytes) and 9 (macrophages) donors, respectively, and shown as mean ±SEM. C) Flow cytometric analysis of CD4+ T cells.

5x105 CFSE-labelled CD4+ T cells were co-cultured for 5 days with 1x105 monocytes left either unstimulated or stimulated for 24

h with 20 μg/ml Mf or 20 μg/ml ΔMf. Graph shows the percentage of CD4+ T cells that divided. Data are from 9 donors and

shown as mean ±SEM. Statistical analysis was done using the Wilcoxon matched-pairs signed rank test. *p<0.05, **p<0.01,

***p<0.001.

https://doi.org/10.1371/journal.pone.0188138.g004

Fig 5. Induction of IL-10, but not IL-8 by rBmCPI-2 in human monocytes is independent of ERK.

Human monocytes (A) and macrophages (B) were stimulated with 20 μg/ml of rBmCPI-2 for 24 h with various

concentrations of MEK1/2 inhibitor. Cytokines in the supernatants were detected by ELISA. Data are from 7–9

donors and shown as mean ±SEM. Statistical analysis was done using the Wilcoxon matched-pairs signed

rank test. Values statistically different from the unstimulated control are depicted as § p<0.05 and §§ p<0.01.

Values statistically different from rBmCPI-2-stimulated monocytes are depicted as * p<0.05 and **p<0.01.

https://doi.org/10.1371/journal.pone.0188138.g005
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observed a significant dose-dependent reduction of IL-8 levels in rBmCPI-2 (Fig 5A) stimu-

lated monocytes and macrophages in the presence of the ERK inhibitor MEK1/2. This finding

suggests that IL-10 induction by rBmCPI-2 and Mf is differentially regulated in human mono-

cytes and macrophages.

Induction of IL-8 and IL-10 by rBmCPI-2-stimulated myeloid cell

population is dependent on p38

We next investigated the possible involvement of the p38-signalling pathway triggered by

rBmCPI-2 in inducing IL-10 and IL-8 production in both human monocytes and macro-

phages. Inhibition of signalling pathways dependent on p38 by addition of the inhibitor

SB203580 resulted in a significant reduction of IL-10 and IL-8 in both rBmCPI-2 and Mf-stim-

ulated monocytes and macrophages (Fig 6A and 6B, S2 Fig).

Discussion

The contribution of helminth-derived products towards the modulation of host immune

responses has been addressed by several studies, and cystatin is one such secreted protein of

filarial nematodes with strong immunomodulatory capacities[19,36]. With the present study

we aimed to show the ability of Brugia malayi filarial cystatin to induce human monocytes and

macrophages with a regulatory phenotype and function.

First, we demonstrated that the nematode immunomodulatory protein BmCPI-2 can sig-

nificantly induce IL-10, IL-8 and IL-6, but not TNFα and IL-12p40 in human monocytes (Fig

1A) and macrophages (Fig 1B). Additionally, BmCPI-2 induced the expression of PD-L1 and

PD-L2 on the surface of human monocytes and macrophages, suggesting a regulatory mono-

cyte and macrophage phenotype in vitro (Fig 2). This is in line with our published data on

human monocytes and macrophages stimulated with whole lysate of Brugia malayi microfi-

laria (Mf), where monocytes and macrophages develop a characteristic regulatory phenotype

with high expression of IL-10 and PD-L1/L2, and inhibit CD4+ T cell function[26]. Therefore,

we then tested whether the observed immunomodulation seen in human monocytes and mac-

rophages by Mf is due to the presence of cystatin. To that end we analysed the modulatory

capacity of Mf that was depleted of cystatin (ΔMf). Interestingly, using polyclonal serum raised

Fig 6. Induction of IL-10 and IL-8 by rBmCPI-2 in human monocytes and macrophages is dependent

on p38. Human monocytes (A) and macrophages (B) were stimulated with 20 μg/ml of rBmCPI-2 for 24 h with

various concentrations of p38 inhibitor. Cytokines in the supernatants were detected by ELISA. Data are from

7–9 donors and shown as mean ±SEM. Statistical analysis was done using the Wilcoxon matched-pairs

signed rank test. Values statistically different from the unstimulated control are depicted as § p<0.05 and
§§ p<0.01. Values statistically different from BmCPI-2-stimulated monocytes are depicted as * p<0.05 and

**p<0.01.

https://doi.org/10.1371/journal.pone.0188138.g006
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against recombinantly expressed BmCPI-2, the protocol resulted in the depletion of all cysta-

tins formerly detectable in Mf. Our results show that Mf-induced IL-10, but not IL-8 and IL-6

production in monocytes and macrophages is due to the presence of cystatin (Fig 3C and 3D).

This is in agreement with previous studies on the ability of filarial cystatins to induce IL-10

production in murine macrophages[9,37] and human monocytes[12]. Additionally, expres-

sion of PD-L1 and PD-L2 in monocytes but not in macrophages is dependent on the presence

of cystatin in Mf. Finally, both, the reduced expression of IL-10 and PD-L1/2 in monocytes,

which is observed in Mf depleted of cystatins, might contribute to the observed restoration of

CD4+ T-cell proliferation (Fig 4).

Recently, many studies have been published addressing the therapeutic potential of cystatin

in inflammatory diseases due to its anti-inflammatory activity. The modulation of innate

immune cells and the profound suppression of the host immune system due to a characteristic

anti-inflammatory milieu with increased levels of IL-10 and transforming growth factor

(TGF)-β in chronic helminth infections can protect against allergic diseases[38–40]. The

importance of IL-10 and of macrophages in suppressing the allergic effects has been described

in a murine model of ovalbumin-induced allergic airway hyper-reactivity and DSS-induced

colitis applying treatment with filarial cystatin[13]. Moreover, filarial cystatin reduces Respira-

tory Syncytial Virus (RSV)-inducing immunopathology by inducing high levels of IL-10 pro-

duction by CD4+ T cells in the airways and lungs of mice[41]. Cystatin from the nematode

parasite Ascaris lumbricoides reduces inflammation in a mouse model of DSS-induced colitis

by increasing the expression of IL-10, TGFβ with simultaneous reduction of IL-6 and TNFα
[42]. Collectively, the studies described here indicate that cystatins from various nematodes

not only function as immunomodulators in the infection setting but also have potential as

therapeutic agents for inflammatory diseases. Our results highlight the unique role of cystatin

to induce IL-10 in human monocytes and macrophages stimulated with microfilarial products.

Also cystatin-dependent expression of PD-L1 and PD-L2 in human monocytes suggests that

cystatin from microfilariae is partially involved in the immune regulation process and thus

could contribute to asymptomatic infection through PD-L1:PD-1 dependent suppression of

CD4+ T cell function[26,43–45]. Since circulating microfilariae in asymptomatically infected

individuals will readily come into contact with blood monocytes, the modulation of this partic-

ular immune cell is vital for the parasite’s immune evasion strategy.

Similar to our previously published results on Mf [26], stimulation of monocytes and mac-

rophages with whole Mf resulted in the production of significantly higher levels of IL-8 com-

pared to unstimulated controls. The significant elevation of IL-8 by Mf-stimulated human

monocytes and macrophages, however, was not dependent on cystatin (Fig 3C and 3D). Thus,

the effect by Mf could be attributed to the presence of other molecules in Mf that are also able

to induce IL-8. So far there are only a few studies revealing the potential of filarial products to

induce IL-8, such as lipoproteins from Wolbachia, an obligate intracellular symbiont of Brugia
malayi, which was shown to induce IL-8 in a TLR2/6-dependent manner[46]. While infective

L3 larvae are not able to induce IL-8 in dendritic cells (DC) [47] or epithelial cells[48], it is

expressed in a co-culture of DC and keratinocytes[49]. In contrast to infective larvae, live Mf

and excretory/secretory products of female worms can induce the expression of IL-8 in human

DC[50] and monocytes[51]. Previously, and also in the present study, we could show signifi-

cant elevation of IL-6 by Mf in monocytes only, but not in macrophages. Although we see an

increased production of IL-6 in Mf-treated monocytes (Fig 3C), IL-6 was not significantly

reduced in monocytes that were treated with ΔMf. This result suggests that other molecules

from whole Mf lysate were responsible for the elevated levels of IL-6 by monocytes.

Furthermore, we studied the immune signalling events exploited by rBmCPI-2 leading to

the production of IL-10 and IL-8 in human monocytes and macrophages. It has previously
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been demonstrated that ES-62, an excretory-secretory product of the rodent filarial nematode

Acanthocheilonema viteae induces tyrosine phosphorylation of glycoproteins in murine mac-

rophages[52] and modulates the activation of MAP kinases (ERK, p38 and JNK), thereby

regulating cytokine production[53,54]. A study from our own group revealed that IL-10 pro-

duction in murine macrophages triggered by cystatin from A. viteae was tyrosine kinase sensi-

tive, and depended on activation of both MAPK[35]. In addition, LPS-stimulated microglia of

mice in vitro showed that increased IL-10 mRNA expressions by filarial cystatin was depen-

dent on ERK signalling[55]. In agreement with this data, our results indicate a significant

reduction of rBmCPI-2- or Mf-induced IL-10 in macrophages, suggesting roles for ERK and

p38 in these cells. On the other hand, IL-10 induction by rBmCPI-2 or Mf in human mono-

cytes was independent of ERK signalling, indicating a differential induction of IL-10 in this

myeloid cell population. This suggests that filarial products are able to differentially exploit

and/or trigger the signalling events in human monocytes and macrophages, leading to induc-

tion of IL-10. Moreover, while IL-10 was independent of the ERK pathway in human mono-

cytes only, IL-8 production was dependent on both MAPK kinases (ERK and p38) in

monocytes (Figs 5A and 6A) and macrophages (Figs 5B and 6B).

This is the first study addressing the contribution of filarial cystatin within microfilariae,

which circulate in the blood, to induce IL-10 in monocytes. Overall, our results show that IL-10

and IL-8 induction by human filarial cystatin in human monocytes and macrophages is depen-

dent on p38, while only IL-10 induction in macrophages is additionally dependent of ERK

signalling. Moreover, Mf-induced IL-10 production, but not IL-8 or IL-6 induction in human

monocytes and macrophages is dependent on cystatin, suggesting that while cystatin is sufficient

and necessary for IL-10 induction, factors other than cystatin are responsible for IL-8 and IL-6.

Supporting information

S1 Fig. Induction of IL-10, but not IL-8 by microfilarial lysate (Mf) in human monocytes is

independent of ERK. Human monocytes (A) and macrophages (B) were left unstimulated or

stimulated with 20 μg/ml of Mf for 24 h with various concentrations of MEK1/2 inhibitor.

Cytokines in the supernatants were detected by ELISA. Data are from 7–9 donors and shown

as mean ±SEM. Statistical analysis was done using the Wilcoxon matched-pairs signed rank

test. Values statistically different from the unstimulated control are depicted as § p<0.05 and §§

p<0.01. Values statistically different from Mf-stimulated monocytes are depicted as � p<0.05

and ��p<0.01.

(TIF)

S2 Fig. Induction of IL-10 and IL-8 by Mf in human monocytes and macrophages is depen-

dent on p38. Human monocytes (A) and macrophages (B) were left unstimulated or stimu-

lated with 20 μg/ml of Mf for 24 h with various concentrations of p38 inhibitor. Cytokines in

the supernatants were detected by ELISA. Data are from 7–9 donors and shown as mean

±SEM. Statistical analysis was done using the Wilcoxon matched-pairs signed rank test. Values

statistically different from the unstimulated control are depicted as § p<0.05 and §§ p<0.01.

Values statistically different from Mf-stimulated monocytes are depicted as � p<0.05 and
��p<0.01.

(TIF)
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