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Abstract Sensory events, cognitive processing and motor actions correlate with transient

changes in neuronal activity. In cortex, these transients form widespread spatiotemporal patterns

with largely unknown statistical regularities. Here, we show that activity associated with behavioral

events carry the signature of scale-invariant spatiotemporal clusters, neuronal avalanches. Using

high-density microelectrode arrays in nonhuman primates, we recorded extracellular unit activity

and the local field potential (LFP) in premotor and prefrontal cortex during motor and cognitive

tasks. Unit activity and negative LFP deflections (nLFP) consistently changed in rate at single

electrodes during tasks. Accordingly, nLFP clusters on the array deviated from scale-invariance

compared to ongoing activity. Scale-invariance was recovered using ‘adaptive binning’, that is

identifying clusters at temporal resolution given by task-induced changes in nLFP rate. Measures of

LFP synchronization confirmed and computer simulations detailed our findings. We suggest

optimization principles identified for avalanches during ongoing activity to apply to cortical

information processing during behavior.

DOI: https://doi.org/10.7554/eLife.27119.001

Introduction
Neuronal activity in the brain has been traditionally separated into ongoing activity, which lacks a

particular sensory stimulus or movement, and evoked activity, which is the response to a well-

defined stimulus. Yet, studies have consistently shown that ongoing activity predicts stimulus

response (Arieli et al., 1996; Tsodyks et al., 1999; Luczak et al., 2009) and behavioral outcome

(Supèr et al., 2003; Womelsdorf et al., 2006) suggesting that both forms of activity are closely

related. During the last decade, ongoing activity has been found to organize as neuronal avalanches

(Beggs and Plenz, 2003) — scale-invariant activity cascades whose size, duration, waveform and

inter-cascade intervals are governed by power laws (for review see Chialvo (2010) and Plenz (2012)).

From microscale to macroscale organization, neuronal avalanches describe spontaneous firing of

local pyramidal neuron groups in awake rodents in vivo (Bellay et al., 2015), the ongoing local field

potential (LFP) and subthreshold population activity in rodents and nonhuman primates

(Gireesh and Plenz, 2008; Petermann et al., 2009; Scott et al., 2014), as well as resting activity in

humans observed using functional magnetic resonance imaging (fMRI) (Fraiman and Chialvo, 2012;

Tagliazucchi et al., 2012; Haimovici et al., 2013), magnetoencephalography (MEG) (Palva et al.,

2013; Shriki et al., 2013) and electrocorticography (ECoG) (Priesemann et al., 2014). Neuronal ava-

lanches signify a cortical network at a critical or near-critical state (Chialvo, 2010; Plenz, 2012),

which experiments (Shew et al., 2009; Gautam et al., 2015) and simulations (Beggs and Plenz,

2003; Bertschinger and Natschläger, 2004; Haldeman and Beggs, 2005; Kinouchi and Copelli,

Yu et al. eLife 2017;6:e27119. DOI: https://doi.org/10.7554/eLife.27119 1 of 22

RESEARCH ARTICLE

http://creativecommons.org/publicdoman/zero/1.0/
http://creativecommons.org/publicdoman/zero/1.0/
https://doi.org/10.7554/eLife.27119.001
https://doi.org/10.7554/eLife.27119
https://creativecommons.org/
https://creativecommons.org/
http://elifesciences.org/
http://elifesciences.org/
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


2006; Rämö et al., 2007; Nykter et al., 2008) have shown to hold numerous advantages in informa-

tion processing, such as maximum mnemonic repertoire size (Haldeman and Beggs, 2005;

Shew et al., 2011; Fagerholm et al., 2016), information diversity (Nykter et al., 2008) and dynamic

range (Kinouchi and Copelli, 2006; Shew et al., 2009; Gautam et al., 2015), optimized computa-

tional capabilities (Bertschinger and Natschläger, 2004), information transmission (Beggs and

Plenz, 2003; Rämö et al., 2007; Fagerholm et al., 2016), sensory discrimination (Tomen et al.,

2014) and learning (de Arcangelis and Herrmann, 2010). Yet, despite these potential advantages,

evidence for neuronal avalanches outside the realm of ongoing activity, specifically, during behavior-

ally relevant motor and cognitive tasks, has been controversial.

Recent analysis of neuronal avalanches during sustained dynamic movie stimulation in the visual

cortex of turtle (Shew et al., 2015) and visuo-motor tasks in human fMRI (Fagerholm et al., 2015)

and EEG (Arviv et al., 2015) suggest transient dynamics that differ from scale-invariant avalanches.

Similarly, neural models implied transient deviations from avalanche dynamics during strong external

inputs (Millman et al., 2010; Taylor et al., 2013; Hartley et al., 2014; Stepp et al., 2015; Williams-

Garcı́a et al., 2014). Here, we hypothesize that transient changes in activity during evoked

responses could simply reflect a change in the rate of avalanches rather than a transition to a differ-

ent dynamical regime, for example a change in synchronization. Such a rate change likely requires

modifications to standard avalanche analysis, as the standard was originally introduced for stationary

rates of activity (Beggs and Plenz, 2003). In fact, by taking changes in activity rate into account,

here we show in the behaving nonhuman primate that cortical dynamics during sensory and cogni-

tive processing exhibit clear power law organization in line with the maintenance of neuronal ava-

lanches. In line with these findings, our phase-synchronization analysis demonstrates that synchrony

levels are maintained for ongoing and task-related activity. We expand on our experimental results

using computational models and explore the sensitivity of this advanced approach to distinguish

avalanche dynamics from states with changed synchrony, for example supercritical dynamics. Our

results extend previous work on the dynamics of resting state activity and suggest that the optimiza-

tion principles identified for critical dynamics during resting state activity extend to and sculpt corti-

cal information processing during behavior.

Results
In order to demonstrate avalanche maintenance during evoked activity that is independent of spe-

cific brain region or behavioral paradigm, we chose two types of tasks and two cortical areas in two

adult macaque monkeys. High-density microelectrode arrays (MEA; 10 � 10; corner electrodes miss-

ing; inter electrode distance Dd = 400 mm) were chronically implanted in left prefrontal cortex (PFC)

of monkey A and left premotor cortex (PM) of monkey B. We recorded extracellular unit activity

(0.3–3 kHz) to confirm involvement of recording sites in behavioral tasks as well as the LFP (1–100

Hz), which is commonly used for avalanche analysis (Beggs and Plenz, 2003; Petermann et al.,

2009; Scott et al., 2014).

Avalanche maintenance during a cue-triggered cognitive task
In our first behavioral condition, we asked whether scale-invariant dynamics can be found when

strong transient activity changes due to cognitive processing are present. To this end, we analyzed

avalanche dynamics in the dorsal-lateral prefrontal cortex (dlPFC; left hemisphere) for a visual-motor

mapping task (monkey A; Figures 1–3). Monkey A applied a learned rule (>95% success rate) to two

individually presented visual cues, which instructed the retrieval of food from a left feeder (left trials)

or right feeder (right trials).

It is known that the dlPFC is involved in such visual-motor mapping task (Asaad et al., 1998;

Puig and Miller, 2012). Consistently, in all of 29 putative single-units recorded in the dlPFC (1 day,

1 hr recording session), unit activity was variable with transient increases or decreases in firing rate

around cue on- and off-set that depended on left or right trials (Figure 1A; three examples shown).

No significant change in Fano Factor (Churchland et al., 2010) was found during task execution

(Figure 1B; see Materials and methods). On the other hand, the average LFP changed consistently

for each electrode exhibiting two waveforms that differed between left and right trials (Figure 1C).

We extracted peak times of the negative LFP (nLFP) at a threshold thr = –2 SD for further analysis

(see Materials and methods), and observed a rapid ~8-fold increase in nLFP rate ~0.5 s after cue
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Figure 1. Neuronal avalanches in prefrontal cortex during a cognitive task. (A) Firing rate changes for putative

single units demonstrate PFC region recorded by the array is involved in task performance. Unit raster (top)

separated into right (green) and left (black) trials with corresponding average firing rates (bottom). Cue

presentation elicits distinct rate changes for units 1 and 2 during left and right trials, but not for unit 3. Colored

area (orange/purple) indicates periods that differ significantly (high/low) from baseline (see Materials and

methods). Vertical solid lines: Cue on- and off-set. (B) The population of PFC units does not show a task-related

change in rate (top) or Fano Factor (bottom). Top: mean-matched/original rate in solid/broken lines; 38/48%

survived matching for left/right trials. Bottom: mean-matched spikes. Shaded areas: 95% confidence interval from

linear regression per time window. (C) Distinct changes in the LFP for right (green) and left (black) trials during the

task. Grey/light green: trial averages for each electrode. Black/dark green: average over electrodes. (D) The

negative LFP (nLFP; �2SD threshold; dots) allows for distinguishing right (green) from left (black) trials. Top:

Example nLFP raster (single electrode) separated into right (green) and left (black) trials. Bottom: Corresponding

time course in average nLFP rate. Colored areas (orange/purple) indicate significant change (high/low) from

baseline. (E) Distinct change in nLFP rate separates a baseline (BASE; 400 ms) period from an early (EARLY; 400

ms) and late (LATE; 400 ms) epoch after cue onset (vertical lines). (F) nLFPs on the array when analyzed for full left

and right trial periods show avalanche organization. Power law in size probability densities for nLFP clusters (solid;

fixed Dt). Arrow: Cut-off at number of electrodes on the array. Broken lines: Corresponding trial-shuffle controls.

Shaded areas: Corresponding 95% confidence interval based on bootstrapping. Dotted line: Visual guide for

exponent of �1.5.
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presentation, when the monkey was preparing to reach for the left feeder (Figure 1D, single elec-

trode; Figure 1E, all electrodes). A much weaker, more delayed increase was observed for right tri-

als. Based on the delayed increase in nLFP rate for left trials, we divided trials into a baseline period

before cue-onset (BASE; –0.4–0 s), and an early (EARLY; 0–0.4 s) and late epoch (LATE; 0.4–0.8 s)

after cue-onset.

To study neuronal avalanches, two 1 hr recording sessions from 2 consecutive days resulting in

322 trials (day 1: 139, day 2: 183) were combined. In short, for each trial successive nLFPs on the

array were concatenated into contiguous clusters at temporal resolution Dt (Beggs and Plenz,

2003). A cluster started with the transition from an empty time bin of width Dt to a time bin with at

least one nLFP on the array. The concatenation continued until a time bin with no nLFP was encoun-

tered (see also Figure 2A). The temporal resolution Dt was defined by the inverse of the average

nLFP rate on the array and is not a free parameter (Beggs and Plenz, 2003). In line with standard

avalanche analysis, we kept Dt fixed (‘fixed binning’) and determined its value from the full recording

to be Dt = 4.75 ms for monkey A. We found that the probability density function of cluster size s,

that is the number of nLFPs in a cluster, followed a power law, for both left and right trials, with

slope a close to –1.5 and a cut-off for s > 96, the maximal number of MEA electrodes (Klaus et al.,
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Figure 2. Adaptive binning tracks avalanche organization during behaviorally induced transient activity changes in

PFC. (A) Fixed binning defines clusters (grey area) by successive time bins of constant duration Dt with at least one

nLFP (diamonds). The temporal resolution Dt does not change for trials or epochs. Size s is defined as the number

of nLFPs per cluster. (B) Large avalanches (red) dominate for left trials during LATE. Avalanche raster with size

coded by color and dot size at fixed Dt for left (top) and right (bottom) trials for 2 consecutive recording days. (C)

Significant increases (orange) and decreases (purple) in average time course for avalanche rate (top) and size

(bottom) for left (black) and right (green) trials. (D) Adaptive binning links Dt for each trial i to the average nLFP

rate during epochs resulting in three different temporal resolutions for cluster definition: DtBASE;EARLY;LATEi (cp. A).

(E) Same as in B, but for adaptive binning. Note sparseness of very large avalanches (cp. B). (F) Adaptive binning

increases avalanche rate significantly during LATE while reducing avalanche size (cp. C).
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2011; Yu et al., 2014) (Figure 1F, solid black and green lines for left and right trials, respectively;

exponential vs. power law: p<10�5; see Materials and methods). Importantly, these hallmarks of ava-

lanche dynamics were destroyed by trial shuffling, which removes spatial trial-to-trial correlations

while maintaining average rate changes (Figure 1F, broken lines; exponential vs. power law:

1� p<10�5). This control demonstrates that the power law in cluster sizes, indicative of avalanche

dynamics, does not simply arise from transient activity changes during behaviorally relevant periods.
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Figure 3. Adaptive binning demonstrates maintained power law organization during transient activity epochs in

prefrontal cortex. (A) Avalanche size probability densities for LATE (orange) significantly deviate from the power

law observed during BASE (black/green) and EARLY (purple) for left (left panel), but not right trials (right panel).

Area: 95% confidence interval. (B) Size distributions normalized by a power law with exponent �1.5 reveal good

agreement with theory (horizontal curve with a sharp cut-off), except during LATE for left trials, where a large

deviation can be observed. Inset: Area under the curve of the normalized distributions for avalanches of size > 20

quantify differences between epochs. Error bars: SD from 1000 bootstraps. (C) Same as in A, but for adaptive

binning, which collapses size distributions for BASE, EARLY and LATE. (D) Adaptive binning leads to a decrease in

the area difference between LATE and the other epochs. (E) Distributions of the difference between the mean

avalanche size of LATE and BASE for each trial (positive values indicate avalanches in LATE were larger than those

in BASE for a given trial) for fixed (grey) and adaptive binning (black/green). Significant differences between

distributions are marked by an asterisk (Kolmogorov-Smirnov test; p � 0:05). For left trials, LATE is significantly

biased toward smaller avalanches for adaptive binning compared to fixed binning.

DOI: https://doi.org/10.7554/eLife.27119.004

Yu et al. eLife 2017;6:e27119. DOI: https://doi.org/10.7554/eLife.27119 5 of 22

Research article Neuroscience

https://doi.org/10.7554/eLife.27119.004
https://doi.org/10.7554/eLife.27119


By combining clusters from different behavioral epochs into one single distribution, however,

transient deviations from scale-invariance could cancel each other, giving the appearance of main-

tained avalanche dynamics during behavior. Indeed, when separating clusters according to trial

epochs BASE, EARLY and LATE, systematic differences in the corresponding avalanche raster were

revealed. Specifically, the increase in nLFP rate during LATE for left trials yielded significantly larger

avalanches during the period prior to reach (Figure 2B, red dots; Figure 2C, orange and purple seg-

ments indicate significantly high and low values, respectively; p � 0:05; see Materials and methods).

Accordingly, a preponderance of large avalanches was visible in the corresponding size distribution

during LATE for left trials (Figure 3A and B, left), whereas size distributions remained close to a

power law during BASE and EARLY and for right trials (Figure 3A and B; p<10�5, all cases). In the

case of right trials, where the transient changes in activity rate are much less pronounced, size distri-

butions are more similar among all epochs, with a small tendency for larger avalanches during the

LATE epoch (Figure 3A and B, right; p<10�5, all cases).

These deviations from scale-invariance compared to BASE, on the other hand, were abated when

the temporal resolution Dt to define clusters was obtained from the average nLFP rate for each trial i

and epoch separately (DtBASE;EARLY ;LATEi ; Figure 2D–F). We define this approach as ‘adaptive binning’.

It decreases Dt during periods of high nLFP rate, while increasing Dt for low activity periods

(Figure 2D). Indeed, adaptive binning obtained scale-invariant power laws in avalanche sizes that

were similar for each epoch (Figure 3C,D; p ¼ 0:06 0:08ð Þ and p ¼ 0:11 0:1ð Þ for EARLY (LATE) com-

pared to BASE, for left and right trials respectively; see Materials and methods), with a change in

exponent consistent with previous results (Beggs and Plenz, 2003; Petermann et al., 2009;

Priesemann et al., 2014) and a cut-off for s > 96 (Klaus et al., 2011; Yu et al., 2014). Comparing

BASE and LATE avalanches for each trial, the bias toward larger ones in the latter epoch seen when

employing fixed binning is significantly decreased after adaptive binning for left trials (Figure 3E,

left), while during right trials, in which scale-free avalanches were obtained even for fixed binning,

the bias does not change after adaptive binning. As can be seen in the corresponding raster plots

and trial averages (Figure 2E,F), avalanche size decreased in LATE concomitant with an increase in

avalanche rate (more prominently for left trials). We conclude that the apparent over-representations

of large avalanches during behavioral epochs were due to a mismatched temporal resolution Dt by

not accounting for systematic changes in nLFP rate during different epochs.

We further explored if nLFP rate within an epoch correlates with behavioral outcome. Indeed,

reaction time, defined as the time it took the monkey to reach the reward after the visual cue was

switched off, did not correlate with nLFP rate (left trials: R = 0.036, p=0.73; right trials: R = �0.039,

p=0.71; p-values indicate the likelihood of obtaining a correlation at least as high by chance), ava-

lanche rate (left trials: R = 0.041, p=0.68 for fixed Dt and R = �0.022, p=0.79 for adaptive Dt; right

trials: R = �0.033, p=0.74 for fixed Dt and R = 0.012, p=0.87 for adaptive Dt) or avalanche size (left

trials: R = 0.085, p=0.52 for fixed Dt and R = 0.062, p=0.66 for adaptive Dt; right trials: R = 0.058,

p=0.63 for fixed Dt and R = �0.025, p=0.72 for adaptive Dt), in line with our finding of a scale-free

regime regardless of rates for each trial. Given the monkey’s high performance (>95% successful tri-

als), rates could not be analyzed for correct/incorrect trial outcome.

Avalanche maintenance during self-initiated movements
In monkey B, we studied activity changes during self-initiated movements. The monkey, without fur-

ther cue or prompting, initiated the touching of a pad with her right hand, after which a reward was

provided. Similar to monkey A, two 1 hr sessions were recorded in 2 consecutive days. Since results

were highly consistent between different days, the data were pooled together, resulting in 663 trials

analyzed (day 1: 319; day 2: 344). As the recording site was within the arm representation area within

the PM, recorded activity clearly reflected task execution (Figure 4). About 200 ms before touching

the pad, 18/43 (~42%) putative single-units increased in firing rate, whereas 5/43 units (~12%)

decreased their firing rate around the time of touching (Figure 4A,B). Fano Factor of unit activity

decreased in line with previous reports (Figure 4C) (Churchland et al., 2010). Similarly, the LFP tran-

siently turned negative ~200 ms before touching for all electrodes (Figure 4D), together with a ~4-

fold increase in the nLFP rate and a slight decrease thereafter (Figure 4E), which readily separated

activity into a baseline epoch (BASE; –0.8 to –0.4 s relative to the touch), followed by a pre-touch

(PRE; –0.4 to 0 s) and post-touch epoch (POST; 0 to 0.4 s) (Figure 4F).
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When all data across epochs was analyzed using fixed binning, that is Dt based on the full record-

ing (Dt = 10.3 ms), avalanche sizes followed a power law with –1.5 exponent and cut-off at ~96 elec-

trodes (Figure 4G; exponential vs. power law: p<10�5), which was destroyed by trial shuffling

(exponential vs. power law: 1� p<10�5), again demonstrating that scale-invariant LFP clusters were

1

344

T
ri
a
l

pad touchA
unit 1

1

3

5

S
p
ik

e
s
/s

0.5 s

1

344

T
ri
a
l

unit 2

1

3

S
p
ik

e
s
/s

1

3

5

N
o
rm

. 
fi
ri
n
g
 r

a
te

B

0.2 s

3

6

S
p
ik

e
s
/s

C Mean matched
Original

1

2

F
a
n
o
 F

a
c
to

r

0.2 s

-30

30

L
F

P
 (

µ
V

)

pad touchD

0.2 s

1

344

T
ri
a
l

E

1

3

5

n
L
F

P
s
/s

0.2 s

1

3

5

N
o
rm

. 
e
v
e
n
t 
ra

te

BASE PRE POSTF

0.2 s

10
-5

10
-1

10
0

10
1

10
2

Size s

α = -1.5

P(s)

G

Trial shuffled

Original

Figure 4. Neuronal avalanches in premotor cortex during self-initiated motor task. (A) Change in firing rate for two

putative single units demonstrate PM region recorded by the array is involved in task performance. Unit one

increased whereas unit two decreased firing around the time of self-initiated touch (grey arrow). Unit raster (top)

trial-aligned to touch (grey line, arrow) and corresponding average firing rate time course (bottom). Orange/purple

area indicate significant increase/decrease from baseline. (B) Most units show transient excitation before touching.

Average firing rate change for all putative single units normalized to baseline. (C) Average (top, broken) and

mean-matched (top, solid) firing rate across all units and trials. Fano Factor (bottom) decreases significantly

(purple) before touching (70% of data survived mean-matching). Shaded area: 95% confidence interval. (D)

Negative deflection in the LFP, averaged over trials, prior to touch. Grey: trial average for individual electrodes.

Black: average over electrodes. (E) Single electrode nLFP raster and corresponding average nLFP rate. Orange/

purple areas indicate significantly high/low periods from baseline. (F) Change in nLFP rate defines baseline (BASE),

pre-touch (PRE) and post-touch (POST) epochs (vertical lines). (G) nLFPs on the array when analyzed for full trial

periods show avalanche organization. Power law in size probability densities for nLFP clusters (solid; fixed Dt).

Arrow: Cut-off at number of electrodes on the array. Broken lines: Corresponding trial-shuffle control. Shaded

areas: Corresponding 95% confidence interval based on bootstrapping. Dotted line: Visual guide for exponent of

�1.5.
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based on the trial-by-trial correlations between cortical sites and did not simply arise from transient

changes in nLFP rate.

Evaluation of avalanche raster plots based on epochs revealed systematic differences in the corre-

sponding avalanche raster (Figure 5A,B). Specifically, the increase in nLFP rate during PRE yielded

significantly more avalanches and of larger size during that period, whereas the converse was true

during POST when nLFP rate decreased (Figure 5A; colored dots; Figure 5B; orange and purple

segments respectively; p � 0:05; see Materials and methods). The corresponding size distributions

exhibited deviations from scale-invariance obtained for BASE (Figure 6A and B, left) with an excess

of large avalanches for PRE and a deficit of large avalanches for POST, despite all distributions

remaining close to power laws (exponential vs. power law: p<10�5, all three epochs).

As in the case for the cognitive task, these systematic deviations in size distributions were abated

when calculating Dt from the average nLFP rate for each trial i and epoch (DtBASE;PRE;POSTi ; Figure 6A

and B, right). Through adaptive binning we once again obtained scale-invariant power laws in ava-

lanche size that were similar for each epoch (p ¼ 0:177, PRE vs. BASE; p ¼ 0:05, POST vs. BASE), with

the bias towards larger avalanches during PRE being significantly reduced (Figure 6C). As can be

seen in the corresponding raster plots and trial averages (Figure 5C,D), avalanche size decreased in

PRE concomitant with an increase in avalanche rate confirming our findings in monkey A. During

POST, under representation of large avalanches due to mismatched temporal resolution Dt can also

be partially compensated for by adaptive binning.
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Figure 5. Adaptive binning tracks avalanche organization during self-initiated motor task in premotor cortex. (A)

Avalanche raster with size coded by color and dot size for fixed Dt. Large avalanches (red) emerge during PRE and

fewer avalanches are found during POST. (B) Significant increases (orange) and decreases (purple) in average time

course for avalanche rate (top) and size (bottom) with respect to BASE. (C) Same as in A, but for adaptive binning.

Note absence of very large avalanches during PRE. (D) Adaptive binning reduces avalanche size while increasing

avalanche rate (cp. B) during PRE.
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Impact of ‘adaptive binning’ in capturing rate change vs. change in
dynamics
We next illustrate the expected deviation from scale-invariance when rates change and its remedia-

tion using ‘adaptive binning’ in a simple schematic. In the hypothetical example shown in Figure 7A,

we consider a baseline period with nLFP rate of 3 Hz per electrode, followed by a period with the

rate increased to 9 Hz (Figure 7A, left). Fixed binning, which sets Dt according to the average rate

of 6 Hz, underestimates the temporal resolution for baseline activity, whereas it overestimates Dt for

the high activity period. The resulting power law size distributions will be steeper for the baseline

period and shallower for the high activity period (Beggs and Plenz, 2003). The combined distribu-

tion will show an upward bend at the cross-over of the individual distributions (Figure 7A; middle,

solid line) which seems to suggest a deviation from avalanche dynamics with an overabundance of

large clusters similar to what would be expected for supercritical dynamics. Adaptive binning, that is

calculating Dt for each period separately approximates the exponents for both power laws, resulting

in a final distribution that matches a power law with an intermediate slope (Figure 7A, right)

(Beggs and Plenz, 2003; Petermann et al., 2009; Priesemann et al., 2014). We note that simply

using shorter time bins for all data would retain different slopes for different regimes and thus is not

an alternative to adaptive binning.

Although we illustrated this principle using two sequential periods with different rates, the same

holds for repeat trials with different rates. In Figure 7B, we separated trials of monkey B into low-

and high-rate responses based on PRE epochs (Figure 7B, left). Size distributions obtained from
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Figure 6. Adaptive binning demonstrates maintained power law organization during transient activity epochs in

premotor cortex. (A) Avalanche size distributions for PRE and POST deviated from the power law observed during

BASE when fixed binning was employed (left), but collapse together after adaptive binning (right). Area: 95%

confidence interval. (B) Size distributions normalized by a power law (exponent �1.5 for fixed and �1.3 for

adaptive binning). Inset: Area under the curve for the normalized distributions, considering avalanches of

size > 20, emphasize the bias toward larger (smaller) avalanches during PRE (POST), in line with higher (lower)

activity rates observed during that epoch compared to BASE for fixed binning (left). The bias is significantly

decreased after adaptive binning (right). Error bars: SD from 1000 bootstraps. (C) Distributions of the difference

between the mean avalanche size of PRE and BASE during each trial for fixed (grey) and adaptive binning (black).

Large differences occur much more often for fixed binning (left: linear-linear plot; right: log-log plot). Significant

differences between distributions are marked by an asterisk (Kolmogorov-Smirnov test; p � 0:05).
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high-rate trials at fixed binning exhibit an overabundance of large avalanches (Figure 7B, middle,

arrow). With adaptive binning, deviations from the baseline distribution decreased and all distribu-

tions approached power laws with a –1.2 exponent (Figure 7B, right). This demonstrates that trials

in monkey B exhibit similar dynamics as those observed for monkey A or, more generally, that devia-

tions from scale-invariance observed in the two experimental regimes can be explained by nLFP rate

changes alone.

Neuronal simulations support ‘adaptive’ binning to recover scale-
invariance for critical dynamics
Using simulations, we explored the conditions under which adaptive binning recovers scale-invariant

size distributions. Simulations were carried out on a 10 � 10 cellular automaton network, the approx-

imate size of our MEAs, with cascades unfolding according to a critical branching process

(Zapperi et al., 1995) (see Materials and methods). Quiescent times between cascades were ran-

domly drawn from the experimentally obtained quiescent time distribution of monkey B. Simulated

baseline activity, by randomly initiating avalanches in the network, was superimposed after 0.4 s by a
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Figure 7. Adaptive binning recovers the power law in the face of consistent rate changes when dynamics remain

critical. (A) Schematic impact of avalanche analysis from non-stationary event rates. Left: A low event rate period

(purple) followed by a high event rate period (orange) results in an intermediate Dt (fixed binning) based on the

mean event rate (broken line). Middle: The superposition of two power laws with different slopes from their

corresponding rate regime (broken lines) results in an avalanche size distribution (grey) that deviates from a power

law, with a characteristic up-ward bend at the cross-over point. Right: Adaptive binning steepens/reduces the

slope for the high/low rate period respectively resulting in a distribution collapse at an intermediate slope. (B) Left:

Average nLFP rate for monkey B with trials separated into high (black) and low (green) nLFP rate during PRE

(shaded area). Middle: Corresponding distributions obtained with fixed binning increasingly deviate with rate

(arrow) from baseline (broken, purple). Right: Adaptive binning collapses all distributions. (C) Simulations using a

transient external Poisson drive match experimental findings (cp. B). (D) In simulations with transiently switching

from critical to supercritical dynamics (left), adaptive binning fails to compensate for overabundance of large

avalanche sizes from supercritical dynamics (middle/right). (E) Simulations using transient Poisson noise.

Distributions obtained with fixed binning do not follow power laws, even in the low-noise regime (middle).

Distributions obtained with adaptive binning do not have a clear cut-off (right).
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second process, which produced a transient increase in rate mimicking movement initiation. We

tested three different processes for two levels of rate increase and obtained corresponding size dis-

tributions for fixed and adaptive binning. Increasing rate by adding Poisson inputs that could trigger

avalanches (Figure 7C, ‘Input driven’) closely matched our experimental results. For fixed binning,

an overabundance of large avalanches close to the cut-off was found in the size distribution

(Figure 7C, middle, arrow), which originated from the concatenation of spontaneous with input-trig-

gered avalanches. We note that this overabundance manifests while the model interactions

remained tuned to the critical point in the limit of zero input. Accordingly, the power law in the size

distribution was recovered by means of adaptive binning (Figure 7C, right). Next, a high rate was

achieved by increasing the likelihood of nodes exciting each other, that is changing to a supercritical

branching process with increased synchronization (Figure 7D, ‘Supercritical’). The corresponding

size distribution exhibits an overabundance of large avalanches that (Figure 7D, middle) reflects

explosive growth as activity propagates in the network. Adaptive binning, which is tied to the overall

increase in event rate, was insufficient to compensate for the increase in synchrony. It failed to col-

lapse the cut-off of the distributions, instead further separating non-global cascades from synchro-

nized, global activity (Figure 7D, right, arrows). Finally, event rate was increased by adding

uncorrelated activity, that is Poisson inputs that do not trigger avalanches (Figure 7E, ‘Poisson

noise’). The resulting size distribution exhibits a preponderance of intermediate size avalanches that

reflects the mean rate of uncorrelated events introduced (Figure 7E, middle). Here, even low-noise

levels destroy the power-law regime. While distributions tend to get closer to a power law with

adaptive binning, their cut-off at system size is lost in the process (Figure 7E, right).

‘Adaptive’ thresholding as an alternative approach to ‘adaptive’
binning
Adaptive binning reduces Dt for periods of high rates, thereby reducing the number of nLFPs per

time bin. Alternatively, one can increase the threshold for nLFP detection during these periods, like-

wise reducing the number of nLFPs encountered per time bin (see also [Petermann et al., 2009]).

The reverse argument holds when periods of low rates are encountered. We tracked the mean and

standard deviation of the LFP in successive windows of 100 ms width and used a moving threshold

thr = mean – 2SD to identify nLFPs within each window (Figure 8A,C). Thus, activity modulations

induced by the task were mainly reflected in nLFP amplitude, but not rate. This approach, which

trades temporal resolution for local sensitivity, collapsed distributions from different periods (grey

and orange areas in Figure 8B,C) in monkey A into a similar power law, indicative of sustained ava-

lanche dynamics during task performance (Figure 8D,E).

Phase synchrony analysis supports recovered scale-invariance through
‘adaptive’ binning
Experiments and theory have consistently shown that size distributions of clustered activity are sensi-

tive to the degree of synchrony in a system (Shew et al., 2009; Larremore et al., 2011; Shew et al.,

2011; Yang et al., 2012; Bellay et al., 2015; Shew et al., 2015). Our demonstration of scale-invari-

ant size distributions suggests avalanche dynamics are maintained throughout task performance,

which should mirror a sustained average synchrony among cortical sites. Previous studies have

shown overall phase-synchronization between sites sensitively captures fast dynamical changes in a

network (Kitzbichler et al., 2009; Yang et al., 2012), in particular at higher frequencies

(Meisel et al., 2016). In line with our results from adaptive binning and thresholding, levels of LFP

synchrony R (see Materials and methods) were not different across epochs in monkey A (Left:

0.56 ± 0.015, 0.56 ± 0.01 and 0.56 ± 0.01; Right: 0.56 ± 0.01, 0.55 ± 0.01 and 0.56 ± 0.004;

mean ± standard deviation for BASE, EARLY and LATE respectively; p>0.05; two-tailed paired stu-

dent’s t-test) as well as in monkey B (BASE, 0.450 ± 0.003; mean ± standard deviation; vs. PRE,

0.452 ± 0.003; vs. POST, 0.455 ± 0.003; p>0.05).

Discussion
Our findings suggest that cortical avalanches are maintained in nonhuman primates during informa-

tion processing, thus adding avalanche dynamics to the many links found between ongoing and

evoked activities in the brain (Arieli et al., 1996; Tsodyks et al., 1999; Womelsdorf et al., 2006).
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We suggest that optimal information processing capabilities of avalanche dynamics (Beggs and

Plenz, 2003; Bertschinger and Natschläger, 2004; Haldeman and Beggs, 2005; Kinouchi and

Copelli, 2006; Rämö et al., 2007; Nykter et al., 2008; Shew et al., 2009; Tomen et al., 2014;

Gautam et al., 2015) might guide sensory, motor and cognitive processing in the brain.

During ongoing activity, avalanche dynamics have been demonstrated in various brain areas

including the primary visual (Hahn et al., 2010), primary motor (Petermann et al., 2009), somato-

sensory (Gireesh and Plenz, 2008), premotor and prefrontal (Yu et al., 2014) cortices, reflecting a

common dynamic feature regardless of specific cortical areas. Therefore, we aimed to extract a simi-

lar rule that govern avalanches during evoked activity. To achieve this goal while minimizing the

number of nonhuman primates used, we chose to record activity from different cortical sites and dif-

ferent behavioral tasks in two monkeys, while the common condition is that the recorded region was
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Figure 8. Adaptive thresholding as an alternative means to collapse size distributions during rate changes. (A)

Example LFP on single electrode in monkey A. Solid grey lines: Cue presentation. nLFPs detected at fixed (broken,

purple) or adaptive threshold (solid, purple) vary in size and rate accordingly. Triangles: nLFPs obtained with fixed

(empty) or adaptive thresholding (filled). (B) nLFP raster (top) and corresponding average nLFP rate (bottom) from

A at fixed threshold. Color code: nLFP amplitude in mV. (C) Adaptive thresholding produces a relatively constant

event rate (cp. B). (D) Adaptive thresholding (right) successfully collapses avalanche size distributions obtained for

fixed thresholding (left; cp. Figure 3A and C, left). (E) Distributions normalized by a power law of �1.5 (fixed

thresholding, left) or �1.3 (adaptive thresholding, right) together with area differences are in line with the results

from adaptive binning (cp. Figure 3B and D, left). Error bars: SD from 1000 bootstraps.
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strongly activated by the corresponding task. Monkey A performed a visual-motor mapping task, in

which the correct actions have to be applied to specific cues (Wise and Murray, 2000). This task is

known to involve the dorsal-lateral prefrontal cortex (Asaad et al., 1998; Puig and Miller, 2012), in

line with our finding of differential spiking as well as LFP responses for the left and right cues. Con-

versely, the target area in our self-initiated motor task for monkey B was the premotor cortex, which

is involved in movement planning (Weinrich et al., 1984; Brasted and Wise, 2004) and self-initiated

movement (Hoffstaedter et al., 2013). Consistent with previous studies, we found that, at both the

single neuron and population level, the premotor cortex exhibited strong activation a few hundred

milliseconds before the self-initiated touch. Our highly consistent results obtained for these different

cortical areas and behavioral tasks suggest that avalanche dynamics might be a general principle

governing cortical dynamics underlying various behaviors.

Our trial-shuffling control demonstrated that the power law in avalanche sizes reflects correlations

that are maintained during behavior on a trial-by-trial basis and that this statistical feature did not

simply arise from non-stationary rates. Recently, power laws, for example Zipf’s law, have been

shown to arise when the range of event probabilities becomes enlarged, for example from underly-

ing common correlations due to common inputs typically captured in latent variables (Schwab et al.,

2014; Aitchison et al., 2016). Because trial-shuffling maintains such latent variables as captured in

the average evoked response, yet, abolishes scale-invariance, our findings suggest that the scale-

invariance encountered in our behavioral data reflects intrinsic correlation structure of trial-to-trial

variability and not common correlations.

Originally introduced for resting or spontaneous activity (Beggs and Plenz, 2003), a fixed tempo-

ral resolution Dt assumes stationary rates, which is typically violated during sensory epochs or peri-

ods of movement when event rates change systematically. For avalanche analysis, the temporal

resolution Dt is based on the inter-event interval distribution of the population, for example succes-

sive nLFP events on the array. This temporal scale Dt is not a free parameter. It further depends on

the spatial scale, that is inter-electrode distance Dd, as well as local minimal event threshold thr.

Importantly, all three parameters Dt, Dd and thr have been experimentally linked and shown to affect

the slope of the power law in a predictable manner (Beggs and Plenz, 2003; Petermann et al.,

2009). In our initial approach, that is adaptive binning, we kept the threshold thr and inter electrode

distance Dd constant while changing Dt in accordance with the change in event rate, which in our

experiments increased up to a factor of 10. This recovered power law statistics, which was confirmed

by our simulation in which rate changes were created by increasing avalanche rate. These findings

are in line with reported changes of the power law slope with changes in Dt (Beggs and Plenz,

2003; Petermann et al., 2009; Priesemann et al., 2014).

Our results highlight the importance of the principle of ‘separation of time scales’ (Bak et al.,

1988; Vespignani and Zapperi, 1998; Plenz, 2012; Priesemann et al., 2014) for measuring ava-

lanche dynamics. That is, the time scale at which cascading events unfold within individual ava-

lanches, characterized by the avalanche duration, should be significantly shorter than the time scale

at which different avalanches emerge, characterized by the inter-avalanche interval. Estimating the

temporal resolution Dt from the inverse of the event rate provides a reasonable separation of time

scales, because it balances two potential errors – false concatenation of separate avalanches and

false separation of a single avalanche (Beggs and Plenz, 2003; Plenz, 2012).

In an alternative approach, we kept spatial resolution Dd and temporal resolution Dt fixed while

changing threshold thr. This approach does not affect the power law organization, as demonstrated

in nonhuman primates (Petermann et al., 2009) and human fMRI (Tagliazucchi et al., 2012). Particu-

larly when Dt is difficult to change, changing thr might provide an alternative means to reestablish a

separation of time scales, since large local events are less common than small local events. Our

recovery of a power law for large local events during high activity periods demonstrates the analo-

gous roles time and local event size play in avalanche dynamics. Our separate demonstration that

synchrony does not change between BASE, EARLY/PRE and LATE/POST conditions further supports

our finding that avalanches are maintained despite changes in event rates. Conversely, if thresholds

are calculated individually for different temporal segments corresponding to different conditions of

interest and the resulting distributions deviate from power laws along with concurrent changes in

synchrony measures, then one has strong indication that the underlying dynamics deviate from criti-

cality (Meisel et al., 2013).
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It is important to emphasize that adaptive binning and thresholding are only tools to reveal the

signatures of scale-free dynamics after they become blurred by increased drive and absence of sepa-

ration of time-scales. They are not meant to be a perfect theoretical solution to the problem and

have obvious limitations. For instance, there is no clear answer as to how large the window for calcu-

lating adaptive binning or thresholding should be. If it is too small, the inherent fluctuations of a criti-

cal system will be regarded as rate changes and therefore no power law dynamics can be observed.

If it is too large, the rate changes can be averaged out inside them, and therefore the problem of

the non-stationarity would remain. In the case of our experiments, we had a clear indication of when

we should expect a rate change, which gave us a good parameter to choose the window size (~400

ms). Another problem arrives for extreme rate regimes. For very high drive, in which Dt would be

much shorter than the time it takes for spikes to propagate from a neuron to its neighbors, it is

unlikely that a power law can be recovered since activity becomes uncorrelated at that temporal res-

olution. On the other extreme, if there is almost no activity to be observed, a very large bin may

require unrealistic long recordings to produce power laws. These two extreme cases may explain

some of the residual error we found for left trials during PRE for monkey A (slightly larger avalanches

even after adaptive binning) and during POST for monkey B (slightly smaller avalanches even after

adaptive binning).

Another important point is that the advantages of criticality within a certain area allow it to opti-

mally process information, regardless of the nature of the input received by that area. In fact, one of

the advantages of criticality is maximal dynamic range (Kinouchi and Copelli, 2006; Shew et al.,

2009; Gautam et al., 2015), which means that the downstream network which employs criticality

will be able to respond properly for a larger range of different inputs. Nevertheless, it is possible

downstream neurons employ a sort of adaptive binning mechanism. It has been suggested in simula-

tions that the activity of an upstream network can influence how individual downstream neurons per-

form spatial and temporal integration at the synaptic level (Bernander et al., 1991; Rapp et al.,

1992). The more input a cell receives, the more synchronized these incoming spikes have to be in

order to produce a spike on the post-synaptic cell, effectively increasing the temporal resolution by

which this downstream cell process its input (Bernander et al., 1991), similarly to how our proposed

adaptive binning method works.

Neuronal avalanche dynamics are predominantly located in cortical layers 2/3 (Stewart and

Plenz, 2006; Petermann et al., 2009) and exhibit strong non-linear components involving the inter-

action between cortical sites, that is the interactions of neurons or neuronal groups

(Thiagarajan et al., 2010; Yu et al., 2011; Plenz, 2012). Accordingly, maintained avalanche dynam-

ics during self-initiated and cue-related responses suggest non-linear interactions in superficial layers

during cortical processing, which numerous studies have shown to be indeed the case. For example,

evoked responses in superficial layers of visual cortex in the nonhuman primate have been found to

be non-linear, potentially involving the local recurrent network (Williams and Shapley, 2007;

Xing et al., 2012). Similarly, functional connectivity based on the interaction from neuronal firing in

layer 2/3 of nonhuman primates has been found to contribute to motor coding (Hatsopoulos et al.,

1998) and to be as robust or even superior over tuning curves in predicting motor outcome

(Stevenson et al., 2012). With respect to their spatiotemporal spread, avalanches reveal a fractal

dimension when analyzed individually (Plenz, 2012), with nearest-neighbor relationships in the aver-

age (Gireesh and Plenz, 2008; Yu et al., 2014), in line with compact spatiotemporal spreading of

average evoked responses reported, for example, for premotor cortex (Rubino et al., 2006).

Our current findings may retroactively explain previous reports that found deviations from ava-

lanche dynamics during stimulus presentation. Arviv et al. (2015) found power law avalanche size

distribution when considering the full 1 s window for a visual detection task in human MEG record-

ings. This is consistent with our results when considering the entire period of task performance (~2

s). They also observed a trend toward supercritical dynamics during transient activity periods, just as

we found predominantly large avalanches during high rate periods. Our analysis, though, shows

adaptive binning as one potential approach to distinguish true supercritical dynamics from avalanche

dynamics. Fagerholm et al. (2015) reported subcritical dynamics during focused attention in human

EEG, in line with the observation of reduced correlations during such episodes (Cohen and Maun-

sell, 2009; Mitchell et al., 2009; Harris and Thiele, 2011). However, changes in activity levels were

not reported in that study, and size distributions were evaluated outside their cut-off (Yu et al.,

2014). Finally, early stimulus responses in the turtle’s visual system (Shew et al., 2015) have been
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reported to deviate from avalanches, a finding which might reflect the statistics of the stimulus used

rather than intrinsic cortical dynamics.

Numerical simulations of systems under external drive or with non-zero spontaneous neuronal

activity can never be truly critical, since the quiescent phase (and with it the transition connecting it

to an active phase) disappears under these conditions (Taylor et al., 2013; Hartley et al., 2014; Wil-

liams-Garcı́a et al., 2014). This effect is increasingly pronounced in simulations with small network

size and large activity drive. Given the relatively small change in firing rate observed during behavior

and the large size of the cortical network, our findings are in line with simulations that show weakly

driven critical system to exhibit power law behavior when the temporal resolution is matched to the

activity rate (Hartley et al., 2014).

In conclusion, our findings provide strong evidence that the scale-free organization of neuronal

avalanches is maintained during evoked responses in premotor and prefrontal cortex, despite sys-

tematic fluctuations in firing rates. We therefore suggest that neuronal information processing dur-

ing tasks might capitalize on various functional benefits shown for critical dynamics. This calls for

further investigation into how critical dynamics may explain the execution of specific brain functions.

Of equal importance, our results also shed new, methodological light on how to identify true devia-

tions from avalanche dynamics under pathological conditions.

Materials and methods

Behavioral training and electrophysiological setup
All procedures followed the Institute of Laboratory Animal Research (part of the National Research

Council of the National Academy of Sciences) guidelines and were approved by the NIMH Animal

Care and Use Committee (protocol #LSN-11). Two adult rhesus monkeys (Macaca mulatta) were sur-

gically implanted with a titanium head post each under sterile conditions while under isoflurane

anesthesia. After recovery, the monkeys were trained to sit head-fixed in a primate chair for behav-

ioral performance. In the cue-initiated task, monkey A (male, 9 years old, 8 kg) had to press a bar in

front of the chair upon presentation of the ‘trial-initiation’ cue on a computer screen (a grey square

in the center of the screen). After ~2 s, the initiation cue was followed by an ‘instruction’ cue, either

‘green cross’ or ‘red circle’, for the duration of 1 s. Upon cue disappearance, monkey A had to

release the bar and reach with his right arm to one of two specialized feeders (Mitz et al., 2001).

The ‘green cross’ instructed the monkey to reach to the left feeder for reward (‘left trials’; contralat-

eral to the reaching hand); a ‘red circle’ instructed reaching for the right feeder (‘right trials’; ipsilat-

eral to the reaching hand). Approaching the incorrect feeder rapidly triggered a proximity sensor to

sequester the food rewards in both feeders, which prevented the monkey from obtaining a reward

on that trial. The inter trial interval was 3–5 s. In the self-initiated motor task, monkey B (female, 8

years old, 7 kg) had to move her right arm to touch a pad placed ~30 cm in front of the monkey

chair after which a food reward was given. Pad touching was self-initiated: no cue was presented.

After the monkeys learned their respective tasks, a multi-electrode array (MEA; 96 channels -

10 � 10 without corners, inter-electrode distance: 400 mm; BlackRock Microsystems) was chronically

implanted in the left prefrontal area (area 46, monkey A; electrode length: 0.55 mm) or the arm rep-

resentative region of the left premotor cortex (monkey B; electrode length: 1 mm – PM

is thicker than PFC, therefore longer shanks were employed). After recovering from the implantation

surgery (~1 week), behavioral training resumed. The LFP (1–100 Hz band pass filtered; 2 kHz sam-

pling frequency) and extracellular unit activity (0.3–3 kHz band pass filtered; 30 kHz sampling fre-

quency) were simultaneously obtained from the implanted MEA. Electrophysiological signals as well

as the timing of behaviorally relevant events, for example touching the pad, presentation of visual

cues, etc., were stored for off-line analysis.

Unit analysis
Extracellular unit activity was extracted offline by spike sorting (Offline Sorter, Plexon Inc.). Putative

single-unit activity was identified whenever a clear clustering and separation of waveforms could be

identified in at least one feature space. In total, 29 and 43 putative single-units were identified in

monkeys A and B, respectively. For calculating the peristimulus time histogram (PSTH), firing rates

were calculated for a 250 ms window moving in steps of 50 ms. Statistical significance of firing rate
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changes was based on surrogate spike trains from individual units obtained by randomly permuting

inter-event intervals. Specifically, a firing rate change was considered significantly above (below)

expectation when it was among the top (bottom) 2.5% of the firing rate distribution obtained from

the shuffled data. For this analysis, left and right trials were treated separately for monkey A.

Fano Factor
We employed the method described by Churchland et al. (2010) to calculate the Fano Factor,

defined as the variance (over trials) of the spike count divided by the mean, in order to evaluate how

the variability of the neuronal population studied evolved with time. We computed the variance and

mean spike count for each time window (100 ms sliding window moving in steps of 40 ms) for each

neuron separately. After that, a linear regression was performed on the scatterplot of the variance

versus the mean spike count in which each point represents a single neuron. The slope of this regres-

sion measures the Fano Factor for the relevant time window, and the estimated error in the slope

calculation provides a 95% confidence interval. To account for the effect from the increase in firing

rate on the Fano Factor, a mean-match procedure was employed as described previously

(Churchland et al., 2010). In short, this procedure removes units from the analysis until the mean fir-

ing rate of the remaining units does not change significantly between the periods studied (see

Figures 1B and 4C; the amount of data surviving the respective mean-matching is given in the

legends). Statistical significance of changes in the Fano Factor due to the task was assessed by a

p-value computed from the probability of observing a given slope based on the confidence interval

calculated from the baseline level.

LFP analysis
Negative deflections in the LFP (nLFPs) were detected by applying a threshold at –2 (monkey A) or –

2.5 (monkey B) SD of the continuous LFP fluctuations estimated for each electrode separately (fixed

and adaptive binning; for adaptive thresholding see below). The time stamps of nLFPs, determined

by the data points with the largest negative amplitude, were then employed for avalanche analysis.

The same procedure employed to assess the significant of firing rates was also employed for nLFP

rates.

Avalanche analysis using fixed and adaptive temporal binning
Avalanches were identified by concatenating nLFPs occurring in successive time bins of width Dt on

the array into temporally contiguous spatiotemporal clusters as described originally (Beggs and

Plenz, 2003). The avalanche size was defined as the number of nLFPs within the avalanche. The tem-

poral resolution Dt for the avalanche analysis was defined by the inverse of the average nLFP rate on

the array over a given period and thus is not a free parameter. Two approaches for binning the data

were employed. The first one, fixed binning, was obtained by calculating the average nLFP rate

across all epochs (see Figures 1 and 4 for different epochs). The second one, adaptive binning, was

obtained by calculating the average nLFP rate over different epochs separately. Therefore, this sec-

ond method resulted in Dt that varied between epochs according to changes in the activity rate. The

adaptive binning method calculates the temporal resolution on a trial-by-trial basis, taking into

account highly variable responses across trials.

Significance of changes in average avalanche rate and size
In order to test for significant changes in average avalanche rate and size during task performance,

we compared the values from each point in time to those obtained from 100 shuffled sets, providing

a p-value. Significance was defined at p � 0:05. For size analysis, shuffled sets were constructed by

randomly permuting avalanche sizes, while keeping avalanche occurrence time (thus also keeping

the avalanche rate unchanged). For rate analysis, shuffled sets were constructed by randomly assign-

ing a new occurrence time (within the same trial, drawn from a uniform distribution) for each ava-

lanche. For monkey A, left and right trials were treated separately.

Avalanche size distribution analysis
In order to fit power laws and exponentials to the probability densities of avalanche size, and obtain

the corresponding exponents, we employed the Maximum Likelihood Estimation method, as
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previously described (Clauset et al., 2009; Klaus et al., 2011). The distribution used for the power

law fit had a sharp cut-off: p sð Þ ¼ Cs�aexp � s=s0ð Þg½ �, where the normalization constant is given by

C ¼ 1=
P

smax

s¼smin

s�aexp � s=s0ð Þg½ �

 !

. The three parameters to be determined were the exponent of the

power law a, the cut-off s0 and the strength of the decay beyond the cut-off g. In order to evaluate

the uncertainty in the size distributions, we employed a bootstrap procedure (Efron, 1979) to esti-

mate the 95% confidence interval for the probability density at each avalanche size from 1000

resampled data sets, which were obtained by randomly sampling the same number of avalanches

found in each case from the original distribution. In the case of model distributions (see below), 100

different instances of the network were simulated, from which the confidence intervals were

obtained.

The significance of the different fits to the data was obtained by employing the likelihood test:

D ¼ �2 ln Lpl
� �

� ln Laltð Þ
� �

, where D is the test statistics and Lpl is the likelihood for the power-law fit.

A p-value is obtained using the calculated statistics from the chi-squared distribution. When compar-

ing power laws to exponentials Lalt is the likelihood for the exponential fit, and the p-value computes

the chances that the fit with lower likelihood value is actually better. When comparing different dis-

tributions Lalt is the likelihood for the alternative power-law fit (e.g. when comparing PRE distribution

to BASE in Figure 6A right, the alternative fit is the one obtained for the BASE distribution). In this

case, the p-value computes the chances that the compared distribution cannot be explained by the

alternative fit or, in other words, how similar they are. Note that a p-value above 0.05 in this case

does not imply that the distributions are significantly different (whereas p-values of 0.05 or lower

indicate that the distributions are significantly similar).

Trial shuffling
In order to assess the influence of rate modulation introduced by the task on avalanche size distribu-

tions, we compared the original data to data obtained by randomly shuffling the trial order for each

electrode independently, that is, the shift predictor (Gerstein and Perkel, 1969; 1972). This proce-

dure created datasets that preserved the average change in nLFP rate for all electrodes and trials,

but destroyed spatio-temporal correlations within individual trials.

Cellular automaton models
To study the interplay between avalanches and activity rate, we employed a network of 10 � 10 cel-

lular automata (Kinouchi and Copelli, 2006; Ribeiro et al., 2014). Each site, which represents the

activity of a single channel from the experimental data, cycles through its 11 states: xi tð Þ ¼ 0 if the ith

site is quiescent at time t, xi tð Þ ¼ 1 if it is active, and xi tð Þ ¼ 2; . . . ; 10 if it is refractory. A quiescent

site at time t can become active at t + 1 if any of its pre-synaptic neighbors is active at t and trans-

mits successfully, each connection independently with probability P. Once a site is active, its state is

incremented according to the following equation until it is back to quiescence: xi t þ 1ð Þ ¼

xi tð Þ þ 1½ � mod 11 (deterministic refractory period). Each site sends k ¼ 16 connections to randomly

chosen post-synaptic sites, thus forming a random network. Each connection has a probability P of

transmitting a spike, which was tuned according to P ¼ 1=k in order to achieve critical dynamics in

the network. For avalanche initiation, we randomly chose a site to become active in an otherwise qui-

escent network. After the propagation of activity ended, a time interval drawn from the inter-ava-

lanche interval distribution obtained from experimental data was imposed before another avalanche

was initiated.

In this model, the event, that is nLFP, rate was adjusted according to the baseline level in the

experimental data by employing a time step of 2 ms (implying a refractory period of 18 ms). Four

different approaches to introduce a transient increase in the activity rate, as observed in the record-

ings from both monkeys, were studied. In the Input driven model, we added independent Poisson

inputs that triggered avalanches for each site, with a rate that increases and then decreases linearly

from trial time –0.35 s to –0.05 s, peaking at two different possible levels: in the low drive regime,

hmax ¼ 1 s�1 and in the high drive regime, hmax ¼ 6:5 s�1. In the supercritical model, we increased the

probability of transmission P by multiplying it by a modifier with the same temporal profile described

above for the drive, with the modifier ranging from 1 (no change) to a maximum of either 1.5 (50%

increase in the probability of spike transmission) or 2.5 (150% increase). Note that this led to both
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increased activity rate and supercritical dynamics. In the Poisson noise model, we added indepen-

dent Poisson inputs that could not trigger avalanches to each site, with a rate similar to the one

employed for the Input driven model, but peaking at either 17.5 s�1 (low-noise regime) or 35 s�1

(high-noise regime).

For avalanche analysis, the methods used for experimental data were also employed for the

model. In order to reduce artificial separations of single avalanches during adaptive binning, that

is when Dt becomes smaller than the time step of the model, we introduced a small jitter in event

times (� half of the 2 ms time-step). This procedure effectively transformed the discrete temporal

dynamics of the model into a continuous one. Jittering did not change our results for experimental

data or simulations (data not shown).

Adaptive thresholding
For each electrode, the mean LFP amplitude and SD were calculated for consecutive windows of

duration 100 ms. For each window, the adaptive threshold thr was set to mean – 2SD.

Synchronization measures
We derived estimates of mean phase synchronization for band-pass filtered data. After filtering the

data (50–100 Hz frequency band; phase neutral filter by applying a second-order Butterworth filter

in both directions), we first obtained a phase trace qi(t) from each LFP channel Fi(t) by applying its

Hilbert transform H[Fi(t)]: �i tð Þ ¼ tan�1 H Fi tð Þ½ �=Fi tð Þð Þ. Next, we quantified the mean synchrony R in

each segment by R ¼ r tð Þh i ¼ L�1
PL

t¼1
r tð Þ, where L is the length of the data segment in samples

and r(t) is the Kuramoto order parameter: r tð Þ ¼ N�1
PN

j¼1
ei�j tð Þ

�

�

�

�

�

�, which was used as a time-depen-

dent measure of phase synchrony. Here, N is the number of channels in the data segment. The

length of the segment in samples L is the product of the time segment considered (0.4 s) and the

sampling frequency (2000 Hz), that is L ¼ 800.
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Supèr H, van der Togt C, Spekreijse H, Lamme VA. 2003. Internal state of monkey primary visual cortex (V1)
predicts figure-ground perception. Journal of Neuroscience 23:3407–3414. PMID: 12716948

Tagliazucchi E, Balenzuela P, Fraiman D, Chialvo DR. 2012. Criticality in large-scale brain FMRI dynamics unveiled
by a novel point process analysis. Frontiers in Physiology 3:15. DOI: https://doi.org/10.3389/fphys.2012.00015,
PMID: 22347863

Taylor TJ, Hartley C, Simon PL, Kiss IZ, Berthouze L. 2013. Identification of criticality in neuronal avalanches: I. a
theoretical investigation of the non-driven case. The Journal of Mathematical Neuroscience 3:5. DOI: https://
doi.org/10.1186/2190-8567-3-5, PMID: 23618010

Yu et al. eLife 2017;6:e27119. DOI: https://doi.org/10.7554/eLife.27119 21 of 22

Research article Neuroscience

https://doi.org/10.1038/nphys1757
http://www.ncbi.nlm.nih.gov/pubmed/21804861
http://www.ncbi.nlm.nih.gov/pubmed/21804861
https://doi.org/10.1016/j.neuron.2009.09.013
http://www.ncbi.nlm.nih.gov/pubmed/19778515
https://doi.org/10.1016/S0165-0270(01)00406-X
https://doi.org/10.1016/S0165-0270(01)00406-X
http://www.ncbi.nlm.nih.gov/pubmed/11513947
https://doi.org/10.1103/PhysRevLett.100.058702
http://www.ncbi.nlm.nih.gov/pubmed/18352443
https://doi.org/10.1073/pnas.1216855110
http://www.ncbi.nlm.nih.gov/pubmed/23401536
https://doi.org/10.1073/pnas.0904089106
https://doi.org/10.1073/pnas.0904089106
http://www.ncbi.nlm.nih.gov/pubmed/19717463
https://doi.org/10.1140/epjst/e2012-01575-5
https://doi.org/10.3389/fnsys.2014.00108
http://www.ncbi.nlm.nih.gov/pubmed/25009473
https://doi.org/10.1016/j.neuron.2012.04.018
http://www.ncbi.nlm.nih.gov/pubmed/22681691
https://doi.org/10.1162/neco.1992.4.4.518
https://doi.org/10.1016/j.physd.2006.12.005
https://doi.org/10.1371/journal.pone.0094992
http://www.ncbi.nlm.nih.gov/pubmed/24751599
https://doi.org/10.1038/nn1802
http://www.ncbi.nlm.nih.gov/pubmed/17115042
https://doi.org/10.1103/PhysRevLett.113.068102
http://www.ncbi.nlm.nih.gov/pubmed/25148352
https://doi.org/10.1523/JNEUROSCI.3474-14.2014
http://www.ncbi.nlm.nih.gov/pubmed/25505314
https://doi.org/10.1038/nphys3370
https://doi.org/10.1523/JNEUROSCI.3864-09.2009
https://doi.org/10.1523/JNEUROSCI.3864-09.2009
http://www.ncbi.nlm.nih.gov/pubmed/20007483
https://doi.org/10.1523/JNEUROSCI.4637-10.2011
https://doi.org/10.1523/JNEUROSCI.4637-10.2011
http://www.ncbi.nlm.nih.gov/pubmed/21209189
https://doi.org/10.1523/JNEUROSCI.4286-12.2013
https://doi.org/10.1523/JNEUROSCI.4286-12.2013
http://www.ncbi.nlm.nih.gov/pubmed/23595765
https://doi.org/10.1371/journal.pcbi.1004043
http://www.ncbi.nlm.nih.gov/pubmed/25590427
https://doi.org/10.1371/journal.pcbi.1002775
https://doi.org/10.1371/journal.pcbi.1002775
http://www.ncbi.nlm.nih.gov/pubmed/23166484
https://doi.org/10.1523/JNEUROSCI.0723-06.2006
https://doi.org/10.1523/JNEUROSCI.0723-06.2006
http://www.ncbi.nlm.nih.gov/pubmed/16885228
http://www.ncbi.nlm.nih.gov/pubmed/12716948
https://doi.org/10.3389/fphys.2012.00015
http://www.ncbi.nlm.nih.gov/pubmed/22347863
https://doi.org/10.1186/2190-8567-3-5
https://doi.org/10.1186/2190-8567-3-5
http://www.ncbi.nlm.nih.gov/pubmed/23618010
https://doi.org/10.7554/eLife.27119


Thiagarajan TC, Lebedev MA, Nicolelis MA, Plenz D. 2010. Coherence potentials: loss-less, all-or-none network
events in the cortex. PLoS Biology 8:e1000278. DOI: https://doi.org/10.1371/journal.pbio.1000278, PMID: 200
84093

Tomen N, Rotermund D, Ernst U. 2014. Marginally subcritical dynamics explain enhanced stimulus
discriminability under attention. Frontiers in Systems Neuroscience 8:151. DOI: https://doi.org/10.3389/fnsys.
2014.00151, PMID: 25202240

Tsodyks M, Kenet T, Grinvald A, Arieli A. 1999. Linking spontaneous activity of single cortical neurons and the
underlying functional architecture. Science 286:1943–1946. DOI: https://doi.org/10.1126/science.286.5446.
1943, PMID: 10583955

Vespignani A, Zapperi S. 1998. How self-organized criticality works: A unified mean-field picture. Physical Review
E 57:6345–6362. DOI: https://doi.org/10.1103/PhysRevE.57.6345

Weinrich M, Wise SP, Mauritz KH. 1984. A neurophysiological study of the premotor cortex in the rhesus
monkey. Brain 107:385–414. DOI: https://doi.org/10.1093/brain/107.2.385, PMID: 6722510

Williams PE, Shapley RM. 2007. A dynamic nonlinearity and spatial phase specificity in macaque V1 neurons.
Journal of Neuroscience 27:5706–5718. DOI: https://doi.org/10.1523/JNEUROSCI.4743-06.2007,
PMID: 17522315

Williams-Garcı́a RV, Moore M, Beggs JM, Ortiz G. 2014. Quasicritical brain dynamics on a nonequilibrium
Widom line. Physical Review E 90:062714. DOI: https://doi.org/10.1103/PhysRevE.90.062714, PMID: 25615136

Wise SP, Murray EA. 2000. Arbitrary associations between antecedents and actions. Trends in Neurosciences 23:
271–276. DOI: https://doi.org/10.1016/S0166-2236(00)01570-8, PMID: 10838597

Womelsdorf T, Fries P, Mitra PP, Desimone R. 2006. Gamma-band synchronization in visual cortex predicts
speed of change detection. Nature 439:733–736. DOI: https://doi.org/10.1038/nature04258, PMID: 16372022

Xing D, Yeh CI, Burns S, Shapley RM. 2012. Laminar analysis of visually evoked activity in the primary visual
cortex. PNAS 109:13871–13876. DOI: https://doi.org/10.1073/pnas.1201478109, PMID: 22872866

Yang H, Shew WL, Roy R, Plenz D. 2012. Maximal variability of phase synchrony in cortical networks with
neuronal avalanches. Journal of Neuroscience 32:1061–1072. DOI: https://doi.org/10.1523/JNEUROSCI.2771-
11.2012, PMID: 22262904

Yu S, Klaus A, Yang H, Plenz D. 2014. Scale-invariant neuronal avalanche dynamics and the cut-off in size
distributions. PLoS One 9:e99761. DOI: https://doi.org/10.1371/journal.pone.0099761, PMID: 24927158
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