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Autoimmune pancreatitis (AIP) is a chronic fibro-inflammatory disorder of the pancreas.
Recent clinicopathological analysis revealed that most cases of AIP are pancreatic
manifestations of systemic IgG4-related disease (IgG4-RD), a newly established disease
characterized by enhanced IgG4 antibody responses and the involvement of multiple
organs. Although the immuno-pathogenesis of AIP and IgG4-RD has been poorly defined,
we recently showed that activation of plasmacytoid dendritic cells (pDCs) with the ability to
produce large amounts of IFN-a and IL-33 mediates chronic fibro-inflammatory responses
in experimental and human AIP. Moreover, M2 macrophages producing a large amount of
IL-33 play pathogenic roles in the development of human IgG4-RD. Interestingly, recent
studies including ours provide evidence that compositional alterations of gut microbiota are
associated with the development of human AIP and IgG4-RD. In addition, intestinal
dysbiosis plays pathological roles in the development of chronic pancreatic inflammation
as dysbiosis mediates the activation of pDCs producing IFN-a and IL-33, thereby causing
experimental AIP. In this Mini Review, we focus on compositional alterations of gut
microbiota in AIP and IgG4-RD to clarify the mechanisms by which intestinal dysbiosis
contributes to the development of these disorders.
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INTRODUCTION

Intestinal bacteria residing in the human gastrointestinal (GI) tract are essential components for the
development of mucosal immune system, facilitation of digestion and absorption of food, and
modulation of glucose metabolism (1–3). Microbial communities in the GI tract are composed of
more than 1014 microorganisms and live symbiotically with the host (1–3). It is now generally
accepted that compositional and functional alterations of the gut microbiome also known as
intestinal dysbiosis, are involved in the development of GI tract diseases as shown by the well-
established relationship between intestinal dysbiosis and inflammatory bowel disease (IBD) (1–3).
In fact, excessive pro-inflammatory cytokine responses against intestinal microbiota underlie the
immuno-pathogenesis of IBD (4, 5). It should be noted, however, that intestinal dysbiosis plays
pathogenic roles in the development of not only GI tract diseases but also those affecting parts other
than the GI tract. In line with this concept, accumulating evidence suggests possible involvement of
org March 2021 | Volume 12 | Article 6215321

https://www.frontiersin.org/articles/10.3389/fimmu.2021.621532/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.621532/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:tomohiro@med.kindai.ac.jp
https://doi.org/10.3389/fimmu.2021.621532
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.621532
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.621532&domain=pdf&date_stamp=2021-03-23


Yoshikawa et al. Gut Microbiota and Pancreatitis
intestinal dysbiosis in the development of several pancreatic
diseases such as acute pancreatitis, chronic pancreatitis (CP),
and pancreatic cancer (6–10).

Autoimmune pancreatitis (AIP) and CP are two major forms
of chronic fibro-inflammatory disorders of the pancreas. CP is
caused by frequent episodic activation of intrapancreatic digestive
enzymes (9). Notably, environmental factors including excessive
consumption of alcohol and smoking increase the risk of CP (9).
Clinicopathological analyses revealed that AIP is a pancreatic
manifestation of systemic IgG4-related disease (IgG4-RD), a new
disease characterized by elevated concentrations of serum IgG4
antibody (Ab), accumulation of IgG4-expressing plasma cells into
the affected organs, and involvement of multiple organs (11–14).
Recent identification of candidate autoantigens in AIP and IgG4-
RD support the concept that AIP and IgG4-RD are driven by
autoimmune responses (15–17). Although enhanced IgG4 Ab
responses are a hallmark of AIP and IgG4-RD, it remains
unknown whether this IgG subtype plays pathogenic roles in
these disorders. Shiokawa et al. directly addressed this issue by
passively transferring patient IgG subtypes into neonatal mice and
found that IgG1 Ab rather than IgG4 Ab has pathogenicity which
drives chronic inflammation in AIP and IgG4-RD (18). Thus,
enhanced IgG4 Ab responses seen in AIP and IgG4-RD are
considered as epiphenomenon reflecting chronic inflammation.
This notion is fully supported by the fact that IgG4 Ab exhibits
poor ability to activate the complement system and Fc-g
receptors (19).

Considering that intestinal dysbiosis is observed in patients
with autoimmune diseases (1–3, 20), excessive innate immune
responses against intestinal microflora are likely to be involved in
the development of AIP and IgG4-RD. However, little has been
understood regarding the molecular mechanisms of intestinal
dysbiosis and how they induce chronic fibro-inflammatory
responses in the pancreas of AIP patients. Recently, we found
that intestinal dysbiosis causes chronic fibro-inflammatory
responses in the pancreas through activation of plasmacytoid
dendritic cells (pDCs) with the ability to produce a large amount
of IFN-a and IL-33 (21, 22). In this Mini-review article, we
discuss the relationship between intestinal dysbiosis and AIP.
INNATE IMMUNE CYTOKINES IN AIP

Innate immunity is an initial component of the immune system
involved in the eradication of invading microbial pathogens (23,
24). Toll-like receptors (TLRs) and nucleotide-binding
oligomerization domain (NOD)-like receptors (NLRs) are
innate immune receptors which recognize microbe-associated
molecular patterns (MAMPs) and induce pro-inflammatory
cytokine responses for host defense against invading microbes
(23, 24). Although AIP and IgG4-RD are characterized by
enhanced IgG4 Ab production, i.e., adaptive immunity, recent
studies highlight the importance of innate immunity as shown by
enhanced expression of TLRs in the pancreas and salivary glands
of patients with AIP and IgG4-RD (25, 26). Moreover, the roles
played by TLR7 expressed in M2 macrophages have been
Frontiers in Immunology | www.frontiersin.org 2
particularly implicated in the pathogenesis of AIP and IgG4-
RD (25, 27).

Activation of TLRs and NLRs in antigen-presenting cells
(APCs) such as macrophages and dendritic cells results in pro-
inflammatory cytokine responses through activation of
transcription factors (23, 24). If innate immune responses
against intestinal microbiota are involved in the development of
AIP, then which types of cytokines cause chronic fibro-
inflammatory responses in the pancreas? To identify pathogenic
cytokines and APCs, we utilized a well-established model of
experimental AIP (28, 29). Repeated intraperitoneal injection of
polyinosinic-polycytidylic acid (poly (I:C)), a synthetic TLR3
ligand, into MRL/MpJ mice led to the generation of pancreatic
chronic fibro-inflammatory responses characterized by
destruction of acinar architecture, immune cell infiltration, and
fibrosis (30). Although this experimental AIP model shares
pathologic findings with human AIP, its molecular mechanisms
have been poorly defined. To explore pathogenic APC populations
responsible for the development of experimental AIP, we
determined alterations in the percentages of innate immune cells
which accumulated in the pancreas of MRL/MpJ mice (28).
Interestingly, the pancreas of AIP mice was characterized by a
marked increase in the number of pDCs, defined as pDC antigen-
1+B220low cells by flow-cytometric analysis, as compared with that
of control non-treated mice (28). pDCs are a specialized DC
population with the ability to produce a large amount of IFN-a
upon recognition ofMAMPs by TLRs (31, 32). Activation of pDCs
followed by a robust production of IFN-a plays critical roles in the
development of experimental AIP since systemic administration of
pDCs-depleting Ab or type I IFN receptor neutralizing Ab almost
completely prevented the development of AIP (28).

A specific form of fibrosis, called storiform fibrosis, is one of
the characteristic pathological findings in AIP and IgG4-RD. In
the case of experimental CP, type I IFN responses cause
profibrogenic IL-33 production by pancreatic acinar cells (33).
These findings obtained from an experimental CP model led us
to examine roles played by IL-33 in experimental AIP. Pancreatic
expression of IL-33 was much higher in MRL/MpJ mice treated
with repeated injections of poly (I:C) than in non-treated mice
(29). Depletion and purification studies using pancreatic
mononuclear cells showed that pDCs are a cellular source of
IL-33 and that pDCs produce this cytokine in a type I IFN-
dependent manner (29). Neutralization of IL-33-mediated
signaling pathways by ant-ST2 Ab attenuated chronic fibro-
inflammatory responses in mice treated with poly (I:C) (29).
These data support the view that activation of pDCs producing
both IFN-a and IL-33 underlie the immuno-pathogenesis of
experimental AIP (Figure 1).

Clinical relevance of the above findings obtained in murine
experimental models of AIP was tested in human clinical
samples. pDCs expressing IFN-a and/or IL-33 accumulate in
the pancreas of patients with IgG4-related AIP, but not chronic
alcoholic pancreatitis or non-cancerous portions of pancreatic
cancer (28, 29, 34). In addition, peripheral blood pDCs isolated
from patients with IgG4-related AIP efficiently induced IgG4 Ab
production upon co-culture with healthy control B cells as
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compared with healthy control pDCs (28, 29). Taken together,
these results strongly suggest that activation of pDCs and robust
production of IFN-a and IL-33 are prominent features of murine
experimental and human AIP. This idea has been fully supported
by recent identification of serum IFN-a and IL-33 as novel
biomarkers for human AIP and IgG4-RD (35). Although
recognition of MAMPs by TLR7 or TLR9 in pDCs induces
IFN-a production (31, 32), the involvement of these TLRs in
pDCs needs to be determined (Figure 1).

The cellular source of IL-33 is not limited to pDCs alone since
M2 macrophages expressing IL-33 are localized in the salivary
glands of patients with IgG4-RD (27). Dual immunofluorescence
analyses clearly showed that IL-33 was colocalized with M2
macrophages expressing CD68 or CD163 in the salivary glands
of patients with IgG4-RD (27). Importantly, TLR7 expression
was significantly higher in the salivary glands of patients with
IgG4-RD than those with Sjogren syndrome or healthy controls
(25, 27). CD163+ M2 macrophages isolated from patients with
IgG4-RD produced a large amount of IL-33 upon stimulation
with TLR7 ligands (25, 27). Furthermore, transgenic mice
expressing the human TLR7 displayed autoimmune sialadenitis
and pancreatitis which were accompanied by enhanced IL-33
production. These data imply that TLR7 activation in M2
macrophages mediate the development of IgG4-RD through
IL-33 production (Figure 1).

INTESTINAL DYSBIOSIS IN
EXPERIMENTAL AIP

Recognition of MAMPs derived from intestinal microbiota by
TLRs induces IFN-a production by pDCs (31, 32). Thus,
Frontiers in Immunology | www.frontiersin.org 3
intestinal dysbiosis might be one of the possible triggers for the
development of AIP and IgG4-RD. To determine the roles played
by immune responses against intestinal microbiota in the
development of experimental AIP, MRL/MpJ mice were
treated with a broad range of antibiotics in their drinking
water in combination with repeated injections of poly (I:C)
(21). Bowel sterilization by antibiotic treatment inhibited the
development of experimental AIP induced by poly (I:C) and
resulted in a marked reduction in pancreatic accumulation of
pDCs producing IFN-a and IL-33 (21). Severity of AIP in MRL/
MpJ mice depends upon the doses of poly (I:C); repeated
injections of 100 mg and 10 mg of poly (I:C) induces severe and
mild types of AIP, respectively (21). This relationship between
poly (I:C) doses and AIP severity enabled us to address whether
intestinal dysbiosis alters sensitivity to experimental AIP through
co-housing and fecal microbiota transplantation (FMT) studies.
In the co-housing and FMT experiments to evaluate the effects of
transmission of intestinal microbiota, we found that
transmission of intestinal microflora from severe AIP mice
treated with 100 mg of poly (I:C) altered the disease severity of
mice treated with 10 mg of poly (I:C). Transmission of intestinal
microflora from mice with severe AIP promoted pancreatic
accumulation of pDCs producing IFN-a and IL-33 (21). Taken
together, these studies provide evidence that intestinal dysbiosis
mediates experimental AIP through activation of pDCs
producing IFN-a and IL-33 (Figure 1).
INTESTINAL DYSBIOSIS IN HUMAN AIP

Clinical relevance of intestinal dysbiosis was examined in human
fecal samples from patients with IgG4-associated AIP. Gut
FIGURE 1 | Intestinal dysbiosis and autoimmune pancreatitis. Intestinal dysbiosis activates plasmacytoid dendritic cells (pDCs) which produce IFN-a and IL-33. Klebsiella
pneumoniae and microbe-associated molecular patterns (MAMPs) activate pancreatic pDCs to produce IFN-a and IL-33. Recognition of MAMPs by toll-like receptor 7
(TLR7) and exposure to short-chain fatty acids (SCFAs) and bile acids may lead to IL-33 production by M2 macrophages. Accumulation of pDCs and M2 macrophages
in the pancreas causes infiltration of immune cells including IgG4-expressing plasmacytes, B cells, and T cells, destruction of acinar architecture, and fibrosis.
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microbiota profiles are different between patients with AIP and
CP and the proportions of Bacteroides, Streptococcus, and
Clostridium species were higher in the latter disease (36). Oral
administration of prednisolone (PSL) induces clinical remission
in most cases of AIP and IgG4-RD (11–14). We initially
addressed alterations in fecal microbiota composition in three
patients with IgG4-associated AIP (22). Although a variety of
alterations in fecal microbiota were seen after induction of
remission in these three patients, the most striking finding was
the complete disappearance of Klebsiella pneumoniae (K.
pneumoniae) from the feces in two of three patients. Thus,
induction of remission might be associated with disappearance
of K. pneumoniae in patients with IgG4-associated AIP. To
determine pathogenicity of K. pneumoniae in AIP, MRL/MpJ
mice were orally treated with heat-killed K. pneumoniae in
combination with an injection of 10 mg of poly (I:C). We
found that the severity of experimental AIP was greater in
mice treated with oral administration of K. pneumoniae and
injection of 10 mg of poly (I:C) than in those with either
treatment alone. Moreover, the development of severe AIP in
mice that received both treatments was accompanied by
pancreatic accumulation of pDCs producing IFN-a and IL-33
(22). These data strongly suggest that gut colonization of K.
pneumoniae increases the sensitivity of AIP through activation of
pDCs which produce IFN-a and IL-33. Pathogenicity of K.
pneumoniae was also reported in a previous report showing
that immunization with a mixure of extract of pooled pancreas
from syngeneic mice and the capsular polysaccharide of K.
pneumoniae led to the development of chronic fibro-
inflammatory responses in the pancreas (37). Collectively,
these studies strongly support involvement of intestinal
dysbiosis in the development of AIP. It should be emphasized
that intestinal dysbiosis enhances the sensitivity to AIP through
the activation of pDCs, but cannot cause AIP on its own. Thus,
intestinal dysbiosis functions as a disease intensifier rather than a
primary pathogenic factor in the development of AIP (Figure 1).

As previously mentioned, M2 macrophages which express
TLR7 contribute to the development of AIP and IgG4-RD (25,
27). However, it remains unknown whether intestinal dysbiosis
seen in AIP promotes IL-33 production by M2 macrophages.
Recognition of MAMPs by TLR7 in the presence of dysbiosis
might be involved in the development of IgG4-RD and AIP.

Molecular mechanisms involved in the activation of pDCs
and M2 macrophages by intestinal dysbiosis have been poorly
defined. In this regard, two possibilities have been considered:
the first one is that intestinal dysbiosis activates pDCs or M2
macrophages residing in the GI tract and then these cells migrate
to the pancreas. The second possibility is that pDCs or M2
macrophages in the pancreas are directly activated by intestinal
bacteria translocated into this organ. We think that the latter is
more likely because pancreatic pDCs isolated from mice
exhibiting AIP produced large amounts of IFN-a and IL-33
upon stimulation with K. pneumoniae (22). Moreover, the fact
that pDCs from the Peyer’s patches are unable to produce IFN-a
upon stimulation with TLR7 and TLR9 ligands supports the
second option (38).
Frontiers in Immunology | www.frontiersin.org 4
INTESTINAL DYSBIOSIS AND ADAPTIVE
IMMUNITY ASSOCIATED WITH AIP

A wide varieties of T cell subpopulations including T helper type
2 (Th2) cells, regulatory T cells (Tregs), and follicular helper T
cells have been identified in the peripheral blood and affected
organs in AIP and IgG4-RD (12). Haruta et al. developed a
unique model of murine experimental AIP caused by repeated
exposures to Escherichia coli (39). Splenocytes isolated frommice
inoculated with E. coli efficiently induced AIP in RAG2-deficient
mice upon adaptive transfer, suggesting that the development of
this unique AIP requires adaptive immune responses (39).
Although the relationship between intestinal dysbiosis and
effector CD4+ T cell responses has not been elucidated, pDCs
or M2 macrophages may be involved in the generation of effector
T cell responses. Given that IL-33 is a well-established activator
of Th2 responses (40), IL-33 produced by pDCs or M2
macrophages in response to intestinal dysbiosis may promote
differentiation of Th2 cells (21, 25, 27, 29, 34). Moreover, pDCs
enhance proliferation of forkhead box P3 (Foxp3)+ Tregs (31,
41). Therefore, it is plausible that intestinal dysbiosis mediates
effector T cell responses through the interaction with pDCs and
M2 macrophages. In addition, MAMPs derived from intestinal
bacteria have been reported to be potent stimulators of IgG4 Ab
class-switch recombination in a co-culture system composed of
monocytes and naïve B cells (42), suggesting that exposure to
intestinal microbiota can augment IgG4 Ab responses
characterizing AIP and IgG4-RD. Verification of this idea
awaits future studies.

Recently, candidate auto-antigens have been successfully
identified in AIP and IgG4-RD (15–17). It would be intriguing
to determine the effects of intestinal dysbiosis on adaptive
immunity specific to pathogenic antigens. The molecular
mimicry between intestinal bacteria and these autoantigens can
be a trigger for the generation of pathogenic adaptive immune
responses. Alternatively, cytokines including IFN-a and IL-33
augment pathogenic antigen-specific immune responses.
MICROBIAL METABOLITES AND AIP

Intestinal microbiota engage in diverse metabolic processes
including fermentation of amino acids, generation of vitamins,
and modification of bile acids (2, 43). Although the effects of
microbial metabolites on immune responses associated with AIP
have not been studied, intestinal dysbiosis may result in alterations
of microbial metabolites. Short-chain fatty acids (SCFAs) are
produced by microbiota after fermentation of dietary fibers and
have been shown to facilitate the polarization and function of M2
macrophages (44). Bile acids activate the transmembrane G
protein-coupled receptor 5 (TGR5) and farnesoid X receptor
(FXR) expressed in macrophages. Activation of TGR5 and FXR
leads to M2 macrophage differentiation (45, 46). Investigating
whether SCFAs and bile acids promote IL-33 production by M2
macrophages is an interesting research question. Given that
SCFAs efficiently induce differentiation of Tregs (47), SCFAs
March 2021 | Volume 12 | Article 621532
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and bile acids may act together to generate immune environments
causing AIP and IgG4-RD. It should be noted, however, that
future studies must be done to investigate alterations in microbial
metabolites in AIP.
CONCLUSIONS

Recent studies using experimental models of AIP highlight the
importance of intestinal dysbiosis in the development of chronic
fibro-inflammatory responses in the pancreas. Alterations in gut
microbiota composition may function as a disease intensifier
rather than a direct pathogenic factor through activation of pDCs
which produce IFN-a and IL-33 and M2 macrophages which
express TLR7. It should be noted, however, that recent data
regarding fecal microbiota composition in human AIP were
obtained by using a limited number of patients (22, 36). Thus,
fecal microbiota analyses using a large number of AIP patients
are absolutely required. Moreover, molecular mechanisms of AIP
induction via the gut-pancreas axis have been poorly defined.
The sites in which pathogenic immune responses are generated
have not been clarified. It remains largely unknown whether
intestinal bacteria translocating to the pancreas activate in situ
immune responses or gut immune cells activated by intestinal
dysbiosis migrate to the pancreas to cause pancreatitis? Intestinal
bacteria with the ability to promote or inhibit pancreatic
inflammation have not been identified. Further studies are
Frontiers in Immunology | www.frontiersin.org 5
necessary to establish the link between intestinal dysbiosis and
murine and human AIP.
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