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ABSTRACT
Hepatitis B virus (HBV) is a hepatotropic virus and an important human pathogen. There are an 
estimated 296 million people in the world that are chronically infected by this virus, and many of 
them will develop severe liver diseases including hepatitis, cirrhosis and hepatocellular carcinoma 
(HCC). HBV is a small DNA virus that replicates via the reverse transcription pathway. In this 
review, we summarize the molecular pathways that govern the replication of HBV and its 
interactions with host cells. We also discuss viral and non-viral factors that are associated with 
HBV-induced carcinogenesis and pathogenesis, as well as the role of host immune responses in 
HBV persistence and liver pathogenesis.
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Introduction

Hepatitis B virus (HBV) is a hepatotropic virus that can 
cause severe liver diseases including acute and chronic 
hepatitis, cirrhosis and hepatocellular carcinoma 
(HCC). It was first detected in the serum of 
Australian aborigines during the 1960s [1]. The newly 
discovered antigen at that time, initially named 
“Australia antigen” and presently called HBV surface 
antigen (HBsAg), was frequently observed in leukemia 
patients. It has since become clear that hepatitis B is 
a widespread disease, and more than 2 billion people in 
the world have been exposed to HBV. The World 
Health Organization (WHO) estimated that 
296 million people were chronically infected by HBV 
in 2019 (https://www.who.int/news-room/fact-sheets 
/detail/hepatitis-b). In endemic areas such as in Sub- 
Saharan Africa and Asia-Pacific countries, the mother- 
to-child transmission at birth, also known as vertical 
transmission, is the most common way of transmission. 
People who acquired HBV early in life would often 
become chronic carriers of the virus without therapeu-
tic intervention. HBV can also be transmitted via sex or 
contaminated needles during injection drug use. The 
transmission of HBV between adults, also known as the 
horizontal transmission, usually leads to self-limited 
acute infection.

HBV is a hepatotropic virus that belongs to the 
family of hepadnaviridae. It has a narrow host range 

and infects only humans and a few other primate 
species. HBV is spherical in shape with a diameter of 
42 nm. The mature and infectious HBV particle is also 
called Dane particle[2]. HBV has a lipid envelope, 
which can be removed by non-ionic detergents to 
expose the ~27-nm viral core [3,4]. The core particle, 
also known as the capsid particle, contains an endogen-
ous DNA polymerase activity and a circular and par-
tially double-stranded DNA with a length of 
approximately 3.2 kilobases (kb) [5–7]. The viral 
DNA polymerase also has the reverse transcriptase 
(RT) activity. In addition, a kinase activity is also 
detected inside the core particle[8]. There are three 
related viral envelope glycoproteins named large (L), 
middle (M), and small (S) HBsAg, which are also 
known as preS1, preS2 and major S proteins, respec-
tively. These three envelope proteins are inserted in the 
envelope of the virion at a mass ratio of approximately 
3:2:5 or a molar ratio of 1:1:4[9]. The core particle 
displays the core antigenic determinant known as the 
core antigen (HBcAg). It consists of 90 or 120 core 
protein dimers[9], which form the shell of the core 
particle. A mature HBV virion has a buoyant density 
of 1.24 to 1.26 g/cm3.

During infection, complete and incomplete HBV 
viral particles are released into the serum of patients. 
Complete HBV particles are the infectious Dane parti-
cles and their titers in the blood can be as high as 109 
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genome copies per ml. In contrast, incomplete viral 
particles are subviral particles (SVPs) consisting of 
mostly 22-nm spherical and filamentous particles, 
which are noninfectious and can reach up to 1014 

particles per ml11. SVPs consist of only the surface 
proteins and host-derived lipids and lack the core par-
ticle. The 22-nm spherical particles contain primarily 
M and S surface proteins with a mass ratio of 1:4 and 
a small amount of the L protein, while the 22-nm 
filamentous particles contain L, M, and S surface pro-
teins with a mass ratio of roughly 1:1:4. This class of 
SVPs has a buoyant density of 1.18 g/cm3. The biolo-
gical function of this enormous amount of SVPs in the 
patient serum is unclear. The possibility that they may 
serve as decoys to sequester host neutralizing antibo-
dies had been proposed [10,11].

Another class of circulating viral particles is the 
empty virions, which contain the viral envelope and 
viral capsid but not the genome. Empty virions are 
found at a level of up to 1011 particles per ml of 
blood in infected patients and have a density of 
1.20 g/cm3, lower than that of the complete virion 
[12]. Other noninfectious viral particles are also 
detected in the blood, including the particles containing 
viral RNA termed as RNA virions and the hard-to- 
detect nonenveloped capsids[13].

HBV genomic organization

HBV has a small DNA genome, which is a partially 
double-stranded and relaxed circular DNA (rcDNA) 
molecule (Figure 1). This asymmetrical genomic 
structure has a minus strand covering the whole 
genome and an incomplete plus strand with variable 
3’ ends [7,14]. The minus strand has a terminal pro-
tein, which is the viral DNA polymerase, covalently 
linked to its 5’ end through a tyrosyl-DNA phospho-
diester bond. In contrast, the plus strand has a short 
5’-end capped RNA fragment[15]. The circular con-
figuration of the genome is maintained by these two 
DNA strands through base pairings[16]. The minus- 
strand DNA synthesis is primed by its terminal pro-
tein, whereas the plus-strand DNA synthesis is 
primed by the short RNA fragment located at its 5’- 
end. These two primers (i.e., the terminal protein and 
the short RNA fragment) remain linked to their 
respective DNA strands after viral DNA synthesis. 
Details of the viral DNA replication will be discussed 
later in this article.

The viral genome contains four overlapping open 
reading frames (ORFs). It also contains four promoters, 
two enhancer elements (EN1 and EN2), and a single 
polyadenylation site for viral RNA transcription, and 

several cis-acting signals for DNA replication 
(Figure 1). The four ORFs in the minus strand, 
named P, S, C and X, encode the DNA polymerase, 
HBsAg proteins, core and precore proteins, and the 
X protein (HBx), respectively. The analysis of HBV 
RNA transcripts in HBV-infected hepatocytes revealed 
four primary transcripts with the lengths of 3.5-kb, 
2.4-kb, 2.1-kb and 0.7-kb, corresponding to the 
mRNAs of precore and core proteins, large surface 
protein, middle and small surface proteins, and HBx. 
These transcripts are transcribed from the four differ-
ent promoters, but they share the same polyadenylation 
site in the C ORF and thus have the same 3’ end. The 
3.5-kb RNA contains two separate transcripts with 
nearly identical length. These two RNA transcripts are 
the shorter pregenomic RNA (pgRNA) and the longer 
precore RNA (pcRNA), which differ in length by 
approximately 30 nucleotides. pgRNA is the mRNA of 
the core protein and the polymerase and also the tem-
plate for the replication of the HBV genomic DNA 
[17]. In contrast, pcRNA is the mRNA of the precore 
protein, which is the precursor of the hepatitis B e 
antigen (HBeAg) found in the sera of HBV 
patients[18].

The C gene ORF has two in-frame start codons. The 
translation initiating from the upstream start codon pro-
duces the 25-kDa precore protein (p25) and the transla-
tion from the downstream start codon generates the 21- 
kDa core protein (p21). The P gene ORF is the largest 
ORF, accounting for nearly 80% of the viral genome and 
overlapping with all other ORFs. It encodes the 90-kDa 
viral DNA polymerase, which contains four domains. 
These domains are, from the N-terminus to the 
C-terminus, the terminal protein (TP) domain, which is 
the primer for the minus-strand DNA synthesis, 
a “spacer” domain, a catalytic reverse transcriptase (RT) 
domain, and a RNase H domain. The S gene ORF 
encodes the three HBsAg proteins. It overlaps with the 
spacer and RT domains of the P gene ORF. The S gene 
ORF contains three in-frame start codons that divide the 
S gene ORF into preS1, preS2, and S regions. The large 
surface protein is translated from the first initiation 
codon of the 2.4-kb preS1 mRNA and contains preS1, 
preS2 and S sequences. The large surface protein is 
required for receptor binding for viral entry[19]. The 
middle surface protein is the product of the 2.1-kb 
preS2/S mRNA and contains preS2 and S sequences. 
The small surface protein is translated from both the 
2.1-kb preS2/S mRNA and a slightly shorter S mRNA 
[20]. As mentioned above, the small surface protein is the 
most abundant surface protein in either SVPs or virions. 
The X gene ORF encodes the 17-kDa HBx protein, which 
is translated from the 0.7-kb X mRNA. HBx plays 
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a regulatory role in the HBV lifecycle. It has multiple 
functions and is required for efficient viral replication 
in vivo[21].

HBV lifecycle

HBV entry into hepatocytes

HBV is a hepatotropic virus. Its entry into hepatocytes 
is mediated by its surface proteins, and the preS1 
domain of the large surface protein plays a critical 
role [19,22]. The filamentous HBsAg subviral particles, 
which have a significant level of the large surface pro-
tein bind specifically to hepatocellular membranes, 
whereas spherical HBsAg subviral particles, which 
have a low level of the large surface protein, bind to 

the membranes to a smaller extent. The importance of 
the preS1 domain in mediating this membrane binding 
was confirmed by the observations that the anti-preS1 
antibody and preS1-derived peptides could inhibit this 
binding [22–25], and by deletion-mapping analysis of 
the preS1 region of the large surface protein[19]. The 
middle surface protein, in contrast, is not necessary for 
the formation of the viral envelope[24]. The antigenic 
loop of the S protein contains an infectivity determi-
nant as well. The deletions or mutations of this loop 
affected the infectivity of hepatitis delta virus (HDV), 
a defective virus that is coated by HBV envelope pro-
teins[26].

Possible cellular and serum proteins that may serve as 
HBV receptors have been studied since the 1980s. 
Heparan sulfate proteoglycans, which are present on 

Figure 1. The structure of the HBV genome. The locations of the regulatory elements including EN1 and EN2 enhancers and the 
four promoters are shown. The HBV RNA transcripts, their approximate transcription initiation sites, and the unique poly(A) site are 
also indicated. The locations of the four ORFs are shown. The unique EcoRI cutting site is defined as nucleotide (nt.) 1. The nt. 
number is based on the HBV adw2 isolate (genotype A). Cp, core promoter; PreS1p, preS1 promoter; Sp, S promoter; Xp, X promoter.
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the cell surface, were found to promote the initial attach-
ment of HBV to hepatocytes via the low-affinity binding 
to the antigenic loop of the S protein to facilitate the 
entry process[27]. The sodium taurocholate cotransport-
ing polypeptide (NTCP, also known as SLC10A1) is 
identified as the HBV receptor[28]. NTCP is expressed 
specifically on hepatocytes and required for the uptake 
of bile salts into hepatocytes[29]. Its silencing suppresses 
HBV infection[28] while its expression in HepG2 cells, 
a human hepatoblastoma cell line that is not susceptible 
to HBV infection, allowed the cells to be infected by 
HBV [30–34]. The requirement of NTCP for HBV to 
initiate infection partially explains the liver tropism of 

HBV. There are controversies regarding whether the 
expression of human NTCP (hNTCP) in murine liver- 
derived cells could render those cells susceptible to HBV 
infection [34,35]. In any case, the expression of hNTCP 
in the liver of mice allowed these mice to be infected by 
HDV but not HBV [36,37]. Since the introduction of 
HBV genomic DNA into mouse hepatocytes such as in 
HBV transgenic mice or via hydrodynamic injection led 
to HBV gene expression and viral replication in mouse 
hepatocytes [38,39], it is possible that additional host 
factor(s) in the early stage of HBV infection, such as at 
the step of viral entry or genomic DNA repair, are 
required for HBV to efficiently initiate a successful 

Figure 2a. Schematic illustration of HBx functional domains. The functional domains of HBx that had been reported are shown. 

Figure 2b. Continued.
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infection in vivo. The possibility that a restriction factor 
is present in mouse hepatocytes to prevent the initiation 
of HBV infection appears unlikely, as heterokaryons, 
which were generated by fusing hNTCP-expressing 
mouse liver-derived cells to HepG2 cells, were permis-
sive to HBV infection[40]. The epidermal growth factor 
receptor (EGFR) is an additional factor that was also 
found to be involved in HBV entry mediated by 
NTCP[41].

Whether the internalization of HBV is dependent on 
caveola or clathrin is still a subject of debates. Caveolin- 
1 is a structural component of caveolae, which are 
plasma membrane microdomains enriched in choles-
terol and sphingolipids. One the one hand, it was 
shown that the cellular uptake of HBV was dependent 
on the caveola-mediated endocytosis pathway in the 
neutral pH, bypassing the acidic endosomal compart-
ments of the clathrin-mediated pathway[42]. This entry 
pathway was supported by the observation that ammo-
nium chloride or bafilomycin A1, which inhibits the 
acidification of endosomes and lysosomes, had no 
effect on HBV infection of HepaRG cells, a hepatoma 
cell line that is susceptible to HBV infection upon the 
induction of their differentiation[43]. On the other 
hand, the internalization of HBV into HepG2 cells 
that stably expressed NTCP (HepG2-NTCP) was 
found to be dependent on the clathrin-mediated path-
way and the actin cytoskeleton, as the inhibition of the 
clathrin-mediated endocytosis suppressed the interna-
lization of HBV [44,45].

Nuclear transport and repair of HBV genomic DNA

How the HBV core particle is released from interna-
lized membrane vesicles into the cytosol is unclear, 
although fusogenic sequences located in the 
N-terminus of the preS1 protein and the N-terminus 
of the S protein that may mediate the fusion between 
the viral envelope and cellular membranes for the 
release of the core particle had been proposed [46,47]. 
After the release of the core particle into the cytosol, the 
core particle is transported to the nucleus. The studies 
using duck hepatitis B virus (DHBV) as a model indi-
cated that this cytoplasmic trafficking relied on micro-
tubules and their dynamic turnover[48]. This 
dependence on microtubules for trafficking was subse-
quently also observed for HBV core particles[49]. The 
core particles enter the nucleus via the nuclear pore 
complexes (NPC) without the need of disassembly, as 
the NPC allows the transport of particles up to 39 nm 
in diameter[50]. The binding of the core particle to 
NPC requires the phosphorylation of the core protein, 
which causes the exposure of the nuclear localization 

signal (NLS) located in the C terminal domain (CTD) 
of the core protein[51]. The exposed NLS can interact 
with the transport receptor importin α/β for the entry 
of the core particle into the nuclear basket [50,52], 
where the core particle binds to nucleoporin 153, 
a component of the NPC[53]. At that stage, the core 
particle disintegrates and releases the genomic DNA 
into the nucleoplasm.

For the partially double-stranded HBV genomic 
DNA to serve as the template for viral RNA synthesis, 
it must first be converted to the covalently closed cir-
cular DNA (cccDNA)[54]. The 5’-end of the minus 
strand of the HBV rcDNA is covalently linked to the 
polymerase. This protein must be removed before the 
rcDNA can be converted to the cccDNA. The removal 
of the terminal protein apparently occurs in the cyto-
plasm, as the protein-free rcDNA (PF-rcDNA) was 
detected in the cytoplasm of stable HepG2-NTCP cells 
that had been infected by HBV at 12 hours post- 
infection, much earlier than the appearance of the 
cccDNA in the nucleus[55]. The deproteinization of 
rcDNA likely takes place in the core particle or 
a unique subcellular compartment, as PF-rcDNA is 
insensitive to the ectopically expressed cytoplasmic exo-
nuclease TREX1 during de novo HBV infection[56].

After the removal of the terminal protein, additional 
steps must be completed before the cccDNA can be 
generated. These steps include the removal of one copy 
of the 5’ terminal redundant segment (r) on the minus 
strand, the removal of the 5’-capped RNA fragment from 
the plus strand, the extension of the plus strand for 
completion, and the ligation of both DNA strands to 
seal the gap. The extension of the plus-strand may be 
completed either by the HBV DNA polymerase or by the 
host DNA repair mechanism. Studies using DHBV as 
a model support the involvement of the host repair 
mechanism, as the inhibitors of viral DNA polymerase 
failed to block the formation of cccDNA after viral infec-
tion, although they inhibited viral DNA replication[57].

The conversion of the rcDNA to the cccDNA involves 
a number of enzymes, which include a tyrosyl-DNA phos-
phodiesterase 2 (TDP2) to remove the terminal protein 
linked to the 5’-end of the minus strand[58], an endonu-
clease to remove the capped RNA primer at the 5’-end of 
the plus strand, the DNA polymerase κ and α to complete 
the synthesis of the fully double-stranded DNA [59,60], and 
DNA ligases 1 and 3 to join the 5’- and 3’-ends of both DNA 
strands[61]. In addition, the involvement of DNA topoi-
somerases for cccDNA synthesis had also been demon-
strated[62]. More recently, an elegant study using yeast 
extracts, which support the conversion of rcDNA to 
cccDNA, was conducted to identify protein factors that 
may be involved in the synthesis of the HBV cccDNA. In 
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the screening of yeast extracts, five key components that are 
required for the formation of the cccDNA were identified. 
These five components, which are defined as the minimal 
set of enzymes that are required for the conversion of 
rcDNA to cccDNA, are proliferating cell nuclear antigen 
(PCNA), the replication factor C complex (RFC), DNA 
polymerase δ (POLδ), flap endonuclease 1 (FEN1) and 
DNA ligase 1 (LIG1)[63]. The human homologs of these 
proteins were next purified and shown to be capable of 
repairing recombinant rcDNA in vitro[63]. Among these 
factors, FEN1 and LIG1 are required for the repair of the 
minus strand[64]. The structure of the rcDNA resembles 
damaged cellular DNA. Thus, besides these five factors, 
additional protein factors such as ataxia telangiectasia 
mutated (ATM), a serine/threonine kinase that is activated 
by DNA double-strand breaks[65], had also been reported 
to be involved in the formation of HBV cccDNA. The topic 
on the repair of the HBV rcDNA has recently been 
reviewed, and readers are referred to this recent article for 
further details[66].

After the formation of cccDNA, nucleosomes bind to 
cccDNA to form a mini-chromosome [67,68], which is also 
associated with non-histone proteins as well as the HBV 
core protein[69] and HBx[70]. HBx is suspected to regulate 
the post-translational modifications of histones, including 
acetylation and methylation [70,71]. Without HBx, his-
tones are methylated but not acetylated, resulting in low 
transcriptional activities of cccDNA [70–72]. This issue will 
be further discussed later.

HBV RNA transcription

The HBV genome contains four promoters, which 
are the core promoter, the preS1 promoter, the 
S promoter, and the X promoter. The activities of 
these four promoters are further controlled by the 
two enhancer elements EN1 and EN2. EN1 and EN2 
are positioned approximately 600 base pairs (bp) 
apart within the P ORF and the X ORF, respectively. 
All of the HBV RNA transcripts terminate at the 
same polyadenylation site located in the C ORF[73]. 
A posttranslational cis regulatory element (PRE), 
which overlaps with a part of the X ORF, promotes 
the nuclear export of the unspliced HBV RNAs to 
the cytoplasm[74]. The locations of these regulatory 
elements in the HBV genome are shown in Figure 1. 
In this section, we will first discuss individual HBV 
promoters and enhancers followed by the discussion 
of transcription factors (TFs) that participate in 
viral RNA transcription. We will finally discuss the 
coordination of HBV transcription units and the 
post-transcriptional modification of HBV RNAs.

The core promoter
The core promoter drives the transcription of the precore 
protein RNA (pcRNA) and the core protein RNA (i.e., 
pgRNA) from two initiation sites that are located 30 
nucleotides apart. The core promoter comprises the 
basal core promoter (BCP) and the upstream regulatory 
region (URR)[75]. The BCP alone is sufficient to direct 
the transcription of pcRNA and pgRNA[76]. This pro-
moter lacks the canonical TATA-box [76,77], which is 
recognized by TATA-binding protein (TBP) for the 
selection of transcription initiation site. The URR regu-
lates the BCP activity. It is composed of the core 
upstream regulatory sequence (CURS) and a negative 
regulatory element (NRE). CURS is at the proximal end 
of the BCP while NRE is at the distal end. The CURS 
enhances the BCP activity to produce pcRNA and 
pgRNA in a position- and orientation-dependent man-
ner[76]. In contrast, the NRE suppresses the core pro-
moter activity in a position-dependent but orientation- 
independent manner[78]. The NRE can be further 
divided into three subregions NRE-α, NRE-β, and 
NRE-γ. These three regions individually have weak sup-
pressive activity on the core promoter but together they 
generate a strong synergistic suppressive effect[79].

PreS1 and S promoters
The preS1 promoter drives the transcription of the 
2.4-kb preS1 mRNA. Unlike the core promoter, the 
preS1 promoter contains a TATA-box and has 
a unique transcription initiation site. In contrast, the 
S promoter, which does not have a TATA-box, drives 
the transcription of 2.1-kb preS2/S mRNA with multi-
ple transcription initiation sites that spread over 
a length of ~35 nucleotides [20,80]. The RNA initiating 
upstream of the translation start codon of the preS2 
protein can direct the synthesis of both the preS2 pro-
tein and the S protein, and those initiating downstream 
of it can only direct the synthesis of the S protein[20].

The X promoter
The X promoter directs the transcription of the 0.7-kb 
X mRNA, although a 3.9-kb X mRNA that was the result 
of bypassing the polyadenylation site once had also been 
detected in cell culture studies [81,82]. This 3.9-kb 
X mRNA contains two copies of the HBx coding sequence. 
Although it also contains two copies of the PRE, its nuclear 
export is inefficient[82]. The biological significance of this 
3.9-kb X mRNA remains to be determined.

The enhancers
The HBV enhancers EN1 and EN2 overlap with the 
X promoter[83] and the core promoter[84], respec-
tively. EN1 and EN2 control the activities of all four 
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HBV promoters. For instance, the core promoter 
requires EN1 and EN2 for the enhancement of its 
activity[85]. EN1, with a length of nearly 300-bp for 
its optimal activity, substantially increases the activities 
of the core promoter and the X promoter, and has 
a more marginal effect on preS1 and S promoters[86]. 
EN1 possesses three domains, a 5’ modulator, an 
enhancer core, and a 3’ region overlapping the 
X promoter [83,87]. The central enhancer core is suffi-
cient to provide the enhancer function and is referred 
to as the primary functional region of EN190. Although 
the 5’ modulator does not have enhancer activity, it 
plays an accessory role to enhance the activity of the 
core domain. EN2 stimulates mainly preS1, S and 
X promoters.

The transcription factors
All of the transcriptional regulatory elements in the 
HBV genome harbors binding sites for hepatocyte- 
enriched TFs, which also contribute to the hepatotrop-
ism of HBV (Table 1). For instances, hepatocyte 
nuclear factors (HNF) 1 and 3 are required to activate 
the preS1 promoter [88,89] and EN1 and EN2 enhan-
cers [90–94]. Similarly, the CCAAT-enhancer binding 
protein (C/EBP), which is also enriched in hepatocytes, 
binds to the S promoter [95,96], the preS1 promoter, 
the core promoter[97], and the EN2 enhancer[85]. C/ 
EBP positively regulates the S promoter activity and, in 
the meantime, negatively regulates the preS1 promoter 
activity. It thus plays an important role in maintaining 
a low level of the preS1 RNA transcript[96].

Another liver-enriched TF Klf15 binds to the 
S promoter and the core promoter to activate these 
two promoters[98], and HNF4, a hepatocyte-enriched 
nuclear receptor, also binds to and activates the core 
promoter [99,100]. The activity of HNF4 on the core 
promoter is inhibited by the nuclear orphan receptor 
testicular receptor 4 (TR4)[101] as well as by the NRE 
that is located in the upstream region of the HNF4 
binding site[79]. The NRE antagonizes the HNF4 activ-
ity in HeLa cervical carcinoma cells but not in Huh7 
hepatoma cells due to the binding by multiple protein 
factors to NRE-α and NRE-β in Huh7 cells [79,100]. 
Thus, the NRE also contributes to the hepatotropism of 
the core promoter[102]. Hepatocyte-enriched tran-
scription factors that are known to regulate HBV gene 
expressions are listed in Table I.

The HBV gene transcription is also regulated by 
ubiquitous TFs. Sp1 binding sites are found in ENII 
and the core promoter and play a dual role in HBV 
gene expression. The Sp1 binding site in ENII positively 
regulates core, S and X promoters. Its two binding sites 
in the core promoter also positively regulate the core 

promoter. However, the upstream Sp1 binding site in the 
core promoter also negatively regulates S and 
X promoters[103]. In addition to HNF4 and TR4, 
other nuclear receptors including retinoid X receptor α 
(RXRα), peroxisome proliferator-activated receptor α 
(PPARα) [104–106], farnesoid X receptor (FXR)[107], 
chicken ovalbumin upstream promoter TFs (COUP- 
TFs) [106,108], and TR2112 also regulate the activities 
of the core promoter and ENI and ENII enhancers. Two 
androgen response elements (AREs) that are recognized 
by the androgen receptor (AR) are also located in the 
immediate upstream region of the EN1 enhancer 
[109,110]. A DNA repair modulator, poly(ADP-ribose) 
polymerase 1 (PARP1), had also been shown to bind to 
an octamer motif in the core promoter to activate the 
core promoter[111]. The transcription factors RFX1 and 
MIBP1 had also been shown to bind to the NRE-γ motif 
of the NRE[112]. More detailed descriptions of TFs that 
regulate HBV gene expression are discussed in other 
review articles [113–117].

The coordination of HBV transcription units
As the four transcription units in the HBV genome over-
laps with one another extensively, how these transcrip-
tion units are coordinated to transcribe HBV RNAs is 
unclear. A temporal regulation of HBV gene expression 
had been proposed, with the X gene being the early gene 
[118,119]. The early expression of the X gene will also be 
consistent with the observation that HBx is required to 
enhance HBV RNA transcription, which will be dis-
cussed later [92,120]. This temporal regulation of gene 
expression will likely involve the activities of various cis- 
and trans-acting factors that positively and negatively 
regulate HBV gene expression. For examples, COUP- 
TF1 and TR4 may suppress the core promoter in the 
early stage of viral infection to allow the expression of 
X and other HBV genes [101,121].

Post-transcriptional modifications of HBV RNAs
HBV RNAs can also undergo post-transcriptional mod-
ifications such as the N6-methyladenosine (m6A) 

Table 1. Hepatocyte-enriched transcription factors that regulate 
HBV promoters and enhancers.

Transcription factors Regulatory elements References

HNF1 and HNF3 PreS1 promoter 91, 92
EN1 and EN2 93–97

HNF4 Core promoter 102, 103
C/EBP S promoter 98, 99

PreS1 promoter 99
Core promoter 100
EN2 99

KLF5 S promoter 101
Core promoter 101
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modification. The m6A modification sites have been 
identified and are in the conserved epsilon (ε) stem- 
loop structure, which is present at both ends of the 
pgRNA. The m6A site in the 5’ ε structure is required 
for efficient reverse transcription of the pgRNA and 
the m6A modification in the 3’ ε structure destabilizes 
all HBV RNA transcripts[122]. Two cellular proteins 
YTHDC1 and FMRP bind to m6A and facilitate the 
nuclear export of the HBV RNA transcripts. Thus, 
the m6A modification of the HBV RNAs plays an 
important role in the HBV lifecycle[123]. HBV 
pgRNA can also undergo alternative splicing to gener-
ate spliced RNAs. The topic of RNA splicing will be 
discussed later.

Several nuclear proteins can bind to HBV RNAs to 
promote their degradation and suppress viral transcrip-
tion and replication. These proteins include a zinc- 
finger antiviral protein (ZAP)[124], an RNA helicase 
(SKIV2L), which binds to the X mRNA [125], 
a ribonuclease (ISG20), which recognizes the ε struc-
ture, the packaging signal in the pgRNA [126,127]. 
These studies had been reviewed elsewhere[128], and 
will not be repeated here.

HBV protein translation

The translation of HBV mRNAs is mediated by the 
cap-dependent manner, with the exception of the 
polymerase, for which the mechanism is still not 
fully understood. The polymerase is translated from 
the pgRNA, which contains the core protein coding 
sequence at the 5’-end and the polymerase coding 
sequence partially overlapping the core protein 
sequence in a different reading frame at the 3’-end. 
As core and polymerase proteins accumulate in hepa-
tocytes at a ratio of 200–300 to 1, the translation for 
the polymerase is significantly less efficient than that 
for the core protein. Two models have been proposed 
to explain how the polymerase may be translated. The 
first model is a leaky scanning mechanism, in which 
a small proportion of ribosomes landed at the 5’-end 
of the pgRNA bypass the core initiation codon and 
peruse the mRNA until they arrive at the polymerase 
AUG codon [129,130]. The presence of multiple AUG 
codons between the core AUG codon and the poly-
merase AUG codon would appear to argue against the 
leaky scanning mechanism. The second model, which 
was based on the studies of DHBV, suggests that the 
polymerase is translated via a ribosome shunting 
mechanism. In this model, ribosomes landed near 
the 5’-end of the pgRNA are shunted from the 5’- 
end to an acceptor site located at or near the poly-
merase AUG codon [131,132]. In spite of its 

structural similarity to pgRNA, the pcRNA is not 
used for the synthesis of the polymerase[17], indicat-
ing that the translation of the precore sequence sup-
presses the translation of the downstream polymerase 
sequence.

HBV proteins

The core protein
The core protein is a 21-kDa protein with an arginine- 
rich, protamine-like C-terminal domain (CTD) that is 
required for pgRNA packaging. Its N-terminal 1–149 
residues form an assembly domain and are highly α- 
helical in structure. The assembly domains of two mono-
mers form a T-shaped dimer, with the stem region con-
stituting the dimer interphase and the arm tips making 
the polymerization contacts. The stem protrudes from the 
capsid surface like a spike[133]. An HBV nucleocapsid is 
assembled by 90 or 120 dimers of the core protein[9].

The assembly domain contains a 9-amino acid (aa) 
linker (residues 141–149) at the C terminus, which is 
connected to the CTD. The CTD has three major 
phosphorylation sites and several additional serine 
and threonine residues that may be used for phosphor-
ylation [134,135]. The phosphorylation of the CTD is 
required for pgRNA packaging and its dephosphoryla-
tion, which apparently takes place during pgRNA 
packaging[135], is required for viral DNA replication 
[136,137]. It was first reported in 1980 that Dane par-
ticles contained an endogenous kinase activity[8]. The 
candidate kinases that had been suggested include 
cyclin-dependent kinase 2 (CDK2) [138,139], polo-like 
kinase (PLK)[140], protein kinase A (PKA)[141], pro-
tein kinase C (PKC)[142], and serine/arginine-rich pro-
tein-specific kinases (SRPKs) [143,144]. Two different 
phosphatases protein phosphatase 1 (PP1) and protein 
phosphatase 2A (PP2A) had also been identified as the 
possible phosphatases that regulate the dephosphoryla-
tion of the core protein [145,146]. The arginine-rich 
sequence of the core protein also contains a NLS that is 
important for the nuclear import of the core protein/ 
particle[147], and a nuclear export signal (NES) that 
binds to Tip-associated protein/nuclear export factor-1 
(TAP/NXF1)[148]. The possession of both NLS and 
NES allows the core protein to shuttle between cyto-
plasm and the nucleus[148].

The precore protein and HBeAg
The C gene ORF contains two in-phase ATG codons 
separated by 28 codons termed the precore region. The 
translation of the core protein is initiated from the 
downstream AUG codon and the translation initiating 
from the upstream AUG codon produces the precore 
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protein (p25). The precore protein contains a signal 
peptide, which is constituted by its N-terminal 19 
amino acids. This signal peptide guides the precore 
protein to the ER where it is removed by the signal 
peptidase to generate the precore protein derivative 
p22. p22 is further cleaved at the C-terminal arginine- 
rich domain by a furin-like protease in trans-Golgi to 
generate the 17-kDa HBeAg and secreted[149]. Part of 
p22 is released back into the cytosol and, due to the 
presence of the NLS in its C-terminus, can also be 
translocated into the nucleus[150]. The cytosolic p22 
may also be phosphorylated[151]. Although p22 con-
tains the entire sequence of the core protein plus an 
amino-terminal extension of 10 amino acids, it cannot 
form the core particle due to the presence of a cysteine 
residue in the precore sequence and can act as 
a dominant negative factor to suppress the formation 
of the core particle[152]. Indeed, the over-expression of 
the precore protein has been shown to suppress HBV 
replication in a mouse model[153]. p22 has also been 
shown to inhibit the interferon signaling pathway by 
suppressing the nuclear import of STAT and the induc-
tion of interferon-stimulated genes (ISGs)[154]. HBV 
with mutations in the precore region such as the G to 
A mutation at nucleotide (nt) 1896, which converts 
a TGG codon to the TAG termination codon and 
abolishes the expression of the precore protein, are 
frequently detected in chronic HBV patients[155], indi-
cating that the precore protein and hence HBeAg are 
not essential for HBV infection. However, studies indi-
cate that secreted HBeAg have immunoregulatory func-
tions. It can transiently suppress the innate immune 
response by suppressing the Toll-like receptor (TLR) 
signaling pathway [156–158]. In addition, by using 
mice as a model, it was found that maternal HBeAg 
could educate Kupffer cells, the resident macrophages 
of the liver, of the offspring, and when Kupffer cells of 
the offspring were exposed to HBeAg again, these 
Kupffer cells would undergo the M2 anti- 
inflammatory polarization to suppress HBV-specific 
T cell activities to result in HBV persistence[159]. 
This finding provides an explanation as to why children 
born to HBeAg-positive mothers would often become 
chronic carriers of HBV without intervention[160].

The surface antigens
The three envelope proteins of HBV, L, M and 
S surface proteins, are synthesized from the S ORF 
from three different in-phase initiation codons. As 
such, these three proteins are co-carboxy-terminal 
with different amino-terminal extensions. The 
S protein is 226-aa in length. The M protein contains 
the entire sequence of the S protein plus an extra 55-aa 

preS2 domain, whereas the L protein carries an addi-
tional preS1 domain that is 108 or 119 aa in length, 
depending on the genotypes. The S protein has four 
transmembrane (TM) segments embedded in the ER 
membrane, with both ends extruding into the ER 
lumen and thus containing one luminal and two cyto-
solic loops[161]. The N-terminal two TM segments 
contain two topogenic signals for their proper position-
ing in the lipid bilayer[162]. These three envelope pro-
teins share an N-linked glycosylation site at asparagine- 
146 (Asn-146) in the luminal loop[163]. This glycosyla-
tion site is only partially used, resulting in the genera-
tion of both glycosylated and non-glycosylated forms of 
surface proteins[164]. This glycosylation site also con-
tains the HBsAg antigenic epitope exposed on the sur-
face of the viral envelope [165,166].

The preS2 domain of the M protein harbors 
a second N-linked glycosylation site at Asn-4. The 
N-linked glycan at this site, which interacts with the 
ER chaperone protein calnexin[167], is required for the 
efficient secretion of the virion and the M protein- 
containing SVPs [168,169]. In contrast, the glycosyla-
tion at Asn-146 shared by all three envelope proteins is 
not required for the secretion of the virion and SVPs 
[167]. It should be noted that, although the L protein 
also contains the preS2 domain, Asn-4 is not glycosy-
lated in the L protein[164], probably due to its dual 
topology, which will be discussed below. In addition to 
the N-linked glycosylation, an O-linked glycosylation is 
also detected at threonine-37 (Thr-37) of the preS2 
domain in a HBV genotype-dependent manner 
[167,170,171]. The role of the M protein in the HBV 
life cycle is still unclear, as the M protein is not 
required for viral replication, morphogenesis, and 
secretion in chronic HBV patients carrying HBV 
mutants incapable of expressing the M protein[172]. 
Furthermore, the M protein had also been shown to 
be dispensable for HBV assembly and infectivity in cell 
cultures[173]. Several studies, however, revealed 
a possible role of the M protein in hepatocarcinogenesis 
[174–177].

The L protein has two different topological config-
urations in the membranes. The N-terminal preS (i.e., 
preS1 and preS2) region of half of the L protein is 
localized to the cytosol and the other half is localized 
in the ER lumen [178,179]. The cytosolic localization of 
the preS region is the initial configuration after transla-
tion. In this case, the first TM domain (TM1) in the 
S sequence is not embedded in the ER membrane, 
resulting in the cytosolic localization of the preS region. 
This configuration is essential for the L protein to 
interact with the capsid particle for virion assembly. 
A short 21-aa fragment in preS1 and a portion of the 
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cytosolic loop of the S sequence contribute to this 
capsid interaction [180–182]. The localization of the 
preS region in the ER lumen is a post-translational 
event. In this case, TM1 in the S sequence is embedded 
in the membrane. The exposure of the preS sequence 
on the surface of the viral particle is essential for viral 
attachment [179,183,184]. The translocation of the preS 
region across the membrane requires the interaction of 
the L protein with the cytosolic chaperones heat shock 
cognate 70 (Hsc70), heat shock protein 40 (Hsp40) 
[185] and the ER luminal chaperone GRP78/BiP 
[186,187]. The C-terminus of the preS1 domain is cri-
tical for its post-translational translocation, as the dele-
tion of aa. 70–94 results in the co-translational 
translocation of the preS domain into the ER lumen. 
This region has been named the cytosolic anchorage 
determinant (CAD) for its ability to interact with 
Hsc70 and suppress the co-translational translocation 
of the preS domain[188].

The first 77 amino acids of the preS1 region is vital 
for HBV infection based on the mutagenesis studies 
[19]. Gly-2 of preS1 is myristoylated and essential for 
HBV infection [189,190], and a synthetic myristoylated 
peptide containing Gly-2 and its downstream 46 amino 
acids of the preS1 sequence can efficiently inhibit HBV 
infection[24]. This 47-aa sequence is also required for 
HBV to interact with its receptor NTCP to initiate 
infection[28]. The replacement of the C14-myristate 
group in the preS1 peptide with various moieties of 
different hydrocarbon chain lengths, such as C5- 
pentanoyl, C8-octanoyl and C16-palmitoyl, revealed 
that a longer hydrocarbon chain length led to a better 
suppressive effect on HBV infection[24]. These results 
indicate that the acyl moiety likely participates in the 
binding to the cell surface receptor.

After the envelope proteins are integrated into the 
membrane, the cysteine residue in the S domain forms 
an intermolecular disulfide bond for the formation of 
a homodimer or a heterodimer to stabilize the virion or 
the SVP structure [191,192]. Both S and M proteins 
carry export signals for independent secretion, while 
the L protein is retained in the cytoplasm in the 
absence of S and M proteins. As such, the secretion of 
the S protein is repressed when it is co-expressed with 
a high level of the L protein [193,194].

Besides being a structural protein, L and M proteins 
can also function as transcriptional transactivators for 
host genes as well[195]. L and M mutants with 
C-terminal truncations, which can be generated after 
the integration of HBV DNA into host chromosomes, 
have been detected in HBV-related HCC and can func-
tion as a transcriptional transactivator [195,196]. Their 
target genes include the growth factor α and NF-κB 

genes, and they may be involved in hepatocarcinogen-
esis [197–199]. Natural L protein mutants had also 
been identified in chronically infected patients[200]. 
Deletions in the preS1 or preS2 sequence can lead to 
the retention of the L protein in the ER and the induc-
tion of ER stress, which is seen in chronic HBV patients 
with or without HCC [201–203]. The envelope protein 
mutants may be selected due to their ability to promote 
the survival and proliferation of infected cells.

The DNA polymerase
The HBV DNA polymerase is a 90-kDa protein com-
posed of four distinct domains, the terminal protein 
(TP) domain at the N-terminus, followed by a spacer 
region, the RT domain, and the RNase H domain at the 
C-terminus. Most of the currently approved drugs for 
the treatment of HBV infection are nucleotide or 
nucleoside analogs (NAs). They target the RT. TP 
serves as the primer for the minus-strand DNA synth-
esis by first binding to the ε stem-loop structure, which 
is the packaging signal located at the 5’ end of the 
pgRNA, forming a ribonucleoprotein (RNP) complex 
to initiate the encapsidation of the pgRNA[204]. 
A tyrosine residue in TP is covalently linked to the 
first nucleotide of the minus strand via 
a phosphodiester bond[205]. The binding of a single 
polymerase to the ε structure to initiate encapsidation 
indicates that the polymerase and the nucleocapsid 
likely exist in nearly equal amounts. This is supported 
by the observation that there is ~0.7 polymerase mole-
cule per DNA molecule[204]. After the encapsidation 
of the pgRNA, the synthesis of the HBV DNA genome 
ensues, which takes place in the capsid. This will be 
discussed later.

HBx
The HBV X protein, or HBx, encoded by the X gene, is 
a 154-aa regulatory protein with a molecular weight of 
approximately 17.5 kDa. The first reported activity of 
HBx was its gene transactivation activity, which was 
found to activate a heterologous promoter[206]. 
Subsequent studies demonstrated a critical role of 
HBx in activating HBV gene expression and replication 
both in vitro and in vivo [120,207,208]. These gene 
transactivation activities of HBX will be discussed 
below. HBx is detected in both the nucleus and the 
cytoplasm. In addition to activating gene expression, 
it can also regulate signaling pathways[209]. HBx does 
not directly bind to DNA, but it can bind to selected 
TFs, especially TFs of the bZip family such as AP-1, 
AP-2 and ATFs, to stimulate their DNA binding activ-
ities and indirectly activate gene expression [210–212]. 
HBx also colocalizes with mitochondria and can affect 
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mitochondrial physiology and promote mitophagy, the 
selective removal of mitochondria by autophagy 
[213–215].

Results from deletion analysis indicated that HBx pro-
teins could be divided into two major functional domains 
(Figure 2a). The first domain located at the N-terminal 
one-third (residues 1–50) is a self-inhibitory domain (i.e., 
the regulatory domain) that prevents excessive transacti-
vation[216]. The second domain located at the C-terminal 
two-thirds (residues 59–140) is responsible for transacti-
vation functions (i.e., the transacting domain)[217]. 
While residues 120–140 mediate the interaction with 
TFs in the nucleus to activate gene expression [217,218], 
residues 58–119 are important for activating kinase path-
ways[219]. The studies on the localization of HBx to 
mitochondria revealed additional activities of the trans-
acting domain, with residues 54–70 required for the asso-
ciation with mitochondria and residues 75–88 and 109– 
131 aiding the translocation of HBx to mitochondria 
[220]. The 23 aa at the C-terminal is required for the 
HBx stability and functions[221]. Note that the above 
findings were derived from deletion and mutagenesis 
analyses. The possibility remains that these mutations 
may alter the structure of HBx and affect the study results. 
The determination of the crystal structure of HBx will 
help to resolve this concern[92]. In this regard, two recent 
reports, which studied the crystal structure of the BH3- 
like motif (residues 110–135) of HBx in association with 
the anti-apoptosis protein Bcl-2 or Bcl-xL, revealed that 
this motif adopted an amphipathic α-helix structure and 
bound to the BH3-binding pocket of these two proteins 
[222,223]. An earlier study using a cell-free system also 
suggested that HBx could potentially dimerize[224].

Transactivation of HBV gene expression by HBx. By 
using transgenic mice that carried the wild-type HBV 
genome, the HBV genome that was incapable of 
expressing only HBx, and the HBV X gene, it was 
demonstrated that HBx could promote HBV gene 
expression to enhance viral replication[120]. This find-
ing was confirmed in a separate mouse study, which 
employed hydrodynamic injection to introduce HBV 
genomic into mouse hepatocytes[208], and in a cell 
culture study, which demonstrated that the gene trans-
activation function of HBx was important for the aug-
mentation of HBV replication[207]. The role of HBx in 
promoting viral RNA transcription and replication has 
been confirmed in many other studies [21,225–228], 
and had been reviewed in detail elsewhere[92].

The effect of HBx on viral RNA transcription and 
replication was shown to be dependent on damaged 
DNA binding protein 1 (DDB1)[229], as DDB1 binding- 

deficient HBx could not fully restore the replication of 
HBx-deficient HBV[230]. Curiously, in a separate study, 
it was found that HBx defective in binding to DDB1 
could still fully support HBV replication and that the 
effect of DDB1 on viral RNA transcription is indepen-
dent of HBx[231]. The reason for this discrepancy is 
unclear and might be related to the use of different cell 
culture systems in those studies.

By using a cccDNA-specific chromatin immunopre-
cipitation (ChIP)-based quantitative assay, it was found 
that HBx was recruited to the HBV minichromosome 
to prevent cccDNA deacetylation, verifying its role in 
the epigenetic regulation of cccDNA function[70]. In 
the absence of HBx, the level of the histone deactylases 
and hypoacetylated histones increased[70]. In addition, 
HBx interacts with epigenetic regulators, such as pro-
tein arginine methyltransferase 1 (PRMT1)[72]. 
PRMT1 suppresses HBV gene expression, and this sup-
pression is dependent on its methyltransferase activity. 
The binding of HBx to PRMT1 inhibits the protein 
methylation activity of PRMT1 and relieves this sup-
pression to enhance HBV gene expression[72]. 
Moreover, HBx induces DDB1 to degrade WD repeat 
domain 77 protein (WDR77), which enhances the 
methyltransferase activity and represses HBV replica-
tion[232]. A recent study also showed that HBx 
recruited m6A methyltransferase complexes to promote 
the co-transcriptional m6A modification of viral RNAs, 
which was discussed in section 3.3.7 above[233].

Transactivation of host gene expression by HBx. 
Besides activating HBV viral replication and gene expres-
sion as described above, HBx can also transactivate host 
genes, such as the genes of class I major histocompatibility 
complex (MHC)[234], inducible nitric oxide synthase 
(iNOS) [235,236], and interleukin-8 (IL-8)[237]. (Please 
see the previous review for a more complete list[238].) 
These activities of HBx are mediated by its binding to 
a wide variety of TFs, including AP-1 and AP-2[210], 
ATF/CREB[211], C/EBP[239], E2F[240], NF-AT[241], 
p53 [242,243], HIF-1α[244], HNF1[245], SMAD4[246], 
STAT-3 and NF-κB[247], sterol regulatory element- 
binding protein (SREBP)[248], and many others. HBx 
has also been shown to bind to the androgen receptor 
(AR) to promote its nuclear localization in the presence of 
dihydrotestosterone and enhance its gene transactivation 
activity[249]. HBx can also serve as a transcriptional acti-
vator by associating with several basal transcriptional 
factors[250], including RNA polymerases subunit RPB5 
[251], TBP [252,253], TFIIB[254], and TFIIH[255].

The co-activators CREB-binding protein (CBP) and 
p300 interact with CREB to stimulate gene expression. 
HBx interacts with CBP/p300 both in vitro and in vivo to 
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activate the expression of genes such as IL-8 and PCNA 
[256]. HBx also facilitates the CREB-mediated activation 
of miR-3188, a microRNA (miRNA) that is overex-
pressed in HBV-related HCC, suggesting a possible 
role of the HBx-CREB-miR-3188 pathway in hepatocar-
cinogenesis[257]. HBx-CREB also upregulates the cen-
trosomal P4.1-associated protein (CPAP), and CPAP 
also interacts with HBx to enhance cell proliferation 
and migration. These findings suggest a role of the 
CPAP and HBx interaction in HBV-induced hepatocar-
cinogenesis[258].

Interplay between HBx and the ubiquitin-proteasome 
system. One of the HBx cellular targets is the protea-
some complex, which was initially identified by the 
yeast two-hybrid screening study [259,260]. HBx was 
found to suppress the activity of the proteasome. 
A further study indicated that HBx could also be 
degraded by the ubiquitin-proteasome pathway and 
had a short half-life of 30 minutes[261]. This finding 
is similar to the finding of a previous report, which 
indicated that two-thirds of HBx were soluble and had 
a half-life of 15 minutes, and the remaining HBx that 
was associated with the nuclear framework had a half- 
life of 3 hours[262]. The treatment of cells with protea-
some inhibitors led to the suppression of the gene 
transactivation activity of HBx, suggesting that the pro-
teasome function is required for the transactivation 
activity of HBx. These findings revealed an intricate 
interplay between HBx and proteasomes.

Many studies have examined the interaction between 
HBx and the components of the ubiquitin-proteasome 
system (UPS), which include a E1 ubiquitin-activating 
enzyme, a E2 ubiquitin-conjugating enzyme, a E3 ubi-
quitin ligase, and the 26S proteasome. HBx can bind to 
the α7 subunit (PSMA7) of the 20S proteasomal core 
[259], and PSMC1, a regulatory subunit of the 26S 
proteasome[263]. These bindings are mediated by resi-
dues 132–139265, a sequence homologous to the Kunitz 
domain of Kunitz-type serine protease inhibitors[264]. 
These bindings are important for the gene transactiva-
tion function of HBx.

HBx can also interact with Cullin-RING ligase 4 
(CRL4), a E3 ubiquitin ligase complex. This E3 com-
plex consists of cullin protein 4 (CUL4), DDB1, and 
a RING (really interesting new gene) protein. DDB1 
binds a subset of DDB1 cullin accessory factors 
(DCAFs) to recruit protein substrates for ubiquitina-
tion and degradation. UV-DDB, as a part of the E3 
ubiquitin ligase complex, initiates the nucleotide exci-
sion repair (NER) by recognizing damaged chromatin 
and concomitantly ubiquitinating core histones at the 
lesion. HBx binds to DDB1 and interferes with the 

NER, resulting in the accumulation of DNA mutations 
in hepatocytes that may contribute to the development 
of hepatocellular carcinoma (HCC) [265–268]. Another 
subunit of UV-DDB, DDB2, competes against HBx for 
binding to DDB1 to antagonize the cell death induced 
by HBx[269]. The crystal structure analysis revealed 
that an α-helical motif at residues 86–100 of HBx 
could bind to the large pocket enclosed by the double 
β-propeller domains (BPA-BPC) of DDB1 [270,271]. 
The binding of HBx to DDB1 and its association with 
CRL4 E3 ligase suggest that HBx may serve as a viral 
DCAF to alter the substrate specificity of CRL4274. 
Recent studies indicated that CRL4 hijacked by HBx 
could target the structural maintenance of chromo-
somes (Smc) complexes 5 and 6 (Smc5/6), which bind 
to the HBV cccDNA to suppress HBV gene expression, 
for degradation [272,273].

In addition to DDB, several proteins involved in DNA 
repair also interact with HBx. Among them is the large 
multi-subunit transcription factor IIH (TFIIH), which 
functions as a helicase to unwind DNA for the initiation 
of the NER after a DNA lesion has been identified. HBx 
interferes with the activities of TFIIH by binding to its 
subunits ERCC3 and ERCC2, as well as p53, a regulator 
of NER [255,274]. HBx also transcriptionally suppresses 
the expression of two other subunits of TFIIH, XPB (p89) 
and XPD (p80), through the interaction with the Sp1 TF 
[275]. Collectively, the association of HBx with the DNA 
repair machinery induces DNA damage in infected cells 
[276], implicating a role of HBx in hepatocarcinogenesis 
(for further details, see the previous review[277]).

HBx and cellular signaling pathways. HBx had also 
been shown to activate the Ras-Raf-MAP kinase signaling 
pathway to activate TFs AP-1 and NF-κB [278,279]. The 
activation of this pathway was abolished if HBx was fused 
to a NLS and localized to the nucleus. As the fusion to the 
NLS did not affect the ability of HBx to activate the EN1 
enhancer, HBx clearly possesses distinct activities in both 
the cytoplasm and the nucleus[209]. The Ras-Raf-MAP 
kinase pathway suppresses HBV replication. However, 
this suppression is HBx-independent[280].

The cellular protein kinase in the signal transduction 
pathway stimulated by HBx includes, in addition to 
extracellular signal-regulated kinases (ERK) (i.e., MAP 
kinases)[214], c-Jun N-terminal kinases (JNKs)[281], 
Janus kinase (Jak)/STAT[282], phosphatidylinositol 
3-kinase (PI3K)[283], proline-rich tyrosine kinase-2 
(Pyk2) and Src kinase[284]. As mentioned above, HBx 
activates NF-AT and Src, which are known to be 
a calcium-stimulated TF and an effector of Pyk2, 
respectively. Pyk2, a cytoplasmic calcium-activated 
kinase, is activated by elevated cytosolic Ca2+ released 
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from ER or mitochondria. Activated Pyk2 is autopho-
sphorylated and bind to the SH2 domain of Src via its 
phosphorylated tyrosine-402, thereby leading to Src 
activation to promote the Ras-Raf-MAP kinase cascade. 
HBx can increase cytosolic Ca2+ levels by stimulating 
calcium entry into cells to activate Pyk2228[285], 
Blocking store-operated calcium entry (SOCE) or the 
inhibition of Pyk2 or Ca2+ signaling blocks the HBV 
DNA replication [226,285].

In addition to the functions discussed above, HBx is 
also involved in cellular apoptosis resulting from its 
suppression of DNA repair and its interaction with p53 
[286], the regulation of cell cycles with different effects, 
epigenetic-signaling mechanisms, and autophagy (for 
details see other reviews [92,287,288]). In summary, 
HBx is a multifunctional regulator with diverse activities. 
Part of its biological activities is illustrated in Figure 3.

HBV DNA replication

Packaging of pgRNA
The pgRNA, which is also the mRNA for the core protein 
and the polymerase, serves as the template for the repli-
cation of HBV DNA. Protein chaperones assist with the 
landing of the polymerase to the packaging signal ε at the 
5’-end of pgRNA, forming the RNP complex and trigger-
ing the initiation of the encapsidation process.

The ε stem-loop structure contains a lower stem, an 
upper stem, a central bulge and an apical loop. It is 
located in the precore sequence, between the translation 
initiation codons of the precore protein and the core 
protein. Due to the terminal redundancy of the pgRNA, 
the ε structure is present at both ends of the pgRNA. 
However, only the 5’ ε structure participates in the viral 
DNA replication. Interestingly, the pcRNA, which also 
contains two ε structures, is not used for encapsidation. 
This is likely due to the translation of the precore 
protein and the disruption of the ε structure in the 
precore sequence by the 80S ribosomes during transla-
tion, thus preventing pcRNA from being pack-
aged[289].

After the binding of the polymerase to the pgRNA, 
the core protein is recruited to encapsidate the RNP. 
The phosphorylation of the CTD domain of the core 
protein is essential for pgRNA packaging and its 
dephosphorylation is essential for the synthesis of the 
minus-strand DNA [137,290]. It was recently shown 
that the dephosphorylation of the core protein took 
place during the packaging of pgRNA[135]. This mod-
ification promotes reverse transcription and is benefi-
cial to the stability of the nucleocapsids [290,291]. 
A recent report identified several sites in the pgRNA 

that interact with the CTD domain of the core protein 
to promote the nucleocapsid assembly[292].

Cellular proteins, such as the components of the 
Hsp90 chaperone complex, Hsp90, Hsp70, Hop, 
Hsp40, and p23, are involved in the encapsidation of 
the pgRNA [293–297], and chemical inhibitors that 
target these chaperon proteins strongly inhibit HBV 
DNA replication[297]. Chaperons may help with the 
folding and stabilize the structure of the polymerase to 
promote its binding to the ε structure[192]. Several 
nuclear proteins are involved in the pgRNA packaging 
as well. RNA-binding motif protein 24 (RBM24) med-
iates the interaction between the polymerase and the ε 
structure[298]. The eukaryotic translation initiation 
factor (eIF4E) is also recruited into the RNP complex 
[299]. A nucleophosmin B23 binds to the core protein 
dimer to promote the capsid assembly and suppress the 
dissociation of core proteins[300].

Minus-strand DNA synthesis
Following the packaging of pgRNA, the reverse tran-
scription for the synthesis of the minus-strand DNA 
is initiated. This DNA synthesis takes place inside the 
nucleocapsid and involves several steps. The first step 
is the priming reaction, which uses the sequence 5’- 
UUC-3’ in the central bulge of the ε structure as the 
template and the polymerase TP domain as the pri-
mer. The tyrosine-63 residue in the polymerase TP 
domain is covalently linked to deoxyguanosine mono-
phosphate (dGMP), which base-pairs with the 3’ C in 
the bulge[301]. The next step is the addition of two 
deoxyadenosine monophosphates (dAMPs) to gener-
ate the sequence 5’-GAA-3’. After these initial prim-
ing and elongation steps, this polymerase and 
oligomer complex is translocated to the 3’ end of 
the pgRNA, where it binds to the complementary 
direct repeat 1 (DR1) sequence. The 5’ ε structure 
and the acceptor site are likely located in the proxi-
mity of each other in the nucleocapsid to promote 
this template switch. A short cis-acting element phi 
(φ) located upstream of the acceptor site, which base- 
pairs with the 5’ half of the ε structure, is required for 
efficient minus-strand DNA synthesis[302].

The third step is the elongation of the minus strand 
to the 5’ end of the pgRNA template. The completion 
of this DNA synthesis will generate a short terminal 
redundancy in the minus strand. This terminal redun-
dancy is referred to as “r” and is necessary for the plus- 
strand DNA synthesis. During the elongation of the 
minus strand, the pgRNA is degraded by the RNase 
H activity of the polymerase, leaving behind an 18-nt 
5’-capped RNA fragment containing the 11-nt DR1 
sequence.
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Figure 3. Biological activities of HBx. HBx regulates multiple cellular pathways. It can interact with many transcription factors 
to activate the expression of host genes, such as MHC class I, iNOS, and IL-8. Its regulation of the CREB-miR-3188 pathway may 
also play a role in the induction of hepatocarcinogenesis. HBx also epigenetically upregulates HBV gene expression by 
interacting with a methyltransferase, PRMT1. In addition, HBx suppresses the proteasomal function but is also degraded by 
the proteasome. It also interacts with the E3 ubiquitin ligase complex to promote the degradation of Smc5/6 and the 
activation of HBV gene expression. In addition, by interacting with the transcription factor TFIIH, HBx interferes with the 
host DNA repair machinery, resulting in the accumulation of host DNA damages. Finally, HBx can also activate cellular kinase 
signaling transduction pathways, including the interaction with mitochondria and the modulation of cytosolic Ca2+ levels to 
activate the Pyk2-Src pathway, and the activation of the Ras-Raf-MAPK pathway. The involvement of HBx in other pathways 
such as apoptosis, cell cycles, epigenetic signaling regulations, and autophagy is not illustrated in the figure.
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An interesting discovery is the requirement of 
autophagy for the replication of HBV DNA. It was 
discovered that the knockout of ATG5, a gene essential 
for autophagy, abolished HBV DNA replication in the 
mouse liver with only a marginal effect on pgRNA 
packaging [303,304]. How autophagy regulates HBV 
DNA replication remains largely unclear.

Plus-strand DNA synthesis
The primer for the plus-strand DNA synthesis is the 
18-nt 5’-capped RNA fragment derived from the 
pgRNA. This RNA fragment contains the DR1 
sequence at its 3’-end. The first step of the plus-strand 
DNA synthesis is the translocation of the RNA primer 
to the DR2 sequence located near the 5’-end of the 
minus-strand DNA. DR2 has the same sequence as 
DR1. This is the second template switch. Several cis- 
acting sequence elements in the minus strand that may 
base-pair and help to juxtapose both ends of the minus 
strand to facilitate this second template switch have 
been identified [305,306]. When the synthesis of the 
plus-strand DNA reaches the 5’-end of the minus- 
strand DNA template, a third template switch is essen-
tial for the continuation of the DNA synthesis. The 
terminal redundancy at both ends of the minus strand 
will help with this switch, leading to genome circular-
ization to generate the RC DNA. The completion of the 
encapsidation process and the subsequent envelopment 
may limit the access of the replicating DNA to cyto-
plasmic dNTP pool and thus generate the partially 
double-stranded genome with a plus strand that termi-
nates at different locations of the minus strand. Indeed, 
the plus-strand DNA synthesis can be resumed in vitro 
if the envelope is removed by a non-ionic detergent and 
dNTPs are provided[307].

A small fraction of the RNA primer (5%-20%) may 
also initiate the synthesis of the plus-strand DNA 
in situ without the second template switch, resulting 
in the generation of the double-stranded linear DNA 
(dslDNA). The dslDNA cannot produce functional 
pgRNA, due to the truncation of the unique polyade-
nylation signal. However, it can integrate into host 
chromosomes at the sites of double-stranded DNA 
breaks [308,309].

Amplification of cccDNA
The replicated RC DNA in the nucleocapsid may be 
enveloped and released from infected hepatocytes or 
may re-enter the nucleus to amplify the cccDNA pool. 
Recent studies using HepG2-NTCP cells infected by 
HBV indicated that the average cccDNA copy number 
was about 5–12 copies per cells throughout a six-week 
study period, and by using a nucleoside analog to 

inhibit HBV DNA replication, the half-life of cccDNA 
was found to be about 40 days[310]. Both intracellular 
recycling of rcDNA and the secondary infection con-
tribute to the stable cccDNA pool in infected cells. The 
study of the liver of a duck chronically infected by 
DHBV indicated that 90% of the nuclei of duck hepa-
tocytes contained between 1–17 copies of cccDNA, 
with the remaining 10% of hepatocytes containing 
more, and that the copy numbers of cccDNA may 
fluctuate over time[311]. The level of cccDNA can 
also be regulated by viral envelope proteins. Among 
the three envelope proteins, the L surface protein 
plays a primary role. Its expression alone or together 
with M and S surface proteins results in the reduction 
of the levels of cccDNA, and the suppression of its 
expression leads to the increase of cccDNA [312,313]. 
The stability of cccDNA in infected hepatocytes is 
a major reason as to why chronic HBV infection is 
difficult to treat.

Viral maturation and egress

The final step of HBV morphogenesis is the envelop-
ment of the nucleocapsid. HBV nucleocapsids interact 
with the preS1 region of the L surface protein and aa 
56–80 in the first cytosolic loop of the S surface protein 
[181]. Although earlier EM studies revealed the bud-
ding of HBV core particles into the ER lumen to form 
mature viral particles[314], more recent studies also 
indicated an important role of multivesicular bodies 
(MVBs) in the formation and release of mature HBV 
particles[315]. MVB-associated endosomal sorting 
complexes required for transport (ESCRT)-I, -II, and - 
III[316], and additional factors involved in the ESCRT 
pathway, including α-taxilin[317], Nedd4[318], Vps4 
and γ2-adaptin[319], are required for HBV egress. 
The autophagic pathway had also been suggested to 
be involved in the envelopment of HBV capsid particles 
and the release of mature virions[320].

Small Rab GTPases participate in the trafficking of 
late endosomes/MVBs and autophagosomes. One of 
the Rab proteins, Rab7, is activated by HBV and 
induces tubulation of MVBs and autophagosomes and 
their fusion with lysosomes, leading to the lysosomal 
degradation of HBV particles. The inhibition of Rab7 
or lysosomal functions enhances HBV secretion[321]. 
Rab33B participates in the formation of autophago-
somes via its interaction with the Atg5-Atg12-Atg16L1 
complex and is required for the assembly or stability of 
the naked capsid particles and their egress[322]. Rab5B 
is required for the transport of the L surface protein 
from the ER to MVB, and its depletion results in the 
colocalization of the L protein with capsid particles in 
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the ER, supporting the possible involvement of the ER 
and MVBs in the envelopment of HBV nucleocapsid 
particles and viral egress[323]. The lifecycle of HBV is 
summarized in Figure 4.

In contrast, HBV SVPs are formed on ER mem-
branes and secreted from cells via the ER-Golgi secre-
tory pathway [324,325], involving the COPII 
anterograde transport machinery[326]. The release of 
naked capsids depends on the Alix-assisted exocytosis 
but it does not require ESCRT, even though Alix is 
involved in the ESCRT-dependent exocytic pathway 
[327]. This release of naked capsid particles is also 
dependent on the Rab33B GTPase and its associated 
Atg5-Atg12-Atg16L1 complex, and does not appear to 
involve autophagosomes[328].

Finally, it had recently been shown that apolipopro-
tein E (ApoE) was associated with mature HBV virions 
but not naked capsid particles. This association is 
important for the production and the infectivity of 
HBV, as the silencing of ApoE in cells significantly 
suppressed the production of HBV and reduced its 
infectivity[329].

HBV pathogenesis

Risk factors for HBV-induced HCC

HBV is a major cause of HCC. In HBV endemic areas 
such as Asia-Pacific countries, approximately 80% of 
newly diagnosed HCC are related to chronic HBV 
infection[330]. Liver cirrhosis can significantly increase 
the risk for HCC in chronic HBV patients[331]. Other 
factors such as age, gender, the serum alanine amino-
transferase (ALT) level, the serum HBV DNA level (i.e., 
viral load), and the HBeAg level can also affect the risk 
for HCC[332]. For example, regardless of the severity 
of liver cirrhosis, the combination of a high ALT level, 
HBeAg positivity, and a serum HBV DNA level of 
≥10,000 copies/mL is considered as a strong predictor 
for the development of HCC [333–335]. High viral load 
by itself is also a predictor for the postoperative recur-
rence of HCC [336,337]. HCC also exhibits a gender 
disparity among HBV carriers with a male to female 
ratio of 5–7:1[338]. The same gender disparity of HCC 
incidence was also observed in HBV transgenic mice 
[339]. This gender disparity can be at least partially 
attributed to the positive feedback interaction between 
HBV and the androgen receptor (AR). HBx can bind to 
and enhance the activity of AR[249], or activate AR via 
the activation of Src and glycogen synthase kinase-β 
(GSK3β)[340], which can in turn activate HBV gene 
expression via its AREs located in the HBV genome to 
enhance HBV replication and hence its carcinogenesis 

[109,110]. The role of AR in HBV-induced hepatocar-
cinogenesis was confirmed in a study using HBV trans-
genic mice, in which it was shown that the liver-specific 
knockout of AR led to the reduction of HBV gene 
expression and HCC incidence[341]. There is also 
a gender disparity in the level of chronic liver inflam-
mation, which also promotes HBV-induced 
hepatocarcinogenesis.

The integration of HBV DNA into the host chromo-
somes is found in more than 80% of HBV-associated 
HCC [342,343]. The most frequent integration sites in 
the HBV genome is in the HBx coding sequence, result-
ing in the generation of chimeric RNA transcripts with 
both host and HBV sequences and the expression of 
C-terminally truncated HBx [20,344,345]. The selection 
of the integration sites in the host chromosomes was 
initially thought to be random. However, more recent 
whole-genome sequencing studies led to the identifica-
tion of recurrent integration hotspots[346], which 
include genes encoding the telomerase reverse tran-
scriptase (TERT), the protein tyrosine phosphatase 
receptor type D (PTPRD), tumor protein 53 (TP53), 
retinoic acid receptor beta (RARB), catenin beta 1 
(CTNNB1), etc[347]. The integration of HBV DNA 
may activate or disrupt the expression of these genes 
to cause host chromosome instability and promote 
cancer development, metastasis and angiogenesis. 
Readers are referred to our recent review for details 
on this topic[347].

HBV genotypes and viral pathogenesis

Based on the genomic sequence, HBV has been 
grouped into ten genotypes named from A to J, and 
many more subtypes [348–350]. Different genotypes 
have distinct geographic distributions. For examples, 
genotype A is prevalent in western Africa, northern 
Europe, genotype D is widespread in Africa, Europe, 
India, and the Mediterranean region, and genotypes 
B and C are prevalent in Asia [351]. HBV genotypes 
can affect viral virulence, pathogenicity, clinical out-
come, and response to type I interferon (IFN) thera-
pies. Chronic HBV carriers infected by HBV genotypes 
C or D have lower rates of HBV DNA loss and HBeAg 
seroconversion in response to IFN treatment than 
patients infected by genotype A or B [352–354]. 
HBeAg seroconversion is the loss of HBeAg with the 
concomitant appearance of the anti-HBeAg antibody. It 
is often associated with the activation of the T cell 
response[355]. The infection by HBV subgenotype A2 
is often associated with high viral load after the hor-
izontal transmission of the virus[356].
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Figure 4. Illustration of the HBV life cycle. HBV initiates its infection of hepatocytes by binding to its receptor NTCP on the cell surface, 
with the assistance of EGFR. This results in the internalization of the viral particle via a pathway that is still unresolved. The nucleocapsid is 
subsequently released from the internalized membrane vesicles and transported to the nucleus in a process that involves microtubules. 
The nuclear transporter factor importin α/β then guides the capsid particle into the nuclear basket, where the HBV genome is released to 
the nucleoplasm. The partially double-stranded HBV genomic DNA (rcDNA) is converted to cccDNA, possibly by the host DNA repair 
mechanism, and then forms a mini-chromosome with the addition of nucleosomes, the HBV core protein and HBx. This mini-chromosome 
directs the synthesis of 3.5-kb pcRNA and pgRNA, 2.4-kb preS1 mRNA, 2.1-kb preS2/S mRNA, and 0.7-kb X mRNA, which serve as the 
templates for the synthesis of HBeAg, core proteins, polymerase, L, M, and S HBsAg proteins, and HBx, respectively. The pgRNA is packaged 
together with the DNA polymerase by the core protein to form the nucleocapsid. The reverse transcription ensues to convert the pgRNA 
into the rcDNA genome. The nucleocapsid may deliver the rcDNA back into the nucleus for the amplification of cccDNA. Alternatively, it 
may interact with HBsAg for envelopment and the formation of the mature HBV particle. Both multivesicular bodies (MVBs) and 
endosomal sorting complexes required for transport (ESCRT) are involved in the envelopment and the egress of HBV virions. In addition 
to complete virions, subviral particles (SVPs) consisting solely of HBsAg, empty virions, RNA-containing virions, and empty capsid particles 
are also released from HBV-infected cells.
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Children chronically infected by HBV genotype 
A have lower viral load and less severe symptoms 
than children infected by genotype D [357,358]. 
Moreover, HBV genotypes A and D differ in their 
effects on liver pathogenesis [359,360] and resistance 
to the deoxycytidine analog lamivudine[361]. When 
genotype B and genotype C were compared, genotype 
C was found to have a higher frequency of HBeAg 
positivity and a higher serum level of HBV DNA than 
genotype B, and have a delayed HBeAg seroconversion 
in the immune clearance phase of chronic infection 
[362]. Genotype C is also associated with more severe 
liver diseases including cirrhosis and HCC, but geno-
type B is associated with the development of HCC in 
young patients with non-cirrhotic liver.

The infection by more than one HBV genotype can 
lead to genotypic recombination in patients. The mixed 
infection by genotype B and genotype C is correlated 
with a worse prognosis of the disease and higher viral 
load, comparing with the single infection by genotype 
C[363]. While there are differences in viral replication 
and pathogenesis among different HBV genotypes, the 
molecular basis underlying these differences remains 
unclear.

HBV mutants and hepatocarcinogenesis

HBV DNA replication is error-prone because its poly-
merase lacks the proofreading activity with an error 
frequency of roughly one misincorporation for every 
1600 nucleotides synthesized[364]. Naturally occurring 
nucleotide mutations have been found in all four HBV 
genes[365]. A double-nucleotide mutation of A to T at 
nt. 1762 (A1762T) and G to A at nt. 1764 (G1764T), 
which reside in the basal core promoter (BCP) and the 
X ORF, is frequently identified in patients with chronic 
hepatitis [366,367]. This double mutation converts 
a nuclear receptor binding site to the HNF1 binding 
site and reduced the pcRNA level without affecting the 
pgRNA level[368]. As such, it reduces specifically the 
expression of the precore protein and HBeAg without 
affecting the core protein level[366]. Notably, this BCP 
mutation is sometimes also associated with the G to 
A mutation at nt. 1896 (G1896A) in the precore 
sequence that abolishes the expression of HBeAg 
[369–371]. Both the BCP mutation and the G1896A 
mutation are associated with a high risk of HCC 
[372,373]. In one study, HBV patients with the 
T1762/A1764 mutation was found to develop HCC 
more frequently than those without with a odds ratio 
of 10.6 (P < 0.001)[374]. Other BCP mutations, such as 
T1753C and C1766T, either alone or in combination 
with other BCP mutations and/or the G1896A 

mutation, have also been found to be associated with 
a high incidence of HCC [360,375].

The A1762T and G1764A double mutation also 
changed amino acid 130 of the HBx sequence from 
lysine to methionine (K130M) and amino acid 131 
from valine to isoleucine (V131I)[371]. This double 
amino acid substitution affects the biological activities 
of HBx and allows it to suppress the BCP activity[368]. 
Kwun and Jang also showed that HBx with the K130M 
mutation strongly inhibited the expression of cyclin- 
dependent kinase inhibitor p21 gene by suppressing the 
Sp1 TF activity[376]. In addition, HBV with the 
A1762T/G1764A/T1753A/T1768A quadruple mutation 
had also been shown to downregulate the expression of 
p53 and the S-phase kinase-associated protein 2 (Skp2) 
to promote the cell cycle[375]. HBx with the proline-38 
to serine (P38S) mutation is also frequently identified 
in chronic HBV carriers with HCC and an independent 
risk factor for HCC[377] (P = 0.001, odds ratio: 4.89). 
These findings indicate that mutations in HBx can 
promote hepatocarcinogenesis.

Deletions and nucleotide substitutions are frequently 
detected in the S gene, causing mutations in HBsAg 
proteins [203,378]. This can lead to the development of 
ground-glass hepatocytes (GGHs), which is character-
ized by an abnormal formation of the ER and a liver 
pathology found in chronic hepatitis B patients 
[379,380]. The S gene mutants isolated from GGHs 
often have deletions in the S promoter region in the 
preS1 sequence and, as such, they express mostly the 
L HBsAg mutants with little M or S HBsAg, resulting in 
the retention of the L HBsAg mutants in the ER and the 
induction of the ER stress [381,382]. The ER stress can 
cause oxidative DNA damage and genome instability, 
leading to the development of HCC. In a clinical study, 
preS2-defective mutants were found to be more preva-
lent in chronic HBV carriers with HCC (84.2%) than in 
inactive HBV carriers without HCC (13.33%) or in 
carriers with cirrhosis (50%)[383]. Indeed, HBV with 
a mutation in the preS2 sequence had been shown to 
induce HCC in transgenic mice[339].

The study of the HBV polymerase also revealed that 
the mutations of A to G at nt. 799 (A779G), A to G at 
nt. 987 (A987G) and T to A at nt. 1055 (T1055A) in the 
coding sequence of the RT domain were independent 
risk factors for HCC, with adjusted odds ratios of 5.53, 
4.20 and 3.78, respectively[384]. A longitudinal study 
indicated that these mutations could be detected 4– 
5 years before HCC diagnosis, supporting a causative 
role of these mutations in the development of HCC 
[384]. The A987G mutation does not alter the coding 
sequence of the RT domain. However, the A779G 
mutation converts isoleucine to valine and the 
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T1055A mutation converts methionine to lysine. How 
these nucleotide changes increase the risk for HCC will 
require further research. In a separate study, three 
nucleotide mutations, T31C, G529A and T1078G in 
the polymerase gene, which all cause missense muta-
tions, were identified as the predictor correlated with 
the postoperative survival of chronic HBV carriers with 
HCC[385]. The T31C mutation resides in the coding 
sequence of the spacer domain, and G529A and 
T1078G mutations reside in the coding sequence of 
the RT domain. How these mutations may affect the 
survival rate of HBV patients with HCC remains 
unclear.

HBV spliced RNA variants and viral pathogenesis

In addition to HBV mRNAs, spliced RNA variants 
(spRNAs) derived from the pgRNA have also been 
found in hepatoma cell lines transfected with the HBV- 
expressing plasmids [386–388], HBV transgenic mice 
[389], and the liver tissues isolated from chronic hepa-
titis B (CHB) patients [390,391]. The spRNAs that may 
be generated differ between different HBV genotypes 
[392,393]. The study of a chronic HBV patient over 
a 15-year period following liver transplantation led to 
the identification of highly diverse and novel spRNA 
populations[394], indicating that the population of 
spRNAs can be highly dynamic during chronic HBV 
infection. The most abundant HBV spRNA variant, 
which may reach up to 30% of the pgRNA, is a 2.2-kb 
RNA molecule derived from the pgRNA by the removal 
of a 1.3-kb intron [390,395]. spRNAs can be packaged 
into capsid particles and reversed transcribed into 
spDNAs to generate defective HBV particles[396]. To 
date, the functions of spRNAs are still mysterious, as 
they are not essential for HBV replication in cultured 
cells and mice. HBV spRNAs can bind to TATA-box 
binding protein (TBP) and act as a repressor of HBV 
RNA transcription and may play a role in chronic HBV 
infection[397].

HBV spRNAs can also be translated to produce 
novel HBV proteins. HBV splice-generated protein 
(HBSP) is a major spRNA product[398]. It contains 
part of the polymerase sequence fused to a new ORF 
and can suppress the IFN-signaling pathway by inhibit-
ing the phosphorylation of STAT1 and its subsequent 
nuclear translocation that is required for the activation 
of ISGs[395]. An N-terminally truncated polymerase, 
also a product of spRNA has a similar inhibitory effect 
on IFN signaling[395]. Indeed, the increase of a specific 
population of HBV spRNAs, including the spRNA 
encoding HBSP, in chronic hepatitis B patients had 
been shown to correlate with an impaired response to 

the IFN-α therapy[395]. HBSP can induce T-cell 
responses in a mouse model and in HBV-infected 
patients[399]. It can also suppress the NF-κB pathway 
activated by TNF-α and reduce the hepatic infiltration 
of immune cells during chronic liver inflammation in 
a mouse model[400], and suppress Fas-induced apop-
tosis via the activation of the PI3K-AKT pathway in 
hepatoma cells and primary human hepatocytes[401]. 
These findings together suggest an important role of 
HBSP in the survival and persistence of HBV-infected 
hepatocytes during chronic infection.

The 2.2-kb single-spliced RNA can also produce 
a p21.5-kDa protein that is one amino acid shorter 
than the core protein. p21.5 can form a homodimer 
that interacts with the core protein dimer and sup-
presses the formation of capsid particle [398,402]. 
spRNAs also regulate host immunity through their 
effect on the synthesis of chemokines in hepatocytes, 
which may promote liver immunopathogenesis, 
immune escape of HBV, and the progression of liver 
fibrosis during chronic HBV infection [403,404]. The 
2.2-kb single-spliced RNA is present at a higher level in 
liver tumor tissues than in peri-tumor tissues, raising 
the possibility that this spliced RNA may be involved in 
the development of HCC[405]. Bayliss et al. also found 
that the serum spDNA level was higher in HCC 
patients than in control patients without HCC, and 
there was a strong correlation between serum spDNA 
levels and time to HCC diagnosis, again suggesting 
a role of spRNAs in hepatocarcinogenesis[406]. In con-
clusion, the studies on spRNAs and the proteins they 
encode indicate that they may regulate the crosstalk 
between HBV and hepatocytes to affect viral persis-
tence and pathogenesis (for further details on the role 
of spRNA in HBV pathogenesis, please see the recent 
review[407]).

HBV and liver immunopathogenesis

HBV inoculum and type I IFNs

The ability of HBV to establish persistence is influenced 
by the size of the viral inoculum. By using chimpanzees 
as a model, Asabe et al. found that the infection of the 
animals with a low-dose HBV inoculum of 1 or 10 
genome-equivalent (GE) would lead to the infection 
of 100% hepatocytes and viral persistence with severe 
immunopathology[408]. However, the infection of the 
animals with the inoculum of 104 or 107 GE led to the 
infection of fewer than 0.1% of hepatocytes and viral 
clearance with minimal immunopathology. Tian et al. 
also reported that a low-dose inoculation of HBV DNA 
into mice by hydrodynamic injection would prolong 
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HBV persistence [409,410]. Their further studies indi-
cated that this was due to the induction of the type 
I IFN response, which stimulated HBV gene expression 
and replication [409,410]. In contrast, they also found 
that type I IFNs suppressed HBV replication when viral 
load was high. IFN-α as well as IFN-γ can induce the 
expression of the human cytidine deaminase 
APOBEC3G [411,412], which binds to the viral poly-
merase and is thus incorporated into the nucleocapsid 
as well. The binding of APOBEC3G to the viral DNA 
polymerase interferes with the minus-stranded DNA 
synthesis [413,414]. The study of chronic HBV patients 
indicated that the induction of APOBEC3G might be 
mediated by the JAK-STAT signaling pathway[415]. 
These findings indicate that the size of the viral inocu-
lum can have a profound impact on viral persistence or 
clearance and that type I IFNs can positively or nega-
tively regulate HBV replication, depending on viral 
load.

Cytotoxic T lymphocytes

HBV-specific CD8+ T cells recognize viral peptides 
presented by the major histocompatibility complex 
(MHC) class I molecules on the cell surface and play 
a crucial role in HBV clearance[416]. Indeed, an active 
HBV-specific CD8+ T cell response, which recognizes 
multiple HBV epitopes in polymerase, core and surface 
proteins[417], and can be detected in patients who 
recover from acute HBV infection[418], whereas hypo- 
responsiveness of HBV-specific CD8+ T cells, which 
have restricted epitope specificities, is a characteristic 
of chronic HBV infection [419,420]. The exhaustion of 
HBV-specific cytotoxic T lymphocyte (CTL) response 
is characterized by a low frequency of IFN-γ and gran-
zyme production, impaired sensitivity to HBV-specific 
antigen stimulation, increased sensitivity to apoptosis 
induced by tumor necrosis factor-related apoptosis- 
inducing ligand (TRAIL), and upregulation of the 
Inhibitory checkpoint receptors, etc [421,422]. 
Multiple coinhibitory checkpoint receptors, such as 
cluster of differentiation 244 (CD244/2B4), T cell 
immunoglobulin and mucin-domain containing-3 
(Tim-3), cytotoxic T lymphocyte-associated antigen-4 
(CTLA-4), and Program death-1 (PD-1) are overex-
pressed on the surface of exhausted T cells during 
chronic viral infection[422]. The enhanced expression 
of these immune checkpoint inhibitory receptors of 
T cells impairs the HBV-specific CTL response and 
plays an important role in T cell exhaustion in chronic 
HBV patients [423,424] and mouse models[423]. Maier 
et al. found that HBV-specific CTLs adoptively trans-
ferred into the liver of HBV transgenic mice failed to 

produce IFN-γ[425]. Notably, the blockade of the inter-
action between PD-1 and its ligand, Programmed 
death-ligand 1 (PD-L1), promoted the production of 
IFN-γ in the liver by these CTLs.

By studying mice with persistent HBV replication, 
Tian et al. found an increased expression of PD-1 in 
HBV-specific CD8+ T cells, which had impaired 
response to HBV[159]. Their further analysis also 
revealed an increased expression of PD-L1 in Kupffer 
cells, the resident macrophages of the liver. The CD8+ 

T cell activity could be restored by treating the mice 
with a specific antibody directed against PD-L1 or by 
the depletion of Kupffer cells, leading to HBV clear-
ance. Their studies demonstrated an important role of 
the interaction between PD-1 and PD-L1 in the sup-
pression of HBV-specific CTL response and HBV per-
sistence. The B7 homolog 3 (B7-H3; a.k.a. CD276) is 
another member of the B7 family that was originally 
identified as a costimulatory molecule that induces 
T-cell proliferation and IFN-γ production in vitro 
[426]. Luan et al. found that the level of soluble B7- 
H3 increased in the plasma of patients with chronic 
HBV infection, and this increase was accompanied by 
the reduced level of membrane-associated B7-H3 on 
hepatocytes[427]. Their further studies indicated that 
soluble B7-H3 could partially block membrane- 
associated B7-H3 from inhibiting the T cell receptor- 
induced proliferation of T cells and the secretion of 
IFN-γ. This effect of soluble B7-H3 likely contributes 
to the activation of the CTL response and the induction 
of hepatic inflammation in chronic HBV patients.

CD8+ T cell-derived IFN-γ plays a key role in the 
progression of chronic liver diseases by recruiting and 
activating macrophages to produce fibrosis-promoting 
cytokines and chemokines such as TNF-α, IL-6, and 
MCP-1431. Note that, in addition to HBV-specific 
T cells, it had also been shown that many virus non- 
specific T cells frequently infiltrated the liver of CHB 
patients[428] and HBV transgenic mice [429], and con-
tribute to the progression of chronic liver diseases.

Antibody-dependent cell-mediated cytotoxicity

In addition to CTL-mediated immune responses, an 
antibody-dependent cell-mediated cytotoxicity 
(ADCC) is also involved in liver pathogenesis during 
acute and chronic active hepatitis B[430]. Peripheral 
blood B lymphocytes isolated from chronic HBV 
patients with active hepatitis can induce significant 
cytotoxicity on hepatocytes [431–433]. The recognition 
of viral antigens present on the target cell surface by the 
viral antigen-specific antibodies is a crucial step for the 
initiation of ADCC. Fc receptors expressed on immune 
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effector cells will then recognize the Fc domain of the 
antibodies and stimulate the release of cytotoxic gran-
ules to eliminate the target cells [434]. HBsAg, HBeAg 
and HBcAg can be detected on the hepatocellular 
membrane of chronic HBV patients [435,436], and 
the anti-HBcAg have also been detected on the hepa-
tocellular membrane[437]. Michalak et al. found that 
the anti-HBcAg-induced cytotoxicity was significantly 
enhanced in chronic HBV patients with active hepatitis 
than those without, and anti-HBsAg could also induce 
hepatocytotoxicity in the presence of complement[438]. 
Their results indicated that HBcAg and HBsAg on the 
hepatocellular surface could be recognized by their 
respective antibodies, and that the complement- 
dependent cytolysis could contribute to liver injury 
caused by HBV infection.

Natural killer cells and regulatory T cells

Natural killer (NK) cells are key mediators of the 
ADCC response and play an important role in the 
early control of HBV infection [439,440]. They can 
also directly respond to viral infections by secreting 
cytokines including TNF-α, IL-10, and IFN-γ and by 
releasing cytotoxic mediators such as granzyme and 
perforin [441,442]. Recent studies using a mouse 
model mimicking acute HBV infection indicated that 
NK cells could promote the CTL response against HBV 
via the producing IFN-γ[443]. However, in chronic 
HBV patients, peripheral NK cells are functionally 
impaired, have reduced ability to produce IFN-γ and 
TNF-α, and display molecular features, such as the 
upregulation of immune checkpoints receptors and 
their ligands, typical of those observed in exhausted 
T cells, without the reduction of their cytolytic activity 
[444–448]. The activity of NK cells can be modulated 
by the expression of activating or inhibitory receptors 
on the cell surface[449], and a decreased expression of 
the activating receptors CD16, NKp30, NKG2D and 
2B4, and the increased expression of the inhibitory 
receptor NKG2A are observed in chronic HBV patients 
[444,446]. A recent study revealed that dysfunctional 
NK cells in chronic HBV patients had enriched RNA 
transcripts that were also expressed in exhausted 
T cells, suggesting a common mechanism for NK cell 
dysfunction and T cell exhaustion[444]. Further studies 
indicated that this might be due to the dysregulation of 
calcium signaling in both dysfunctional NK cells and 
exhausted T cells, which led to the activation of the 
transcription factor TOX and several of its target genes 
in a pathway dependent on the calcium-associated tran-
scription factor NFAT[444]. In addition, high levels of 
transforming growth factor-β1 (TGF-β1) had also been 

shown to suppress the proliferation of NK cells ex vivo 
and were detected in the sera of chronic HBV patients 
[446]. TGF-β1 downregulated the expression of 
NKG2D and 2B4 in NK cells and induced the cell 
cycle arrest. It likely also plays an important role in 
the suppression of NK cell activity. Interestingly, NK 
cells were found to eliminate HBV-specific CD8 + T 
cells in a contact-dependent manner and their deple-
tion from the peripheral blood mononuclear cells 
(PBMCs) of chronic HBV patients augmented HBV- 
specific CD8 + T cell responses ex vivo[450]. NK cells 
are the main intrahepatic lymphocytes that express 
TRAIL, allowing them to kill hepatocytes bearing 
TRAIL receptors, leading to chronic liver injury[448]. 
Intrahepatic CD8 + T cells in chronic HBV patients 
also express a high level of TRAIL death receptor R2 
(TRAIL-R2), which sensitizes them to NK cell-induced 
apoptosis[450]. These studies underscore the impor-
tance of NK cells in HBV persistence.

Regulatory T cells (Tregs) are a specialized subpo-
pulation of T cells that can suppress effector T cells via 
the secretion of inhibitory cytokines[451]. In chronic 
HBV patients, there is an increased frequency of circu-
lating Tregs (CD4+CD25+FoxP3+) [452–454]. In 
a recent study, it was also found that IL-10 secreted 
by the circulating Tregs could also contribute to the 
dysfunction of NK cells in chronic HBV patients[455]. 
It was found that HBeAg could stimulate Tregs to 
produce IL-10, thereby increasing the expression of 
NKG2A in NK cells and contributing to the dysfunc-
tion of NK cells in chronic HBV patients. Notably, the 
HBV-specific T cell proliferation in response to PD-1 
blockade was weaker in HBeAg-positive patients than 
in HBeAg-negative patients, in support of a role of 
HBeAg in T cell exhaustion and immune toler-
ance[454].

Macrophages

Kupffer cells comprise approximately 15% of the total 
liver cell population[456]. They are derived from the 
yolk sac, mature in the fetal liver and retain their 
hepatic residence after birth and during adulthood 
[457]. In a study using transgenic mice carrying the 
replication-competent HBV DNA genome as a model, 
Sitia et al. found that the depletion of Kupffer cells 
before the adoptive transfer of HBV-specific CD8+ 

T cells exacerbated liver injury caused by these trans-
ferred CD8+ T cells[458]. Their further studies indi-
cated that Kupffer cells did not directly affect the 
function and the pathogenic potential of HBV-specific 
CD8+ CTLs, but rather, their depletion led to impaired 
removal of apoptotic hepatocytes and the development 
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of focal hepatocellular necrosis, which exacerbated the 
liver injury due to the release of damage-associated 
molecular patterns (DAMPs) and the infiltration of 
inflammatory cells[458]. Their results indicated that 
Kupffer cells could limit immunopathology of the 
liver by removing apoptotic hepatocytes. Kupffer cells, 
like other macrophages, can undergo the proinflamma-
tory M1 polarization characterized by the expression of 
proinflammatory cytokines such as TNF-α and IL-1β, 
or the M2 anti-inflammatory polarization characterized 
by the expression of IL-10 and arginase-1.

The C3H/HeN mouse strain is tolerant to HBV at 
6 weeks of age but not at 12 weeks of age, when the 
HBV genomic DNA cloned in an adenovirus- 
associated virus (AAV) vector was introduced into 
mouse hepatocytes using hydrodynamic injection. 
By using this approach, Wu et al. found that 12- 
week-old mice injected with the HBV genomic 
DNA had a higher level of TNF-α secreting Ly6C+ 

monocytes and a lower level of IL-10-secreting 
Kupffer cells in the liver at 3 days after DNA injec-
tion than 6-week-old mice[459]. Their further 

analysis indicated that the enhanced recruitment of 
Ly6C+ monocytes to the liver was due to the 
increased secretion of the chemokine CCL2 by hepa-
tocytes. They further showed that the treatment of 
mice with an antagonist to the C-C chemokine recep-
tor 2 (CCR2) would hamper the recruitment of 
Ly6C+ monocyte to the liver and delay HBV clear-
ance in 12-week-old mice, and the depletion of 
Kupffer cells would enhance the recruitment of 
Ly6C+ monocytes and accelerate HBV clearance. 
Their results revealed opposite roles of Ly6C+ mono-
cytes and Kupffer cells in the control of HBV clear-
ance or persistence, and the relative populations of 
these two cell types in the liver were affected by the 
mouse age[459]. By using a similar approach, Li et al. 
found that the expression of TLR2 was upregulated 
in Kupffer cells of mice with persistent HBV replica-
tion, and the activation of TLR2 with HBcAg 
enhanced the expression of IL-10 in these Kupffer 
cells[460461]. They also found that the knockout of 
TLR2 or the depletion of Kupffer cells led to the 
activation of CD8+ T cells and the elimination of 

Figure 5. Roles of immune cells in HBV-induced liver pathogenesis. HBV particles and HBeAg can activate hepatic macrophages 
(Kupffer cells) to undergo the pro-inflammatory M1 polarization, which subsequently express TNF-α and IL-1β and stimulate HBV- 
specific CTLs for HBV clearance. Alternatively, HBV in the presence of HBeAg can also stimulate hepatic macrophages that have been 
conditioned by maternal HBeAg to undergo the anti-inflammatory M2 polarization with an increased expression of PD-L1. The 
binding of PD-L1 to PD-1 on HBV-specific CTLs can lead to T cell exhaustion and HBV persistence. In chronic HBV patients, an 
elevated level of B7-H3 in the plasma can impair the activity of HBV-specific CTLs. HBV replication can activate NKs to produce IFN-γ 
and TNF-α to suppress HBV replication. Moreover, the Fc receptor of NKs can recognize anti-surface or anti-core antibodies bound to 
the surface of HBV-infected hepatocytes to trigger the ADCC during acute and chronic HBV infection. HBeAg can also stimulate Tregs 
to express IL-10 to cause the dysfunction of NK cells and the establishment of immune tolerance during chronic HBV infection.
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HBV from mice. Their results were consistent with 
the finding of Wu et al. and supported a role of 
Kupffer cells in HBV persistence.

Tian et al. also studied Kupffer cells using adult 
C57BL/6 mice as a model. In contrast, they found that 
Kupffer cells isolated from naïve mice would undergo the 
M1 polarization when stimulated with HBV in the pre-
sence of HBeAg, whereas Kupffer cells isolated from 
HBV-negative mice born to replication-competent, 
HBeAg+, hemizygous HBV transgenic dams would 
undergo the M2 polarization under the same treatment. 
They further found that M2 Kupffer cells expressed a high 
level of PD-L1 and could suppress HBV-specific CD8 + T 
cells to promote HBV persistence, and their depletion 
could lead to HBV clearance from mice. Their results 
indicated that Kupffer cells can have both anti- and pro- 
HBV effects, depending on whether they had been con-
ditioned by maternal HBeAg[159].

In yet another study using immunodeficient mice 
grafted with human hematopoietic stem cells and liver 
progenitor cells for the reconstitution of human immune 
system and liver cells, it was found that 75% of mice infected 
by HBV led to HBV persistence and had impaired human 
immune responses in the liver and developed liver fibrosis. 
Importantly, these mice also had a high level of infiltrated 
macrophages with M2-like phenotype[461]. These results 
together indicate that Kupffer cells can limit liver injury 
induced by HBV and play a positive or negative role in 
HBV clearance and HBV-induced liver pathogenesis, 
depending on microenvironmental cues (e.g., HBeAg).

A summary of immune cells that play a role in HBV 
persistence and clearance is illustrated in Figure 5.
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