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Abstract: This paper presents a novel unified theory of the structure activity relationship of opioids and opioid peptides. It is hypothesized 
that a virtual or known heterocyclic ring exists in all opioids which have activity in humans, and this ring occupies relative to the aro-
matic ring of the drug, approximately the same plane in space as the piperidine ring of morphine. Since the rings of morphine are rigid, 
and the aromatic and piperidine rings are critical structural components for morphine’s analgesic properties, the rigid morphine mol-
ecule allows for approximations of the aromatic and heterocyclic relationships in subsequent drug models where bond rotations are 
common. This hypothesis and five propositions are supported by stereochemistry and experimental observations.
Proposition #1 The structure of morphine provides a template. Proposition #2 Steric hindrance of some centric portion of the piperidine 
ring explains antagonist properties of naloxone, naltrexone and alvimopam. Proposition #3 Methadone has an active conformation 
which contains a virtual heterocyclic ring which explains its analgesic activity and racemic properties. Proposition #4 The piperi-
dine ring of fentanyl can assume the morphine position under conditions of nitrogen inversion. Proposition #5 The first 3 amino acid 
sequences of beta endorphin (l-try-gly-gly) and the active opioid dipeptide, l-tyr-pro, (as a result of a peptide turn and zwitterion bond-
ing) form a virtual piperazine-like ring which is similar in size, shape and location to the heterocyclic rings of morphine, meperidine, 
and methadone. Potential flaws in this theory are discussed.
This theory could be important for future analgesic drug design.
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Introduction
During the last half century, medicinal chemists have 
searched for improved opioid analgesics. Hundreds 
of compounds have been synthesized and tested for 
improvements of alkaloids derived from the opium 
poppy. The simplest synthetic compounds which have 
extensive clinical use are meperidine and methadone. 
Researchers continue to search for improved analge-
sics with fewer side effects, increased potency, and 
less risk of tolerance.1

Endogenous opioids such as beta endorphin bind 
to the same receptor as the opium alkaloids. The con-
formational similarities between morphine, meperi-
dine, fentanyl, methadone and the endorphins are 
still speculative. Although the endorphins are potent 
analgesics they have limited clinical use because they 
are inactivated during ingestion and cannot cross 
the blood brain barrier.2 Effect is only achieved with 
intrathecal administration.

It is hypothesized that a virtual or known hetero-
cyclic ring exists in all opioids which have activity 
in humans and this ring occupies relative to the aro-
matic ring of the drug, approximately the same plane 
in space as the piperidine ring of morphine.

General Premises of the Argument
1.	 In humans, a single mu opioid receptor exists as 

defined by that structure of the central nervous 
system which binds morphine and endorphin and 
facilitates analgesia.

2.	 The clinical, animal, experimental, and computa-
tional information pertaining to opioid and opioid 
peptides is vast and spans two centuries. Some of 
the data may be inaccurate because laboratory and 
computing technologies have been refined during 
this time period. In order to develop a theory appli-
cable to human pharmacology, the author chose to 
prioritize data in the literature. For example, con-
flicting activity data from homogenate receptor 
studies will not supercede data from in vivo human 
studies and conflicting structural determinations 
from computational chemistry will not supercede 
results from stereochemistry, crystallography or 
NMR studies. Thus, observations from the litera-
ture can be weighted from most significant to least 
in the following manner:
a.	 Agonist/antagonist activity-human, in vivo 

potency  animal, in vivo potency (tail flick, 

hot plate)  guinea pig ileum or mouse vas def-
erens preparations  receptor homogenates

b.	 Crystallography, NMR, stereochemistry  molec-
ular modeling (molecular mechanics and/or quan-
tum mechanics)

3.	 Conclusions are based on the inductive argu-
ment. Exceptions to the propositions may exist 
because numerous opioid and opioid peptides 
have been synthesized prior to recognition of 
multiple opioid receptors. Also refinements in 
laboratory techniques may have changed data 
interpretation. However, this argument applies to 
active opioids and opioid peptides which produce 
effects in humans. These opioids are referred to 
as “first class” opioids whereas as all other opioid 
like analgesics are referred to as “second class” 
opioids.

4.	 This theory relies heavily on the stereochemistry 
of the opioids to explain pharmacologic activity 
of opioids and opioid peptides. Although com-
putational measurements from other authors are 
considered, the focus has been to describe the 
pharmacologic activities through comparisons 
of enantiomers which become evident in the 
presence of virtual or known heterocyclic rings. 
Steric effects hindering the heterocyclic ring by 
various isomers explain agonist and antagonist 
characteristics of the molecule. Further work in 
the form of computational chemistry and experi-
mental pharmacology may support or refute this 
theory.

Previous Structure Activity Theories
1.	 Beckett and Casy proposed that an aromatic and 

a basic amine, which is protonated at physiologic 
pH, exists to form a 3 point model consisting 
of an anionic site (N), hydrophobic region of a 
piperidine ring, and a phenolic site (tyrosine).3,4 
Their theory predates the discovery of opioid 
peptides.

2.	 Kane et al described an opioid agonist model sug-
gesting that multiple epitopes exist for ligand bind-
ing.5 Their work led to a theory of a more complex 
structure activity mechanism of “message and 
address” sites in fentanyl and related second class 
opioids. They did not extend their theory to opioid 
peptides.
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3.	 Cometta-Morini et al proposed a structure activity 
relationship for the fentanyl classes of compounds 
which relied upon four key moieties. 1) a proton-
ated amine nitrogen, 2) a polar group capable of 
hydrogen bonding, 3) an aromatic ring, 4) a second 
aromatic ring.6

4.	 Martin and Andrews, using a computational anal-
ysis, favored a protonated nitrogen, an aromatic 
ring, and a lipophilic group as the essential com-
ponents of opioid agonists.15 Most of their compu-
tations were conducted with second class opioids 
and they did not extrapolate their theory to opioid 
peptides.

Rationale for Selection of Opioids  
to Investigate
The opioids considered for this paper represent a 
subset of those compounds known to produce anal-
gesia through the mu opioid receptor in man exclud-
ing many of the analgesics where bioavailability, 
lipid solubility, or metabolism may predict differ-
ences in action. Just as clinical data is prioritized in 
reviews or meta-analysis, the selected compounds 
of highest priority (clinical response in man) were 
investigate which by- passed the in vitro–in vivo 
correlation discrepancies. Many second class opi-
oids were excluded which were investigated in ear-
lier years before subpopulations of opioid receptors 
were discovered. The conclusions from this argu-
ment may or may not explain some of the prior 
experimental observations, particularly of second 
class opioids.

Proposition #1 The structure  
of morphine provides a template
1.	 In humans, within the central nervous system, 

morphine is a mu receptor agonist.
2.	 It is fortuitous that the morphine rings are nearly 

rigid with little rotational movement and therefore 
can be considered a template.

3.	 The aromatic and heterocyclic ring incorporating 
nitrogen (piperidine ring) are essential for analge-
sic activity. The B and C rings can be eliminated 
with minimal loss of activity.7 If the D ring is also 
eliminated, the molecule has limited activity as the 
position of the heterocyclic ring is significantly 

less rigid with more degrees of freedom of move-
ment (Fig. 1).

4.	 One cannot say whether the relationships of the 
aromatic and heterocyclic rings in morphine are 
ideal, but if they are not, they must be close to 
ideal because of morphine’s analgesic potency. 
Furthermore, natural selection may have favored 
organisms with opioid receptors which are 
responsive to naturally occurring opioids.

5.	 The plane of the heterocyclic ring is defined by 
two vectors originating from the plane of the aro-
matic ring and the distance between two points on 
each plane (Fig. 2).

6.	 The primary state of the heterocyclic ring is the 
lower energy chair conformation.

Meperidine is the simplest active opioid 
and conforms to the morphine model
Meperidine is the simplest active opioid and is com-
prised of an aromatic ring and piperidine ring. With 
the aromatic ring of meperidine congruent with the 
aromatic ring of morphine the piperidine ring can 
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assume a position very closely approximating the 
position of the morphine piperidine ring (Fig. 3).

Proposition #2 Steric hinderance of 
some centric portion of the piperidine 
ring explains antagonist properties of 
naloxone, naltrexone and alvimopam
1.	 These steric effects are caused by the OH and allyl 

side chains which block more than a peripheral 
portion of the piperidine ring (Fig. 4).

2.	 In the guinea pig ileum preparation, naltrexone 
with a bulkier side chain is more antagonistic than 
naloxone8 (Fig. 5).

3.	 In humans, alvimopam is an antagonist and there 
is significant hindrance of the piperidine ring by 
the aromatic ring (Fig. 6).

Proposition #3 Methadone has an active 
conformation which contains a virtual 
heterocyclic ring which explains its 
analgesic activity and racemic properties
Methadone has a unique structure compared to other 
opioids since it does not possess a heterocyclic ring. 

(Fig. 7) Attempts to explain the structure activity 
relationship of methadone have invoked unusual ste-
ric changes and rearrangements which have never 
been very convincing.9 An argument that a pharma-
cologically active methadone conformation includes 
a “virtual heterocyclic ring” is based on the following 
assumptions:

1.	 Methadone contains a ketone group which also 
exists in equilibrium as an enol tautomer (Fig. 8).

2.	 The OH in the enol tautomer can form an intramo-
lecular hydrogen bond with the tertiary nitrogen 
and produce a seven member heterocyclic ring. 
According to Pauling, the N-H-O bond is near lin-
ear.10 Therefore, the virtual ring has characteristics 
of a 6 member nitrogen containing ring which can 
be shown to be positioned in a plane similar to the 
piperidine ring of morphine. The position of this 
ring can be easily modeled (Figs. 9, 10).

3.	 The formation of the heterocyclic ring positions a 
methyl group connected to the chiral carbon which 
has steric influences on activity. In the chair con-
formation of the d isomer, the methyl group hinders 
the heterocyclic ring and the medication has mini-
mal analgesic activity, but in the l isomer there is 
no ring hindrance and substantial analgesic effects. 
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Similar to the steric blocking effects observed with 
naloxone and naltrexone, these steric effects explain 
why l-methadone is active and d-methadone is rel-
atively inactive (Fig. 11).

		  This observation is consistent with prior work 
showing that the stereospecific potency of metha-
done is intrinsic.11

4.	 The presence of a virtual ring also explains prior 
observations that racemic threo-5-methyl metha-
done is inactive where as (–) erythro-5 methyl-
methadone is highly active. This occurs because 
of the steric blocking effects from methyl groups 
on the virtual ring.12

5.	 NMR and circular dichroic studies are “not incon-
sistent” with the existence of intramolecular hydro-
gen bonding within methadone and a heterocyclic 
ring conformation.13,14

6.	 Loew et al using quantum chemical studies showed 
evidence that methadone conforms to a low energy 
heterocyclic ring as described by Portoghese.13

7.	 Even though the methadone molecule contains two 
aromatic groups and the quaternary carbon con-
necting these groups is not chiral, there is one pre-
ferred conformation incorporating the virtual ring. 
This becomes more apparent when the molecule is 

viewed from the plane of the aromatic ring and this 
supports the specificity of the stereochemistry.

Proposition #4 The piperidine ring  
of fentanyl can assume the morphine 
position under conditions of nitrogen 
inversion
1.	 A rigid tertiary amine moiety of fentanyl limits 

conformational changes which would allow the 
piperidine ring to assume a position similar to that 
found in morphine unless nitrogen inversion exists 
(Fig. 12).

2.	 The nitrogen of this amine is chiral, yet a racemic 
mixture of fentanyl which would have stereospecific 
activity is not known to exist. Nitrogen inversions 
are probable low energy conformational changes at 
body temperature which can change the length and 
angles of the tertiary amine and allow a conforma-
tion to exist in which the aromatic and the piperidine 
rings of fentanyl coincide with those of morphine.

3.	 Substitution of the tertiary nitrogen with carbon 
results in an inactive molecule which strongly sug-
gests that a tetrahedral structure is not the active 
structure.6
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4.	 Most congeners of fentanyl in which the nitro-
gen of the tertiary amine is cyclically restrained 
are inactive presumably because the inversion is 
restrained.6

5.	 Klein et al studied two restrained analogues of 
3-methyl fentanyl and reported three times greater 
activity with the cis isomer but also activity in the 
trans molecule. During nitrogen inversion, the 
trans conformation may hinder the piperidine ring 
more than the cis conformation but not enough to 
produce antagonism.16

Proposition #5 The first 3 amino 
acid sequences of beta endorphin 
(l-try-gly-gly) and the active opioid 
dipeptide, l-tyr-pro, (as a result of a 
peptide turn and zwitterion bonding) 
form a virtual piperazine-like ring which 
is similar in size, shape and location 
to the heterocyclic rings of morphine, 
meperidine, and methadone
1.	 Tyr-gly-gly- is the N terminus amino acid sequence 

of beta endorphin (Fig. 13). However, many appar-
ently dissimilar, di, tri, tetra, penta, and polypep-
tides are known to have opioid activity, the smallest 
being l-Tyr-pro (Fig. 14). There are at least 68 
peptides defined as opioid peptides cited in the lit-
erature.17 These compounds display in vitro and in 
vivo activity in a number of mammalian species. 

Forty nine of 68 of the compounds contain Tyr 
as the initial amino acid residue. Of the 49, 34 of 
these compounds have a second amino acid resi-
due as gly. Of the 34, 32 have the initial 3 residues 
as tyr-gly-gly. Tyrosine d-alanine is present in 5/68 
peptides. Ten of 68 peptides are found in humans. 
Five of 10 have the sequence tyr-gly-gly. Most 
importantly, these observations suggest that there 
is some structural commonality among dissimilar 
opioid peptides in addition to being comprised 
of an initial l-tyrosine aromatic ring and peptide 
bonds.

2.	 Three groups of investigators provided cystallo-
graphic evidence that a ring structure is present 
along with a peptide turn in opioid peptides.
a.	 Vass et al describe two types of beta turns in 

N-glycated leu-enkephalin. Their beta turn 
includes a 7 member ring.18

b.	 Ishida et al described a G-G Type II beta turn as 
the most stable conformer of met-enkephalin in 
the zwitterionic state which is consistent with a 
7 member virtual 6 member piperazine ring.19

Figure 11. + Demonstration of steric effects from methyl groups in race-
mic (d,1) methadone.

Nitrogen
inversion

ON

N

FentanylFigure 12. Fentanyl.

N

N

N

OO

O

O

O

H

H

H

H

H

H

Figure 13. I-Tyr-Gly-Gly.

http://www.la-press.com


Opioid, stereochemistry, analgesic, heterocyclic

Perspectives in Medicinal Chemistry 2010:4	 �

c.	 Bloomberg et al described conformational changes 
of a beta turn mimetic incorporated in leu-enkephalin. 
They proposed a 10 member ring formation sup-
ported by NMR and crystallography studies of leu-
enkephalin.20 While the 10 member ring cannot be 
superimposed on the piperidine of morphine an 
intermediate virtual 7 member ring may exist.

3.	 Within the peptide turn of tyr-gly-gly an ionic bond 
and virtual heterocyclic ring exists formed by the 
intramolecular zwitterion attraction of the negative 
carbonyl oxygen to the positively charged nitrogen 
of tyrosine (Fig. 15).

		  Demonstration of the similar conformations 
of the piperazine-like ring of tyr-gly-gly and piper-
idine ring of morphine (Fig. 16).

4.	 When viewed from the initial l tyrosine moiety, 
these 7 member rings exist in a plane similar to 
the piperidine ring of morphine. The geometry 
conforms to a 6 member piperazine-like ring. For-
mation of this ring will cause the first two amino 
acids joined by a peptide bond to conform to the 
rarer but active cis conformation which has been 

shown to be critical for analgesia. Not intuitively 
obvious, it is not possible to form the ring with the 
first and second amino acids in the trans confor-
mation without disturbing rigid and planar pep-
tide bonds.

5.	 Another observation supporting the virtual ring is 
that d-tyr-gly-gly is inactive as well as other pep-
tides beginning with d-tyr and this stereochemistry 
changes the conformation of the virtual heterocy-
clic ring in such a manner that it cannot be congru-
ent with the piperidine ring of morphine when the 
phenyl group of tyrosine is superimposed on the 
phenyl group of morphine.21

6.	 Amino acids with the l conformation are exclusive 
in first class opioid peptides. D-alanine can be sub-
stituted for glycine as in DAMGO with high potency 
and minimal steric effects on the virtual ring. How-
ever, peptides beginning with l-tyrosine-l-alanine 
are inactive.22 In this conformation the methyl group 
of alanine hinders the virtual ring (Figs. 17, 18).
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7.	 Synthetic isomers of beta endorphin with substi-
tutions of d-phe, or d-met are inactive because 
of steric hindrance of the virtual ring. In such 
conformations, the amino acid R group hinders 
the ring. However, more distal substitutions of d 
amino acids may not be associated with steric hin-
drance of the virtual ring and may active. Also, it 
is imaginable that in the larger more potent opi-
oid peptides like beta endorphin, met-enkephalin, 
and leu-enkephalin the l-amino acid residues exert 
influences on the size, shape and location of the 
virtual ring by changes in the peptide tertiary 
structure which increase analgesia.

8.	 Tyr-pro is the minimal length peptide which has 
been shown by two laboratories to possess opioid 
activity.23,24 Tyr-pro can form a hydrogen bonded 
virtual ring and peptide turn which is consistent 
with this proposition (Fig. 19).

9.	 The second amino acids (glycine, alanine or pro-
line) which are bonded to l-tyrosine and found in 
opioid peptides are known to be associated with 
peptide turns which supports the existence of vir-
tual ring formations.

Discussion
In first class opioids and opioid peptides, a hetero-
cyclic ring exists which occupies a similar plane and 
space as the piperidine ring of morphine. The loca-
tion and degree of steric hindrance of the ring predicts 
analgesic activity. Formation of the heterocyclic ring 
produces stereoisomers of these analgesics, where 
various enantiomers produce changes in activity. 
In methadone, these assumptions are based on the enol 
tautomer of methadone and intramolecular hydrogen 
bonding producing a stable virtual ring conformation. 
Supporting the presence of a virtual ring are observa-
tions of ring hindrance defining the activity of d and l 
isomers of methadone and d and l isomers of alanine 
in tyr-ala. Thus, the stereochemical changes which 
occur because of the virtual heterocyclic ring and 
steric hindrance explain many of the pharmacologic 
activities of the respective isomers.

In l-tyr-gly-gly- and l-tyr-pro ionic attractions 
between the zwitterions and a peptide turn forms a 
seven member ring with properties of a six member 
piperazine-like ring favoring the cis conformation of 
the peptide bond between the initial first (tyr) and sec-
ond amino acid which has analgesic activity. Further 
support of the opioid peptide proposition (#5) is that 
the inactive peptides beginning with d-tyrosine, posi-
tions the ring in a much less favorable position when 
compared to the piperidine ring of morphine. Thus, 
first class opioids and opioid peptides have a confor-
mation where heterocyclic rings are approximate to 
that of morphine and the plane of the heterocyclic ring 
is defined by two vectors originating from the plane 
of the aromatic ring and the distance between two 
points on each plane. This theory, in its simplicity, is 
presented as an alternative to present theories which 
describe more complex ligand receptor relationships 
or do not address the structure activity relationships 
of both opioids and opioid peptides. Furthermore, the 
analgesic activities of the small peptides tyr-pro and 
tyr-gly-gly support this theory but does not exclude 
that larger more potent opioid peptides may have 
amino acid residues that slightly favorably change the 
aromatic-heterocyclic relationship.

It has been demonstrated that more potent opioids 
(define by receptor binding) are associated with less 
tolerance.25 The better the “fit” to the receptor, the 
better the pharmacodynamic response. Although drug 
tolerance is not the prevailing problem in treating most 
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diseases (if it were, physicians would be constantly 
readjusting dosage even when there is no disease pro-
gression), improved opioid analgesics hybridizing 
some properties of opioid peptides with opiates may 
enhance opioid receptor fit and decrease the tolerance 
that can be associated with morphine and related 
drugs. Development of a simple stable opioid, opi-
oid peptide or “hybridized” opioid with the essential 
aromatic-heterocyclic relationships discussed in this 
writing and with the capability of crossing the blood 
brain barrier would further substantiate this theory.

Possible Flaws in This Theory
This theory was conceived to answer a basic ques-
tion: Is there a commonality of structure among first 
class opioids? Instead of trying to recreate the opi-
oid pharmacophore and explore ligand docking, or 
perform computational and in silico analysis, this 
theory attempts to explain structure activity rela-
tionships of selected first class opioids primarily 
on the basis of stereochemistry, physical properties 
and the structure of morphine as the prototype.26,27 
But this theory could be erroneous and may not be 
accurate because energy minimization, molecular 
and quantum mechanics, thermodynamics and the 
message-address concept of opioid binding have 
not been addressed.28–30 Other more recent devel-
opments in opioid pharmacology such as the iden-
tification of opioid ligand binding to the toll-like 
receptor (TLR4), the structure activity relationships 
of the opioid dipeptide (kyotorphin), or the recently 
released tapentadol, an opioid/norepinephrine ago-
nist, have not been examined in the context of this 
theory.31–33 More specifically, there is minimal recent 
computational evidence to support an active piper-
azine like ring in opioid peptides or support coex-
istance of nitrogen inversion with multiple docking 
sites in the fentanyl series of molecules.34,35 This 
theory may be overly simplistic and is surely not 
representative of present mainstream investigations 
in medicinal chemistry. On the other hand, Louis 
Pasteur and Emil Fischer made some incredible dis-
coveries based on stereochemistry.

Excluding advances in analgesic bioavailability 
and modifications of the fentanyl molecule, it has 
been more than 50 years since a new pure opioid ago-
nist has been made available for clinical use, despite 
the discovery of the opioid receptors in the 1970s. 

In addition, the opioid pharmacology citations in 
PubMed continue to grow at a rapid rate especially 
in the discipline of computational medicinal chemis-
try. However, morphine (circa 1804) and methadone 
(circa 1937) remain the long acting opioids most pre-
scribed in pain centers. With all the investigations 
being conducted, one would anticipate that new and 
improved pure opioid agonists should be clinically 
available and it is hoped that this theory will prove 
useful even if flaws do exist.

Conclusion
A unified theory based on the stereochemistry of a 
common aromatic-heterocyclic relationship in opioid 
and opioid peptides is presented. This theory is sup-
ported by five propositions which include experimen-
tal data derived from the literature and stereochemical 
observations from the author’s perspective. Some of 
the support for the propositions explains new rela-
tionships about steric hindrance and optical activity 
of opioids. This theory could be important for future 
analgesic drug design.
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