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Abstract: Piezoresistive pressure sensors capable of detecting ranges of low compressive stresses
have been successfully fabricated and characterised. The 5.5 × 5 × 1.6 mm3 sensors consist of a planar
aluminium top electrode and a microstructured bottom electrode containing a two-by-two array of
truncated pyramids with a piezoresistive composite layer sandwiched in-between. The responses
of two different piezocomposite materials, a Multiwalled Carbon Nanotube (MWCNT)-elastomer
composite and a Quantum Tunneling Composite (QTC), have been characterised as a function of
applied pressure and effective contact area. The MWCNT piezoresistive composite-based sensor was
able to detect pressures as low as 200 kPa. The QTC-based sensor was capable of detecting pressures
as low as 50 kPa depending on the contact area of the bottom electrode. Such sensors could find
useful applications requiring the detection of small compressive loads such as those encountered in
haptic sensing or robotics.

Keywords: pressure sensor; piezoresistive sensor; carbon nanotubes; quantum tunneling composite

1. Introduction

In recent years an increasing variety of non-commercial contact pressure sensors based on flexible
elastomeric materials have been reported. These sensors are a response to a growing need to measure
low pressure loads across a range of applications, including but not limited to healthcare monitoring
in wearable applications, haptic sensing or robotic touch applications [1–5]. The various pressure or
force transduction mechanisms used in these sensors range from piezoresistive [6], piezoelectric [7],
triboelectric [8] to capacitive sensing [9–11] amongst others.

Out of the aforementioned pressure sensors, those that rely on a piezoresistive force-sensitive
response are the preferred choices for low-cost applications, due to the reduced complexity in the
required readout electronics and manufacturing process. These piezoresistive materials can be compact
since they generally consist of uniformly dispersed conductive particles within an elastomeric material.

Piezoresistive sensors based on conductive elastomeric composites, such as carbon nanotubes
(CNT)-Polydimethylosiloxane (PDMS) composites, usually exhibit their piezoresistive sensitivity to
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compressive levels above the megaPascal (MPa) threshold [12–14], a performance that is deemed
inadequate for the majority of the aforementioned applications. A variety of methods have been
used to obtain improved piezoresistive sensitivity in lower pressure regimes. These include
(1) microstructuring of the composite surface, such as carbon nanotubes-polydimethylsiloxane
layers (CNT-PDMS) with pyramids or pillars and placing two such films in an interlocked
configuration [15,16]; (2) embedding of CNT films on a PDMS diaphragm [17,18] or CNT fillers
in a bilayer pillar PDMS structure [19]. The primary disadvantage of these methods is the increase in
manufacturing complexity and cost.

This article describes a simple method of improving the resolution of piezoresistive pressure
sensors to lower pressures, which involves micro-structuring the bias electrodes of the sensor to form
truncated pyramid structures. These structures increase the effective contact area to the piezoresistive
film. Two different piezoresistive composite films, with a positive and a negative piezoresistive
response respectively, were evaluated with this method: an in-house developed Multi-Walled
Carbon Nanotube (MWCNT)-PDMS piezoresistive composite and a commercially available Quantum
Tunnelling Composite (QTC).

The above piezoresistive films were chosen to enable a quantifiable piezoresistive response to low
compressive stimuli described in detail over the next sections. In the former case, the low filler content
of carbon nanotubes and soft elastomeric nature of PDMS can lead to minimal polymer reinforcement
required to generate the desired piezoresistive behaviour. In the latter case, QTC and its unique
and highly sensitive response under mechanical deformation was judged appropriate to evaluate
the proposed sensor concept in the context of composites exhibiting either a positive or a negative
piezoresistive coefficient.

As shown in Figure 1, the developed piezoresistive sensor incorporates the piezoresistive
polymeric composite film in-between a microstructured and a flat electrode. Local pressure
enhancement in the form of the microstructure truncated pyramidic features on the bottom electrode
was implemented to enable a tuneable and improved sensor performance at lower operating pressure
regimes. Both sensor types were characterized for compressive loads ranging from 50 kPa to 1.1 MPa.
Section 2 presents the design and operating principle of both sensors, as well as the manufacturing
process of the MWCNT-PDMS composite, device assembly and experimental setup of the measurement
system. Results on the performance of the sensor are presented and discussed in Section 3. Section 4
concludes that the presented sensor approach results in an enhanced and tuneable resolution at lower
pressure regimes.
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Figure 1. Schematic of a CNT-based elastomeric piezoresistive pressure sensor. Bottom and top layers
(a,c) are the structured and unstructured aluminium electrodes, respectively, that encompass the
piezoresistive filler composite (b), illustrated on the right. A direct conductive pathway is represented
in this figure as a red curve.
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2. Materials and Methods

2.1. Design of the Piezoresistive Sensor

The design of the piezoresistive sensor device, depicted in Figure 1, follows a simple three-layer
configuration whereby two 5.25 × 5 mm2 aluminium electrodes, encapsulate a 300 µm thick
piezoresistive filler-polymer composite film. The top and bottom aluminium layers, of thickness
of 500 µm and 800 µm respectively, determine the piezoresistive response of the sensor to
axial compressive loads only. The bottom electrode was patterned with a two-by-two array of
equidistantly-spaced, 300 µm-high, truncated pyramidic structures. The surface area of these pyramids
was varied from 75 × 75 µm2 to 550 × 550 µm2 to determine the relationship between sensor
performance and surface area. Top and bottom aluminium contact pads, of equal thickness and
length of 250 µm, protrude from the edges of the electrodes to enable electrical connection to an
external bias voltage. The overall dimensions of the entire sensor are 5.5 × 5 × 1.6 mm3.

2.2. Composition of the Piezoresistive Composite Films

Two polymeric composite materials forming the sensing layer have been evaluated. The
first material was developed in-house and is a nanocomposite consisting of MWCNT and PDMS.
The second material utilised is a commercially available Quantum Tunnelling Composite (QTC)
film (QTC “pill” product [20]) developed by the company Peratech (Brompton-on-Swale, UK) [21].
The material is used for example in single and multi-touch sensor configurations for applications
spanning configurable force buttons to trackpads and under-display touch [21]. A similar formulation
of such a composite has also been reported in [22]. The principles of conduction are quite different for
these two materials, resulting respectively to a positive and a negative piezoresistive response under
compressive deformation.

2.2.1. CNT Based Nanocomposite Transduction

Conduction in CNT-based elastomeric composites emerges predominately due to the direct
physical contact between neighbouring filler particles forming thereby continuous conducting
pathways that span the composite (red curve, Figure 1) [23]. The transition from an insulating
to a conductive phase occurs generally abruptly in such composites, with an exponential decrease in
resistivity, at a critical filler concentration termed as the percolation threshold [23]. Such CNT-based
composites exhibit an increase in resistivity when subjected to compressive deformation, unlike their
conventional percolating composite counterparts that consist of low aspect ratio particles (spheroidal
particles). In the latter case, compression leads primarily to the formation of new conductive pathways
and hence to a decrease in resistivity, due to the very high percolation threshold (>30% by volume)
that results in small average difference between fillers [24,25]. In contrast, during compression, CNTs
experience bending which deteriorates their intrinsic electronic properties and significantly increases
the resistivity of the composite as a consequence [12,26]. In addition, the material properties of the
elastomeric matrix of the composite play an equally important role. An in-depth investigation and
analysis of the above is described in [26]. Succinctly, CNT-based composites, in general, can exhibit
both a negative piezoresistive response (NP), as well as, a positive one (PP) depending on the choice of
the elastomeric matrix and its characteristic Poisson ratio v. The quantitative parameter that can be
used to evaluate and determine the expected behaviour of these composites is the average junction gap
variation (AJGV) between the filler particles, as adjacent CNTs are essentially electrically connected by
the tunnelling transport of electrons through the junction gaps. AJGV in turn is effectively dominated
by the Poisson ratio of the polymer constituent. For CNT-based composites with a Poisson ratio of the
polymer matrix below a threshold (v ≤ 0.3) the composite exhibits a NP response during compressive
deformation, as most junctions are either compressed or unchanged. However, when the Poisson ratio
of the polymer is above the aforementioned threshold the composite starts to exhibit a PP response to
compressive deformation. This is due to the complex counteracting relationship of junctions expanding
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and compressing, in combination with the interference of CNTs and the polymer chains which in turn
serve as an obstacle to the junction gap change. In the case where the Poisson ratio of the polymer
matrix is close to v = 0.5, such as PDMS, the aforementioned obstructing effect becomes dominant and
the composite exhibits a purely NP response under compressive deformation. Hence, an increase of
resistivity under compressive deformation is expected for such a pressure sensor.

2.2.2. QTC Transduction Mechanism

QTC material was also evaluated as the piezoresisitive element of the sensor due its unique
and highly sensitive piezoresistive response under mechanical deformation. The development of the
composite material involves the uniform dispersion, into a polymeric silicone matrix, of micron-sized
nickel particles with a spiky surface morphology into a polymeric silicon matrix [27]. A low energy
dispersion method is employed during processing, which enables the complete encapsulation of
the filler particles by the elastomeric matrix and leads to an electrically insulating response during
equilibrium, even at filler loadings as high as 25% by volume. The physics governing the piezoresistive
response of the QTC material differ substantially from conventional percolating composites and
predominately stem from a quantum tunnelling effect affecting neighbouring filler particles of the
composite [22,27,28]. During mechanical deformation, the protruding nano-spikes of adjacent nickel
particles come into closer proximity enabling a charge flow due to the Fowler-Nordheim (FN) quantum
tunnelling effect (cold emission of electrons), facilitated by the localised field enhancement at the
extremities of the spikes [27]. Since the probability of quantum tunnelling depends exponentially on
the width of the intervening potential barrier, the piezoresistive response of the composite exhibits
an exponential drop in resistivity of as high as seven orders of magnitude under either compressive
or even tensile deformation, contrary to the resistive increase that typical percolating composites
exhibit [22,27].

2.3. Operating Principle of the Piezoresistive Sensor

For both types of composites, the micro-structured electrode morphology was designed to enable
a local compression enhancement and therefore an improved performance at lower dynamic pressure
ranges. The uniform compressive load, P = F/A, of a force F applied at the sensor surface A, is evenly
distributed across the truncated pyramids of respective surface area a. The piezoresistive film composite
experiences therefore an augmented effective load, Peff, which imparts an enhanced deformation and
hence a significant piezoresistive response such that:

Pe f f = k·P =
A

N·a ·P (1)

where N is the number of truncated pyramids and k = A/(N·a) is the pressure enhancement factor
experienced by the piezoresistive film due to the microstructured surface of the electrode.

2.4. Manufacturing Process of the MWCNT-PDMS Composite

MWCNTs, with a 98% relative purity of carbon, 2.1 mL/g density, average length 3–6 µm and
with outer and inner dimensions of 10 ± 1 nm and 4.5 ± 0.5 nm respectively (Sigma-Aldrich, St. Louis,
MO, USA), were chosen as the filler constituent of the MWCNT-PDMS nanocomposite. Due to the
high aspect ratio of the filler particles, such composites are used in this article as they have been found
to exhibit a percolation threshold of 0.3% to 2.5% [26,29–31], which is significantly lower compared
to that of spheroidal particles such as carbon black or metal particles where a concentration of as
high as 26% w/w has been reported [32]. PDMS (Sylgard 184, Dow Corning, Midland, MI, USA) was
chosen as the elastomeric matrix of the composite over other elastomers such as PMMA, PLLA or
polycarbonate [33–35], due to its low Young’s modulus of 1.7 MPa, low cost, chemical inertness and
biocompatibility [36,37]. The combination of a soft elastomeric matrix and low filler content minimizes
the unwanted mechanical reinforcement effects of the composite, reported in the case of spheroidal
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filler particles, for example [25]. The low filler content and minimal polymer reinforcement enables
therefore a quantifiable deformation, in terms of piezoresistive response, under low compressive loads.

As described in detail in the next paragraph, the preparation process of the MWCNT/PDMS
involves multiple dispersion steps utilising ultrasonication, an organic solvent and mechanical stirring
as in [38–43], to achieve a uniform distribution of the MWCNT filler particles within the elastomeric
matrix and facilitate an isotropic composite conductivity. Due to the strong inter-tube Van der Waals
attractive forces, CNTs form together highly aggregated agglomerates in their natural state and hence
external mechanical energy is required to separate these aggregates [44–47]. A 20 kHz frequency, 500 W
programmable ultrasonic probe (Fisher Scientific) directly immersed in the solution was employed,
as it could generate the required dispersion in minutes [29,43], in contrast to sonication baths that
typically require hours to achieve the desired dispersion [14,30,48]. Furthermore, due to the highly
viscous nature of PDMS, the organic solvent toluene (Sigma-Aldrich) was also required to assist the
dispersion of the CNTs as it exhibits good solubility with this polymer [43,47,49,50] and can be easily
extracted prior to crosslinking the composite.

The procedure to manufacture the composite is presented in Figure 2. First, ultra-sonication of
a 1% w/w MWCNTs/toluene solution in a pulse mode (10 s on, 15 s off) for 3 min at 20 kHz was
implemented, to allow the solution to settle after each burst (A). Then 5 min shear mixing at 500 rpm
of a 10% w/w PDMS elastomer base/toluene solution via a magnetic stirrer (B). The two solutions
were combined at the desired filler-polymer ratio (C). The next step involves ultra-sonication for 3 min
in a pulsed mode (10 s on, 15 s off) (D) and shear mixing via a magnetic stirrer at 100 ◦C and 500 rpm
until the organic solvent had completely evaporated (45–60 min) (E). A high resolution digital balance
(±0.01 g resolution) was utilised to monitor the evaporation rate, intermittently, as well as in all
previous and subsequent process steps during development of the composite. Afterwards, the solution
was cooled down to room temperature by immersing the vial into a cold water bath to avoid thermal
crosslinking of the composite during the next step. Subsequently the curing agent of the Sylgard
184 PDMS was added to the solution, at the recommended 10:1 ratio [51] (F). The resulting composite
was then shear mixed again for 15 min at 500 rpm with a magnetic stirrer, at room temperature. Finally,
trapped air pockets were removed by placing the composite in a vacuum desiccator for 45 min. The
composite was then cast in an aluminium mould with a 300 µm deep cavity and spread repeatedly
via a blade to ensure an even distribution. The composite was thermally cross-linked at 100 ◦C for
1 h, and after demoulding, was then singulated to 5 × 5 mm2 blocks via a blade. The developed
MWCNT/PDMS piezoresistive films were compared against 5 × 5 × 1 mm3 QTC films of the same
structural configuration and under the same experimental conditions.

Structuring the electrode was achieved by a micromilling process, utilising a 1 mm diameter
carbide mill tip (Roland MDX 20), which provided a feature accuracy of 25 µm. Aluminium was
utilised as the structural material due its good conductivity, low cost and ease of milling. Multiple
sets of the top unstructured and bottom structured electrode layers, with varying surface area of the
truncated pyramid features, were produced from a single 1 mm thick aluminium 3 × 3 cm2 block
via the use of laser-cutting. Sensors with truncated pyramids of 300 µm height and surface areas of
75 × 75 µm2, 200 × 200 µm2, 350 × 350 µm2, 425 × 425 µm2 and 550 × 550 µm2 were developed. The
number of the pyramidic features was limited to four, solely due the diameter of the milling tip and
the size of the sensor. The 300 µm high pyramidic geometry was chosen to ensure that any defects in
the planarity of the micromilled areas outside the structures would not come into electrical contact
with the piezoresistive film during compressive deformation, restricting thereby the response solely to
the pyramidic features’ surface area.

The design of the proposed sensor enables a simple and cost-effective assembly as depicted in
Figure 3. A thin layer of silver conductive epoxy was doctor-bladed on the surface of the flat electrode
layer where the piezoresistive film was attached, ensuring maximum electrical contact after thermally
curing the epoxy. Thin output wires were also similarly bonded to the electrode pads of both electrode
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layers to enable connection with a DC bias and the sensor configuration was finally set into place via a
loose protective encapsulation with a thin polyimide (PI) tape.Micromachines 2018, 9, x FOR PEER REVIEW  6 of 14 
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Micromachines 2018, 9, x FOR PEER REVIEW  6 of 14 

 

 
Figure 2. Preparation process of MWCNT/PDMS composite: (A) 1% w/w MWCNT/toluene solution 
ultrasonication; (B) shear mixing with magnetic stirrer of 10% w/w PDMS elastomer base/toluene; 
(C,D) combination of the two solutions to the desired filler ratio and ultrasonication; (E) shear mixing 
of solution at 100 °C to evaporate toluene; (F) addition of PDMS curing agent, shear mixing and 
degassing at desiccator prior to casting and thermal cross-linking of the composite films. . 

 
Figure 3. (Left) sensor assembly; (right) photograph of the individual parts of the sensor prior to 
encapsulation with (a) the structured electrode and (b,c) the unstructured electrodes with and 
without the piezoresistive film attached to it respectively. 

  

Figure 3. (Left) sensor assembly; (right) photograph of the individual parts of the sensor prior to
encapsulation with (a) the structured electrode and (b,c) the unstructured electrodes with and without
the piezoresistive film attached to it respectively.
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2.5. Experimental Setup

A simple experimental apparatus was devised to extract the percolation threshold of the
developed MWCNT/PDMS composite. As shown in Figure 4a, two copper tracks, placed 5 mm
apart from each other, were laid out on a glass slide to define an area of 10 × 7 mm2. A small quantity
of the composite was then poured and spread repeatedly on this area via a blade (Figure 4b), prior to
curing, to form a film with a 300 ± 100 µm thickness as shown in Figure 4c.
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Figure 4. Experimental apparatus to characterise MWCNT/PDMS films: (a) prior to casting the
composite; (b) composite casting; (c) cross-linked film.

The setup, powered by a DC supply of 1 V (TTi PL330 32 V-3 A PSU), was then connected in
series to a Keithley 2000 digital multimeter to measure the resistance of MWCNT/PDMS films of
various filler loadings ranging from 0.2% to 3%. Regarding the characterisation of the assembled
piezoresistive sensors, detailed in Section 3, a MAT-400 die bonder (MAT, Yokneam Illit, Israel), shown
in Figure 5, was employed to exert compressive loads from 40 kPa to 1.2 MPa. The bonder utilises a
software-controlled probe with a micro-camera to ensure that uniform loads are accurately applied on
the surface of the sensor within a user-set time limit (here 20 s).
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3. Results and Discussion

3.1. MWCNT-PDMS Composite Characterisation

As shown in Figure 6, the composite exhibits the typical sigmoidal conductive behaviour of
percolating composites. A total of five composite batches were produced for each filler-polymer
concentration displayed in Figure 6 and the composite was characterised with the experimental
apparatus described in Section 2.5. The percolation threshold was found to be at a very low filler
loading of approximately 0.625 ± 0.100% w/w that lies within the expected regime, as described
previously. The resistance of the composite dropped significantly by close to three orders of magnitude
from 5 MΩ to 18 kΩ, remaining relatively stable beyond the percolation threshold as expected from
percolation theory [23].
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This decrease in resistance was not as dramatic as reported in literature, where a change of as
high as nine orders of magnitude has been documented [52,53]. A potential factor for the observed
performance of the composite can be attributed to the extended shear mixing of the composite during
the evaporation step which may have led to the fracturing of the CNTs and subsequent shortening of
their length, resulting in a rather high value of the resistance of the composite beyond the percolation
threshold, as reported elsewhere in [47,54].

Based on the results obtained in Figure 6, MWCNT/PDMS films were manufactured with a
0.75% filler ratio, which lies just beyond the percolation threshold. At this state, MWCNTs experience
greater curvatures to compressive loading and hence intrinsically possess an enhanced piezoresistive
response [12,24].

3.2. Characterisation of the Performance of the Sensors

3.2.1. Characterisation of the MWCNT-PDMS Sensor

The relative resistance of the MWCNT-PDMS sensor was characterised as a function of the
compressive pressure load. A sensor with non-structured bottom electrode layer was first characterised
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as shown in Figure 7. Changes in relative resistance started appearing from pressure loads of
approximately 0.45 MPa, with a 50% resistance increase at compressive loads as high as 1.15 MPa.
Variations in pressure distinguishable from noise were recorded with a resolution of approximately
200 kPa. This response is in agreement with results reported in [12–14]. A notably improved response
was observed when a microstructured bottom electrode was used. The larger dynamic range of the
sensor enabled the capture of compressive loads of as low as 0.25 MPa, while the relative resistance
increased significantly over the same pressure range. For example, a sensor with pyramidic features of
75 × 75 µm2 surface areas displayed a two-order increase over the initial resistance for loads as high
as 1.15 MPa.
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In this case pressure variations distinguishable from noise were extracted with a resolution as
high as 50 kPa. For a given compressive pressure load, the relative resistance was also increased as
the surface of area of the features decreased. For example, the relative resistance increased threefold
between structures of 75 × 75 mm2 to 425 × 425 mm2 surface area at a compressive load of 650 kPa.

3.2.2. Characterisation of the QTC-Based Sensor

Similar enhanced changes of relative resistance were also measured in the case of QTC-based
sensors. As before, the response to compressive loading was first evaluated with an unstructured
bottom electrode layer as shown in Figure 8.

QTC effectively behaved as an electrical insulator until a critical compressive load was applied
as expected. Beyond that point, the resistance of the sensor decreased exponentially by five orders
of magnitude from approximately 10 MΩ to less than 100 Ω for a pressure range of approximately
0.2 MPa to 1.1 MPa with a pressure resolution of as high as 50 kPa. The observed piezoresistive
response of the QTC composite under compressive loads was in agreement with the results reported
in [22,55].

When truncated pyramids were introduced on the bottom electrode, the dynamic range and
pressure resolution of the QTC-based sensor increased substantially, exhibiting a similar exponential
response in a lower pressure regime as in the CNT-PDMS sensor, as shown in Figure 9. The smallest
detectable pressure load in this case was approximately 100 kPa for a sensor with 550 × 550 µm2

surface area and 50 kPa for a sensor with 75 × 75 µm2 surface area. The resistance of the sensor
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exhibited a plateau at approximately 280 kPa, in the former case, to approximately 200 kPa in the latter.
Pressure variations distinguishable from noise were recorded with a resolution of 10 kPa in this case.Micromachines 2018, 9, x FOR PEER REVIEW  10 of 14 
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The microstructuring of electrodes therefore significantly improves the performance of both types
of sensors. This patterning enables the detection of much smaller compressive loads with significantly
enhanced resolution. Manipulation of the features dimensions also enables the effective tuning of the
performance of the sensor in agreement the analysis of Section 2.
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Although the QTC-based sensor displayed a quantifiable response at a lower pressure regime
and a higher pressure resolution, the variation of the resistance was strongly nonlinear with applied
load. In contrast, the MWCNT-PDMS-based sensors displayed a more predictable response. The
erratic response of the QTC-based sensors was translated as significant variations in the resistance
values requiring a 10 to 20 s delay to reach a relatively stable resistance value prior to each
pressure measurement.

Two reasons are possible regarding the observed nonlinear behaviour of the resistance as a
function of the applied load. The first reason stems from the complex physical behaviour of QTC and
MWCNT-PDMS materials when subject to a compressive load as alluded previously. Another reason
relates to the non-uniform surface area of the pyramidic features generated during the micromilling
process which led to an incomplete contact with the surface of the piezoresistive film and therefore
a non-uniform deformation. The surface of the developed pyramidic features exhibited random
small bumps and recesses, with an average height deviation in the order of approximately 10 µm.
Furthermore, as the surface area decreased, the surface of the microstructured truncated pyramidic
features deteriorated the square geometry into an almost circular shape as shown in the profilometric
measurement in Figure 10 using a white light phase shifting interferometer (Zygo Viewmeter 4200),
with the 75 × 75 µm2 surface area features displaying the least defined and uniform morphology.
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4. Conclusions

A small-sized piezoresistive pressure sensor was developed to measure low pressure ranges.
The sensor makes use of a surface microstructured electrode with four symmetrically placed truncated
pyramidic structures to enable an enhanced response in lower compressive regimes due to the reduced
effective area of the exerted forces. A low cost manufacturing process was employed for the sensor
development and assembly. Two different piezoresistive films were evaluated as the transducer layer
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of the sensor: a commercially available QTC film with a negative piezoresistive response and an
in-house developed MWCNT-PDMS composite film with a positive piezoresistive response.

Sensors based on a microstructured electrode displayed a significantly improved response and
resolution in lower pressure regimes over sensors with their planar unstructured electrode counterparts.
For the MWCNT-PDMS sensor, a resistance increase as high as two orders of magnitude was measured
for loads up to 1.15 MPa between the structured and unstructured electrode type of sensor. Detection
of pressure variations for compressive loads as low as 200 kPa with a resolution as high as 50 kPa
respectively was achieved. In the case of the QTC-based sensor, loads as low as 50 kPa with a
resolution increase of 10 kPa were measured for the microstructured electrode, as well as a reduced
measurable range. Further improvement of the pressure resolution and increased tunability of the
sensor performance are potentially feasible by utilizing structured electrodes for both the top and
bottom layers of the sensor.
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