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Abstract

Microsatellites, or simple tandem repeat sequences, occur naturally in the human genome and have important
roles in genome evolution and function. However, the expansion of microsatellites is associated with over two
dozen neurological diseases. A common denominator among the majority of these disorders is the expression of
expanded tandem repeat-containing RNA, referred to as xtrRNA in this review, which can mediate molecular
disease pathology in multiple ways. This review focuses on the potential impact that simple tandem repeat
expansions can have on the biology and metabolism of RNA that contain them and underscores important gaps in
understanding. Merging the molecular biology of repeat expansion disorders with the current understanding of
RNA biology, including splicing, transcription, transport, turnover and translation, will help clarify mechanisms of
disease and improve therapeutic development.
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Introduction
In 1991 it was discovered that a microsatellite sequence
expansion is the cause of two distinct neurological disor-
ders, Fragile X syndrome (FXS) [303] and spinal bulbar
muscular atrophy (SBMA), or Kennedy's disease [167].
Since then, simple repeat sequence expansions have
been associated with over twenty more neurological dis-
orders [166, 300, 333] (Table 1). What has been learned
is that microsatellite expansions may cause disease in
multiple ways. For nearly all of these neurological disor-
ders, however, disease includes production of RNA that
contains the aberrant repeat expansion sequence. Ac-
cordingly, the leading disease mechanisms involve repeat
expansion RNA-mediated sequestration of critical RNA-
binding proteins and translation of repeat expansion
RNA into toxic repetitive polypeptides.
Tremendous progress has been made in understanding

the metabolism of expanded tandem repeat-containing
RNA (xtrRNA). Nonetheless, various gaps in our

understanding of the underlying molecular biology and
pathology remain, which in turn limits identification of
promising therapeutic approaches. The goal of this re-
view is to help address these gaps by discussing the po-
tential impact of xtrRNA on cellular RNA metabolism.
We begin with an overview that covers microsatellite
origin, evolution, and expansion. We then follow
xtrRNA through its life cycle, beginning with transcrip-
tion and continuing through splicing, folding, protein in-
teractions, localization, turnover, and translation. We
rationalize the logic of current molecular disease models,
note where important mechanistic information is lack-
ing, and emphasize new pathways to consider for mech-
anistic insight. We use this discussion to also highlight
areas where therapeutic intervention may be useful.

Origin and expansion of microsatellites in human
disease
Simple tandem repeat sequences in the human genome
Microsatellite sequences comprise approximately 3% of
the human genome, about twice as much as protein cod-
ing sequence [1, 171]. Microsatellites, interchangeably
known as simple or short tandem repeats (STRs), are
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usually defined as simple sequence motifs of one to six
nucleotides that are contiguously repeated at least a few
times [24, 69]. Microsatellites occur throughout the gen-
ome, but are predominantly found in noncoding pro-
moters, introns, 5' and 3' untranslated regions (UTRs),
and intergenic regions [236, 257, 291]. Intergenic micro-
satellites seem to fit neutral evolution models, although
not perfectly [69], and are among the most variable gen-
omic sequences [32]. Therefore, they serve as the basis
for forensic DNA analyses and as markers for population
genetics studies [24, 61, 65, 236].

The origin and evolution of microsatellites is incom-
pletely understood. They may have derived from simple
and repetitive sequence motifs found in mobile genetic
elements, such as non-LTR (long terminal repeat) retro-
transposons like Alu and L1 [6, 51, 95]. Transposable el-
ements have colonized the human genome extensively
and their remains have undergone mutation and replica-
tion, providing the starting material for simple tandem
repeats [69]. The dense repetitive sequence of centro-
meres and telomeres is proposed to originate from in-
corporation of mobile genetic elements during early

Table 1 Microsatellite repeat expansion disorders

Disorder Repeating
unit

Genomic
location

Gene
name

Normal
length

Pathogenic
length

Expanded repeats result in: Repeat discovery &
referencesGene

silencing
xtrRNA
transcription

xtrRNA
proteins

xtrRNA
foci

FXS/FRAXA† CGG 5’UTR FMR1 6-55 200+ Yes* No No No [114, 161, 230, 303]

SBMA† CAG Coding AR 9-36 38-62 No Yes Yes* L .D. [167]

DM1 CTG 3’UTR DMPK 5-37 50-10000 No Yes* Yes Yes* [193]

HD CAG Coding HTT 10-35 35+ No Yes Yes* L.D. [192]

SCA1 CAG Coding ATXN1 6-35 49-88 No Yes Yes* L.D. [232]

FRAXE CCG 5'UTR AFF2 4-39 200-900 Yes* No No No [152]

DRPLA CAG Coding ATN1 6-35 49-88 No Yes Yes* L.D. [155]

SCA3 CAG Coding ATXN3 12-40 55-86 No Yes Yes* Yes [140]

SCA2 CAG Coding ATXN2 14-32 33-77 No Yes Yes* L.D. [127, 253]

FRDA GAA Intron FXN 8-33 90+ Yes* Yes / No No No [30]

SCA6 CAG Coding CACNA1A 4-18 21-30 No Yes Yes* L.D. [337]

EPM1 CCCCGC
CCCGCG

Promoter CSTB 2-3 30-80 Yes* Yes / No No No [170]

SCA7 CAG Coding ATXN7 7-17 38-120 No Yes Yes* L.D. [57]

OPMD GCG Coding PABPN1 6-10 12-17 No Yes Yes* No [23]

SCA8 CTG 3’UTR ATXN8 16-34 74+ No Yes Yes* Yes* [156]

SCA12 CAG 5’UTR PPP2R2B 7-28 66-78 No Yes* No No [121]

SCA10 ATTCT Intron ATXN10 10-20 500-4500 No Yes ? Yes* [205]

SCA17 CAG Coding TBP 25-42 47-63 No Yes Yes* L.D. [224]

DM2 CCTG Intron CNBP 10-26 75-11000 No Yes ? Yes* [184]

FXTAS/FXPOI CGG 5’UTR FMR1 6-55 55-200 No Yes Yes* Yes* [143, 287]

HDL2 CTG/CAG 3'UTR/antisense JPH3 <50 50+ No Yes ? Yes* [120]

SCA31 TGGAA Intron TK2/BEAN 0 45+ No Yes Yes* Yes* [256]

SCA36 GGCCTG Intron Nop56 3-14 650+ No Yes ? Yes* [153]

C9FTD/ALS GGGGCC Intron C9ORF72 2-25 25+ No Yes Yes* Yes* [59, 248]

FRA7A CGG Intron ZFN713 5-22 85+ No Yes* / No No No [209]

FRA2A CGG Intron AFF3 8-17 300+ No Yes* / No No No [210]

Disorders are listed in order of the year they were discovered, with the appropriate references relating to their discovery. This table highlights known RNA biology
for each disease with respect to xtrRNA transcription, translation, and formation of nuclear focal aggregates
Dagger symbol (†) indicates that athough the CAG repeat for SBMA was discovered first, the CGG repeat for FXS was published first. Asterisk (*) indicates the
most likely repeat-associated disease mechanism(s) for that disorder. L.D. length-dependent, SBMA Spinal-Bulbar Muscular Atrophy, EPM1 Progressive Myoclonus
Epilepsy 1 (Unverricht–Lundborg Disease), FXS/FRAXA Fragile X Syndrome, DM Myotonic Dystrophy, HD Huntington’s Disease, SCA Spinocerebellar Ataxia, FRAXE
Fragile X E Syndrome, DRPLA Dentatorubral-Pallidoluysian Atrophy, FRDA Friedreich Ataxia, OPMD Oculopharyngeal Muscular Dystrophy, FXTAS Fragile X–Associated
Tremor/Ataxia Syndrome, FXPOI Fragile X-Associated Primary Ovarian Insufficiency, HDL2 Huntington’s Disease-Like 2, C9FTD/ALS C9ORF72-Associated Frontotemporal
Dementia and Amyotrophic Lateral Sclerosis, FRA7A CGG Expansion at Fragile Site 7A, FRA2A CGG Expansion at Fragile Site 2A
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eukaryotic evolution [87, 304]. Small sequence duplica-
tions of these simple sequences can further produce
microsatellites with multiple repeats. The STRs that are
expanded in Friedreich ataxia (FRDA) and myotonic
dystrophy type 2 (DM2), for example, have been traced
to an Alu element origin [41, 163]. In contrast, de novo
genesis by events like random mutation, replication slip-
page, and duplication of unique sequence may also ac-
count for the birth of microsatellite sequences [28, 69].
STRs have been shown to have positive roles in evolu-
tion, such as bacterial resistance to antibiotics and circa-
dian clock adaptation to the environment in Neurospora
crassa and Drosophila melanogaster [83, 133, 211, 258,
279, 307]. The placement of microsatellite sequences in
and near regulatory and coding regions of the genome
also implicate them in control of gene expression and
genetic interactions [133, 331].

Expansion of simple tandem repeats
There are several distinct mechanisms that can contrib-
ute to the expansion of naturally occurring microsatel-
lites. In this section we provide a brief overview of these
mechanisms. Many excellent reviews on this topic are
cited in this section and recommended for further read-
ing (see [84, 130, 149, 206, 212, 260, 297, 331, 333]).
A major source of microsatellite expansion in dividing

cells is DNA replication, although mitotic recombination
is also recognized as a contributing factor [84, 149, 212,
242]. During replication, repetitive sequences can cause
problems at the replication fork and result in fork rever-
sals or template switching, which can insert extra re-
peats [76, 144, 149, 212]. At the strand level, polymerase
slipping can cause expansions in the leading or lagging
strand [84, 137, 144, 149]. Repeats may also induce im-
perfect Okazaki fragment ligation and add repeats in the
lagging strand [81, 93, 278]. The pathway followed for
expansion of a repeat has been proposed to be a balan-
cing act between several factors [84, 149, 212]. These in-
clude relative repeat length, the stability and types of
non-canonical structures the repeat sequence can form,
and nearby flanking sequences. After repeat sequences
are added to one or both strands, the daughter strands
reanneal. Misalignment and slippage will occur and extra
sequences will bulge out to form non-canonical (non-B-
form) structures like hairpins or quadruplexes [237, 331].
If these structures persist to the next round of replication,
or if they undergo flawed repair, they can result in per-
manent expansions [130, 149, 212, 260, 297]. During
DNA recombination, which repairs single-end or double-
strand breaks, unequal crossing over or template switch-
ing can cause misalignments and introduction of add-
itional repeats [208, 242, 306].
Repeat expansion events are intimately tied to the re-

pair of non-canonical DNA structures and DNA

damage. Multiple DNA damage control pathways have
been implicated, including mechanisms that replace
DNA bases, like base excision repair (BER) or nucleotide
excision repair (NER), especially as sources for repeat
expansion in non-dividing cells [206]. However, mis-
match repair (MMR) has been argued to be a primary
driver of repeat expansion [75, 106, 130, 260, 271].
MMR expands repeats through recognition and process-
ing of unusual DNA structures, such as small bulges and
hairpins [260], via the enzyme MutSβ (MSH2-MSH3
complex) [130, 260, 334]. The processing and damage
rectification steps are carried out by MutSβ and associ-
ated proteins, including the MutLα (MLH1-PMS2 com-
plex) or MutLγ (MLH1-MLH3 complex) endonucleases
that help remove DNA lesions [106, 130, 241]. Polymer-
ases like Polβ are then recruited, which can insert extra
repeats due to flawed priming or templating [33, 190].
An important question is how repeats are able to ex-

pand out of control, sometimes into the hundreds or
thousands of perfect tandem copies, without accumulat-
ing significant interruptions? Microsatellites that are
evolutionarily neutral, typically in intergenic regions, be-
come highly mutable when they exceed thresholds above
just a few tandem repeats [68, 95, 320]. Therefore, the
likelihood of remaining as a perfect tandem repeat with-
out interruption is expected to decrease with tandem re-
peat length. This suggests that accumulation of large
expansions must either occur quickly, before mutations
can accumulate, or their disruption must be guarded
against [320]. Genic regions of the genome, where all cur-
rently known disease-associated repeat expansions occur
[31, 236] (Table 1), seem to enjoy special favor through
positive evolutionary selection processes that protect se-
quence fidelity [191, 236, 284]. However, it seems unlikely
that this would contribute significantly to large repeat
expansions. For example, non-repetitive codons would
presumably be preferred and selected over unstable repeat
codons.
Mechanisms have been proposed that could provide

large expansions in a single step, including template
switching replication models where repeats are already
sufficiently large enough [225, 266] and out-of-register
synthesis during homologous recombination-based re-
pair of double-strand breaks (DSBs) [212, 242, 249, 250,
283]. One intriguing mechanism for rapid and large re-
peat accumulation is break-induced replication (BIR)
[148, 176]. BIR is a homologous recombination pathway
that can rescue collapsed or broken replication forks
[195]. It is induced when a replisome collides with a
broken single-end DSB [189]. BIR is also believed to be
selective for structure-prone or GC-rich repeats that are
long enough to form stable structures [148]. In this
mechanism of expansion, stable structures would cause
fork reversals. Resolution of these four-way junction
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structures would result in a one-ended DSB. To restart
the fork, the one-ended DSB invades the sister chromatid
to form a D-loop, but likely does so out-of-register be-
cause of the repetitive sequence, thus leading to expan-
sion. While this BIR study was performed in yeast, the
results are expected to translate to human cells [176].
Incremental expansions, such as those caused by

MMR, are typically on the order of 1-3 repeats at a time
[260]. Could these events generate large uninterrupted
expansions? Rapid accumulation of expansions via MMR
or other DNA damage repair pathways might be facili-
tated by transcription across the repeat. It has been
shown that transcription is required for expansion of the
CGG repeat in a mouse model of FXS [2, 333]. Several
studies have shown that transcription at repeat expan-
sions is associated with repeat instability, possibly via
formation of DNA-RNA hybrids, or R-loops [180, 181,
183, 195, 223, 246, 333]. It is possible that these events
could allow DNA damage. One report has shown a
correlation between R-loop formation and replication
fork stalling, offering a familiar mechanism for repeat
expansion through DNA replication [86, 109]. Alterna-
tive mechanisms might involve oxidation of free DNA
strands, or simple misalignment upon strand reanneal-
ing, to signal DNA damage repair [180]. The latter
model suggests that GC-rich or structure-prone repeats
would be more susceptible to expansion during tran-
scription, which might explain why transcription levels
alone are not predictive of expansion [333]. Thus, cycles
of transcription and R-loop formation might accelerate
repeat expansion for structure-prone repeats via ongoing
DNA damage repair [180]. A cell-based model where
transcription levels or R-loop formation could be con-
trolled, repeat sequence and size altered, expansions
monitored, and DNA damage repair mechanisms sys-
tematically tested (perhaps building on HeLa cell models
recently described [187]) might allow more direct testing
of these ideas.
A common theme among sources of repeat instability

and expansion is DNA metabolism associated with
strand separation and reannealing at microsatellite se-
quences. These events can lead to formation of non-
canonical structures and recruitment of DNA damage
responses that ultimately and inadvertently add more re-
peats. Thus, mechanisms meant to maintain and protect
the genome can also lead to large tandem repeat expan-
sions and cause human disease [11, 130, 333].

Microsatellite repeat expansion disorders
Since it was first discovered that microsatellite expan-
sions can cause disease, at least two dozen microsatellite
repeat expansion disorders have been subsequently re-
ported (Table 1). The latest discoveries are autism
spectrum disorders caused by expansions in fragile 7A

(FRA7A) and fragile 2A (FRA2A) fragile site loci [209, 210].
Comparing and contrasting these disorders can highlight
several trends. Almost half of the microsatellite expansion
disorders result from CAG trinucleotide expansions,
mostly occurring in coding exons. All STRs for known re-
peat expansion disorders are GC-rich except for the trinu-
cleotide GAA repeat of FRDA and the ATTCT and
TGGAA pentanucleotide repeats of spinocerebellar ataxia
10 (SCA10) and 31 (SCA31), respectively. In this review
we focus on large microsatellite repeat expansions that
are transcribed into RNA, a feature that is shared by
nearly all repeat expansion disorders (Table 1).
Microsatellite expansions cause disease through two

broad molecular mechanisms (Fig. 1): loss-of-function
for the associated gene or gain-of-function for the repeat
expansion sequence. In loss of function mechanisms,
gene expression can be silenced at the transcriptional
level, such as by epigenetic modification, resulting in the
complete loss of that gene's normal functions [70, 112].
Alternatively, the affected gene may lose function at the
protein level by the introduction of unusually long poly-
peptide tracts in the translated protein product (Fig. 1)
[168, 268]. In gain-of-function mechanisms the repetitive
polypeptide can take on new roles, such as protein ag-
gregation. Many of these mutant misfolded proteins can-
not be degraded efficiently and will accumulate in
cellular aggregates or inclusions [48, 168, 332]. Aggrega-
tion also tends to sequester proteins and critical cellular
components and is taxing on cellular proteostasis [48].
The xtrRNA can also acquire gain of function mecha-
nisms, primarily through interaction with nucleic acid-
binding proteins (Fig. 1). The repetitive xtrRNA forms
length-dependent focal aggregates in cell nuclei in
several diseases [35, 59, 196, 262, 311]. Loss-of-
function and gain-of-function mechanisms can result
in complicated molecular disease pathologies and some
disorders can simultaneously exhibit multiple mecha-
nisms (Table 1).

Transcription and splicing at simple tandem
repeat expansions
Transcribing repeat expansion sequences
Repeat expansion sequences are known to inhibit or im-
pede RNA Polymerase II (Pol II) initiation or elongation
either directly or via induction of a repressed chromatin
state [100]. Expansions like the GAA repeat in FRDA
[19, 94, 97, 162, 231], the CTG repeat in myotonic dys-
trophy type 1 (DM1) [25], the GGGGCC repeat in
C9ORF72-associated frontotemporal dementia and
amyotrophic lateral sclerosis (C9FTD/ALS) [108], and the
CGG repeat in FXS (also known as FRAXA) [44, 285]
have all been implicated in reduced or silenced transcrip-
tion. For FXS [230, 298], Fragile XE (FRAXE) [18], FRDA
[97], FRA2A [210] and FRA7A [209], transcription
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appears to be blocked or significantly reduced by DNA
methylation of the repeat expansion or nearby CpG
islands. However, although transcription may be well
below basal levels, it is possible that xtrRNA can still con-
tribute to disease in some cases [44].
Slowed or stalled transcription across repeat expan-

sions may lead to R-loops, which further slow transcrip-
tion [123] and inadvertently contribute to deposition of
repressive chromatin marks and silence transcription
(Fig. 2) [44, 99, 316, 317]. R-loops play important roles
in biology, such as immunoglobulin class switching
[323], keeping CpG islands unmethylated [91, 254], and
defining transcription termination signals [254, 270]. R-
loop formation is common in transcription of C-rich
template sequences [324], which most disease-associated
repeat expansion genomic loci possess. The impact of R-
loop formation on disease at repeat expansions is still
unclear. Whether R-loop formation will trigger DNA
methylation, transcriptional silencing, or other events
may be dependent upon a number of factors specific to
the affected gene or locus.

Bidirectional transcription of repeat expansions
Bidirectional transcription has been reported to occur in
DM1, C9FTD/ALS, Huntington's disease (HD), spino-
cerebellar ataxia 8 (SCA8), and Huntington's disease-like

2 (HDL2), among other diseases [26, 40, 126, 312]. Slo-
wed transcription across a repeat may also be able to in-
duce antisense transcription of the non-template DNA
strand via R-loop formation [270]. For example, FRDA-
associated GAA repeat expansion sequences were shown
to initiate transcription and act as promoters in yeast
[330]. However, many genes exhibit bidirectional tran-
scription [293] and in microsatellite diseases bidirec-
tional transcription typically initiates outside of the
repeat (Fig. 2) [26, 113]. Bidirectional transcription across
repeats can also result in double R-loops that amplify re-
peat instability and accelerate methylation and transcrip-
tional silencing [181, 183, 223]. Antisense transcription
can often interfere with transcription of the coding gene
[145]. Most relevant to this review is the production of
two xtrRNAs from bidirectional transcription and the po-
tential to synthesize repetitive polypeptides from both
xtrRNA. For example, in C9FTD/ALS both xtrRNAs form
nuclear foci [59, 90, 248, 340] that sequester RNA-binding
proteins [47, 175, 217] and are translated into repetitive
polypeptides [9, 216], highlighting the importance of bidir-
ectional transcription to molecular disease pathology.

The role of Supt4h in xtrRNA transcription
Transcribing microsatellite expansions into xtrRNA re-
quires processivity across repetitive sequence tracts that

Fig. 1 Distinct loss-of-function and gain-of-function mechanisms of disease for various repeat expansion disorders. Repeat expansions can occur
in 5’ or 3’ UTRs, exons, or introns. Expanded tandem repeat-containing RNA (xtrRNA) may not be transcribed due to epigenetic silencing, thereby
causing loss of gene function. If transcribed, xtrRNA may become trapped in the cell nucleus where it can form focal aggregates and functionally
deplete important RNA binding proteins. The xtrRNA may also be exported to the cytoplasm where it can undergo translation to produce repeat-
containing polypeptides that disrupt cellular processes. In some cases, xtrRNA can form focal nuclear aggregates and also be translated into
repeat-containing polypeptides. Repeat-containing polypeptides can be toxic in multiple ways, including insoluble aggregation, blocking normal
host protein function, inhibiting nucleocytoplasmic transport, and disrupting other critical cellular functions
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can have very high GC content. The 5,6-dichloro-1-β-D-
ribofuranosylbenzimidazole (DRB) sensitivity-inducing
factor (DSIF), composed of Supt4h and Supt5h proteins
(Spt4 and Spt5 in yeast), aids RNA Polymerase II (Pol II)
in transcription elongation and transcription rate
[305, 308]. The DSIF complex is important for tra-
versing sequences that elicit pausing of RNA Pol II [305]
and has been identified as a factor involved in the tran-
scription of RNA containing large simple repeat se-
quences. For example, transcription of repeat-containing
RNA from the huntingtin and C9ORF72 genes signifi-
cantly decreases when Supt4h is deleted or knocked-
down [159, 186]. Supt5h is a conserved transcription fac-
tor with a homolog known as NusG in bacteria that is
important for elongation and processivity [185, 202].
Supt5h binds directly to the clamp coiled-coil domain of
RNA Pol II while Supt4h interacts through contact with
Supt5h [17, 119, 201]. Together, the DSIF complex inter-
acts with the DNA template outside of the transcription
bubble [17, 50, 151, 185]. Supt4h has a zinc-finger do-
main that may be important for modulating DNA inter-
actions of DSIF [308], and thereby improve processivity
by maintaining RNA Pol II template interaction during

periods of extended pausing [50, 151, 309]. Long repeti-
tive sequences prone to formation of secondary structure
in the transcription bubble, such as repeat-induced hair-
pin or R-loop structures, may represent prime sites for
pausing or backtracking [251, 260, 333].
DSIF is also used by RNA Pol I to presumably ensure

robust transcription of abundant and repetitive riboso-
mal RNA [122, 309]. It is worth noting that repeat ex-
pansions might occur in ribosomal RNA genes but they
have either not been characterized or have not been as-
sociated with disease [122]. In contrast, RNA Pol III,
which only transcribes relatively small noncoding RNA
genes, does not interact with the DSIF complex [309].
Thus, transcription is unlikely to be successful if large
microsatellite expansions occur in the small RNA genes
transcribed by RNA Pol III. These observations may
lend some rationale as to why all disease-associated re-
peat expansions to date are associated with Pol II-
transcribed genic regions [7, 31, 236].

Splicing of xtrRNA
Splicing involves several regulated steps, many accessory
factors and the spliceosome, a complex multi-component

Fig. 2 Effects of repeat expansion sequence on transcription. Repeat expansion sequences can perturb transcription by a epigenetic silencing,
b inducing or facilitating bidirectional transcription, c reduced transcription kinetics, or d generating transcripts that can potentially be processed
into small RNAs that could guide degradation or silencing of various complementary RNAs, including the xtrRNA itself
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enzyme. There is currently a lack of mechanistic insight
regarding how the splicing apparatus reacts when encoun-
tering pre-mRNA containing large repetitive sequence
tracts [14]. Since introns can be excessively large while still
allowing productive and accurate splicing [263], the size of
the repeat expansion itself is not expected to significantly
impede splicing. However, transcription rates across
microsatellite expansions can be reduced, which can influ-
ence alternative splicing [58, 270], and stem loop struc-
tures in large pre-mRNA introns have been predicted to
affect splicing [263].
Examples of microsatellite repeat expansions modulat-

ing splicing include the GAA repeat expansion associ-
ated with FRDA. When placed near reporter gene exons
or in the first intron of a frataxin minigene system, the
GAA repeat caused complex splicing defects and accu-
mulation of aberrant splice products [15]. The mechan-
ism proposed involved binding of various splicing
factors to the GAA repeat-containing transcripts [15]. In
C9FTD/ALS, the intronic GGGGCC repeat has been
implicated in splicing by favoring retention of the
intron-containing repeat, suggesting a mechanism by
which C9ORF72 xtrRNA can escape to the cytoplasm
for translation [227]. Expanded CAG repeats of HD are
also linked to production of short alternatively spliced
forms of the huntingtin mRNA that contain the CAG re-
peat expansion and add to the production of toxic poly-
glutamine protein [255].

Potential impact on splicing factors
If repeat expansion sequences can mimic the binding
motif of splicing regulators, they could recruit splicing
factors and affect splice site selection. In DM1 the
MBNL family of splicing factors and CUG binding pro-
teins (CUGBPs) have an affinity for repetitive CUG and
CAG sequence. Although the splicing of DM1 protein
kinase (DMPK) mRNA does not appear to be affected
by the CUG repeat expansion that it contains, the spli-
cing pattern of an antisense transcript across the DMPK
repeat, which contains a CAG repeat, appears to be al-
tered by the expansion [105]. In HD the expanded CAG
repeats have been proposed to interact with the splicing
factor SRSF6, which is believed to contribute to altered
splicing to generate truncated repeat-containing hun-
tingtin mRNA [255].
Repeat expansion sequences in xtrRNA could also

alter splicing by recruiting factors that are not typically
involved in splicing. These factors might modulate splice
site selection or spliceosome activity by changing local
ribonucleoprotein (RNP) structure or access to splice
signals [67]. The repetitive structural nature of repeat
expansions could also sterically hinder access to splice
signals, depending on their proximity to splice enhancer
or silencer elements. Alternative splicing is a complicated

interplay of modular protein and RNA interactions that
are difficult to predict at present and local sequence and
context will likely be important for understanding the im-
pact of expanded repeats on splicing [14].

Therapeutic approaches to control xtrRNA transcription
and splicing
Characterizing the effect of microsatellite expansions on
transcription and splicing will directly benefit thera-
peutic approaches for repeat expansion disorders. Proof-
of-principle methods to locally disrupt the interactions
of xtrRNA at repeat expansion loci, such as R-loops,
have been demonstrated for FXS and FRDA using small
molecules and nucleic acids [44, 177]. Disrupting the
interaction of Spt4 and Spt5, or modulating Spt4 func-
tion, could provide a therapeutic avenue for a number of
repeat expansion disorders by reducing xtrRNA expres-
sion. This has been demonstrated for CAG and
GGGGCC repeat expansions [159, 186] and might be
particularly valuable in disorders exhibiting bidirectional
transcription across the repeat expansion. For splicing-
based therapeutics, blocking inclusion of repeat
expansion-containing introns, such as with splice-
modulating antisense oligonucleotides or small RNAs,
could prove to be useful for disorders like FRDA and
C9FTD/ALS.
With the emergence of gene editing technologies, the

direct removal of repeat expansions from the genome
may also be possible. Removal of genomic repeat expan-
sions could eliminate the possibility of xtrRNA expres-
sion or reverse repressive epigenetic states. Careful SNP
selection followed by targeting with CRISPR-Cas9 has
been shown to block promoter function and silence the
mutant expanded allele in HD [215] or completely delete
large portions of the mutant HD allele [265]. Targeting
CRISPR-Cas9 to sequences flanking the CTG repeat in
DM1 also caused large repeat deletions [299]. In model
cells of DM1, CRISPR-Cas9 was used to introduce a
poly-A signal upstream of the CTG expansion in the
DMPK gene to prevent CUG repeat transcription, which
led to a reversal of molecular disease [318]. While poten-
tial CRISPR-based therapeutics are exciting, precautions
must be taken to address potential pitfalls and challenges
like off-target effects, delivery, and cell-type specific
mechanisms of DNA damage repair [16, 54, 71, 85, 229,
238, 240, 322].

Structure, protein interactions, and localization of
xtrRNA
Structure of xtrRNAs and targeting with small molecules
During and after the synthesis and processing of
xtrRNA, the repetitive RNA will fold into repetitive and
unique structures and interact with proteins that have
an affinity for its sequence or structure. Watson-Crick
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pairing apparently dominates folding since all atomic
resolution investigations of disease-associated xtrRNA to
date, including CAG, CUG, CCG, CGG, CCUG,
AUUCU, and CCCCGG, are imperfect A-form-like du-
plexes [39, 62, 147, 234, 341]. These structures possess
repeating units of Watson-Crick and mismatch paired
nucleotides [147, 341]. While some studies have identi-
fied G-quadruplexes or tetraplexes [45, 79, 194, 247],
other reports suggest that xtrRNA either do not form
quadruplexes or are transient and interconvert readily
with Watson-Crick paired conformations, especially as
the number of repeating units increase [62, 108, 281,
329, 341]. Some reports of tetraplex structure may be
the result of unusual interactions like dimerization be-
tween imperfect repeat duplex RNA, as was observed
for CGG repeat RNAs [103]. Convincing evidence for
the presence or biological significance of RNA G-
quadruplexes inside human cells is still lacking [20, 107,
164, 194], therefore direct roles for quadruplex RNA in
repeat expansion disease remain unclear.
Available structures of short repeat RNAs reveal A-

form-like conformations with unique mismatches that
may be targeted with artificial molecules to selectively
bind repeat expansion RNA structure. Small molecule
screening and structure-guided synthesis have experi-
mentally identified a variety of small molecules that can
bind xtrRNA, such as the CUG, CCUG, CGG, and
GGGGCC repeat RNAs associated with DM1, DM2,
FXS or FXTAS (Fragile X-associated tremor/ataxia syn-
drome), and C9FTD/ALS, respectively [38, 39, 226, 281,
292, 314, 325]. These molecules have been shown to
stabilize repetitive structure or disrupt protein binding,
which can correct molecular disease markers like nu-
clear RNA foci and repetitive polypeptide translation, or
improve pathology in cells and animal models. Although
promising, their eventual therapeutic application will
need to demonstrate exquisite specificity for the RNA
target, minimal non-specific interactions, and pharmaco-
logic safety and efficacy [102, 252].

Protein interactions and localization of xtrRNA
Both sequence specific and structure specific interac-
tions likely underlie protein binding to xtrRNA. The re-
petitive nature of xtrRNA can result in multiple tandem
binding sites for proteins. In DM1, the disease-
associated xtrRNA contains hundreds or thousands of
CUG repeats that bind and recruit possibly as many
copies of MBNL-1 protein and potentially other CUG-
binding proteins [173, 197, 235]. MBNL-1 recognizes CG
dinucleotides separated by 1-17 nucleotides [92], which
include motifs in pre-mRNA where MBNL-1 helps to
regulate splicing [245]. Examples include the pre-mRNA
of sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 1
(SERCA1), which contains several YGCU(U/G)Y motifs

downstream from exon 22. MBNL-1 usually interacts
with these motifs to cause inclusion of exon 22 but in
DM1 exon 22 is excluded during splicing [118, 34].
Blocking the interaction of proteins with DM1 xtrRNA
by using morpholino oligonucleotides rescued splicing
defects and molecular pathology [310]. Thus, a major
contributor to disease mechanism in DM1 is the se-
questration of splicing factors, particularly MBNL
proteins.
A number of diseases are characterized by binding of

specific proteins to xtrRNA or colocalization of proteins
with xtrRNA focal aggregates (Table 1) [327]. These
include proteins like MBNL-1 in DM1, DM2, HD,
spinocerebellar ataxia 3 (SCA3), SCA8 and HDL2
[197, 282, 327], hnRNP K in SCA10 and C9FTD/ALS
[46, 311], Pur-α, hnRNP F and SRSF2 in C9FTD/ALS
[47, 108, 319], and Sam68 and hnRNP A2/B1 in
FXTAS [262, 276]. As such, protein interactions with
xtrRNA play key roles in disease mechanism and are
expected to be important mediators of aberrant
xtrRNA localization and aggregation [214]. Foci con-
taining xtrRNA are believed to be the result of RNA-
binding protein sequestration that can functionally
deplete those proteins and partially protect the
xtrRNA from degradation [214, 327].
Sequence specific interactions may not entirely explain

xtrRNA localization or foci formation. While certain
proteins that prefer to bind G-rich sequence, like hnRNP
H/F, have been found to associate strongly with the
GGGGCC repeats of C9FTD/ALS, other interacting pro-
teins do not appear to have strong GGGGCC sequence-
binding specificity, such as ALY/REF, SC-35, SF2, and
nucleolin [47, 108, 175]. Imperfect A-form-like duplexes,
or duplexes inter-converting with tetraplex conforma-
tions, may attract proteins that recognize the unique
structures of xtrRNA rather than the specific sequence.
Glycine-arginine-rich (GAR) proteins containing RGG/
RG motifs, for example, are believed to recognize the
structure of their nucleic acid partners rather than se-
quence [289]. The GAR domain-containing proteins
FUS (fused in sarcoma), FMRP, and hnRNP U all
recognize structured guanine-rich RNA sequences with
an apparent preference for transitions between canonical
duplexes and non-canonical structures like quadruplexes
[233]. One explanation for foci is that proteins bind spe-
cifically to repeat sequence or structural elements of
xtrRNA and then seed aggregation that recruits add-
itional secondary interacting factors. Thus, xtrRNA may
form foci by either merging with existing nuclear bodies
or else establishing their own novel versions of RNA
granules. While focal aggregation of xtrRNA can be det-
rimental to sequestered protein function, it may also
protect the cell by preventing nuclear escape and trans-
lation of repeat RNAs [150].
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xtrRNA localization and membrane-free cellular organelles
Whether there is a specific localization pattern of
xtrRNA inside cell nuclei is not entirely clear. Foci might
be expected to nucleate at the site of transcription.
DMPK mRNA usually localizes to SC-35 splicing
speckles after transcription. However, when containing
CUG repeat expansions, the DMPK mRNA has been
shown to localize peri-transcriptionally outside of SC-35
splicing speckles [274]. RNA containing CAG, CUG and
GGGGCC repeats were also shown to localize to SC-35
splicing speckles and nuclear speckles [132, 295].
However, in other studies the xtrRNAs, specifically CUG
and CGG RNAs, appeared to form foci stochastically
[243, 280]. Live cell imaging of Spinach2 aptamer-tagged
CGG repeat xtrRNA revealed rapid aggregation and for-
mation of very stable foci [280]. CGG xtrRNA foci were
additionally found to be mobile and dynamic and colo-
calized with Sam68 protein. They migrated around the
nucleus over time and could be seen to merge into lar-
ger foci or disaggregate into smaller foci. Live cell im-
aging of CUG repeat xtrRNA tagged with the MS2-GFP
system found similar effects for aggregation, foci forma-
tion and dynamics [243]. CUG repeat RNA foci forma-
tion depended on the presence of MBNL-1 protein. In
live-cell experimental approaches the xtrRNA is likely to
be over-expressed from an artificial genetic context and
may not represent the true dynamics or localization of
endogenous repeat expansions. Nonetheless, live and
fixed cell imaging have revealed that xtrRNA foci are dy-
namic, stable aggregates that likely depend on protein
interactions and may co-localize with known nuclear
bodies.
Nuclear bodies can be built around RNA and the mo-

lecular forces that govern nuclear body formation may
help explain xtrRNA foci formation and localization. For
example, nuclear paraspeckles depend on the long non-
coding RNA NEAT1 (nuclear paraspeckle assembly
transcript 1) [321]. Nuclear bodies are essentially
membrane-free organelles that are held together by tran-
sient or dynamic protein-protein and protein-RNA inter-
actions. These interactions collectively provide a type of
phase separation to organize and compartmentalize cel-
lular processes [336]. It was recently demonstrated that
CAG, CUG and GGGGCC repeat containing RNAs
form soluble aggregates with sol-gel phase separation
properties and behave similar to liquid-like droplets
[132]. These properties were dependent on the repeat
expansion length and base-pairing interactions. In con-
trast, CCCCGG repeats did not form phase transitions,
suggesting that not all xtrRNA will possess these proper-
ties. Interestingly, guanine-rich nucleic acids are less
soluble than other nucleic acids and appear to be intrin-
sically aggregate-prone apart from protein, especially
when packing into quartets or higher-order quadruplex

structures [21, 89, 179]. The disruption of membrane-
free organelles, which are abundant in the nucleus, is
linked to disease [198, 228, 272]. In fact, the disruption
of membrane-free organelle assembly and dynamics by
repetitive poly-glycine-arginine (poly-GR) and poly-
proline-arginine (poly-PR) translation products has
emerged as a leading molecular disease mechanism for
C9FTD/ALS [165, 174, 182]. Association of certain
proteins with xtrRNA, dependent upon RNA sequence
and structure, may strongly influence the subsequent
localization of xtrRNA with membrane-free cellular
compartments.

Abundance and turnover of xtrRNA
Abundance of foci-forming xtrRNA
Understanding the biology of an RNA includes knowing
the effective concentration or abundance of that RNA
and its turnover and decay pathways. Three current
studies highlight the importance of characterizing cellu-
lar xtrRNA abundance. The cellular abundance of CUG
repeat-containing transcripts was recently measured
using transgenes and endogenous DMPK RNA in mouse
models of DM1 and human tissues from DM1 patients
[104]. Surprisingly, a large 1000-fold discrepancy for
transcript number was discovered across mouse models.
In human samples only a few dozen DMPK mRNA mol-
ecules were detected per cell, with only half of those ex-
pected to contain the repeat expansion. In a similar
study looking at the abundance and processing of an
antisense transcript across the DMPK repeat expansion,
only a handful of repeat containing antisense transcripts
were quantified per cell [105]. Quantification of the
repeat-containing intron of C9ORF72 in C9FTD/ALS
patient cells found only a few copies per cell, concluding
that each foci might be composed of as few as one
xtrRNA transcript [188]. Therefore, one or a few copies
of xtrRNA may be enough to generate focal aggregates.
Importantly, the stochastic nature of foci formation,
where many cells contain no foci but some contain sev-
eral, suggests that there may be a disproportionate con-
tribution to disease for xtrRNA at the individual cell
level [188]. These reports indicate that knowing the
number and type of xtrRNA species inside of cells will
be important for correct interpretation of data and for
understanding the role of xtrRNA in disease.

Nuclear xtrRNA retention and surveillance mechanisms
The nuclease enzymes primarily responsible for degrad-
ing nuclear RNA are the exosome complex (3'-5' exori-
bonuclease activity) and 5'-3' exoribonuclease 2 (XRN2)
[67]. These enzymes act as part of a nuclear RNA quality
control and surveillance pathway that monitors tran-
scription, splicing, and 3'-end formation of pre-mRNAs,
as well as their packaging into mRNP particles (Fig. 3)
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[67, 146, 338]. Instead of degradation, these pathways
can also signal for retention of aberrant transcripts in
the nucleus, typically at the site of transcription [52,
220] but sometimes near nuclear pores [67]. Retention
at the site of transcription is coupled to nuclear exosome
activity, particularly the Rrp6p subunit [66, 220]. The
TPR protein, a mammalian ortholog of yeast Mlp1/2p, is
implicated in retention at nuclear pores for mRNAs with
retained introns that normally exit the nucleus through
the nuclear export factor 1 (NXF1) pathway [49]. Both
of these mechanisms may be relevant to xtrRNA, espe-
cially when repeat expansions are found in retained
introns [43, 110, 227].

Surveillance mechanisms are also related to transcrip-
tion or splicing of xtrRNA since these might be expected
to trigger degradation [67, 146]. However, the existence
of foci and nuclear export of xtrRNA argue that surveil-
lance mechanisms are incomplete or inefficient for
xtrRNA removal. At present it is unknown how many
molecules of any repeat expansion-containing RNA are
synthesized versus how many survive to form foci or exit
the nucleus for translation. It is likely that repeat
expansion-containing RNAs survive due to protection
by protein binding, such as hnRNP proteins [125, 327].
Alternatively, factors responsible for recruiting RNA to
the nuclear exosome, such as the TRAMP (Trf4/Air2/

Fig. 3 Possible mechanisms of nuclear and cytoplasmic RNA surveillance, nuclear export, and translation of xtrRNA. RNA containing large repeat
expansion sequences may be subject to nuclear RNA surveillance mechanisms, including degradation by the nuclear exosome (1) or the XRN2
5'-3' exoribonuclease (1). Export of xtrRNA likely involves bulk mRNA transport via NXF1 (2b), but may also include alternative mechanisms like
CRM1-mediated export (2a) or possibly nuclear envelope budding (2c). Cytoplasmic RNA surveillance mechanisms that may control xtrRNA levels
and translation include nonsense-mediated decay (NMD) (3a), no-go decay (NGD) (3b), or nonstop decay (NSD) (3c). Translation of xtrRNA is likely
to follow canonical cap-dependent translation (4), especially when repeat expansions are embedded in normal coding regions of an mRNA, but
may potentially involve internal ribosome entry site (IRES)-like mechanisms (4). RAN translation has been shown to be cap-dependent for some
repeat expansions, but complete mechanistic details remain to be determined
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Mtr4p Polyadenylation) complex or NEXT (nuclear exo-
some targeting) complex, are unable to efficiently
recognize and bind the xtrRNA [146, 259]. Thus,
xtrRNA transcripts may escape degradation if they ap-
pear as "normal" mRNPs, having undergone proper RNA
processing like capping, splicing and polyadenylation
and are associated with appropriate post-processing
factors.

Turnover and decay of xtrRNA
An unanswered question remains as to whether foci
might contain partially degraded fragments of repeat
RNA in addition to larger intact transcripts. A case in
point is C9FTD/ALS where the microsatellite expansion
occurs in an intron but nuclear RNA foci and cytoplas-
mic translation are both observed. When introns are
spliced out of pre-mRNA transcripts they are typically
destined for rapid degradation unless they contain a sta-
bly folding RNA element or recruit RNA binding pro-
teins [115]. Examples include small nucleolar RNAs and
microRNAs [56, 203]. It is possible that the structures
that repeat expansion RNAs form, as well as the proteins
that they bind, allow them to persist, accumulate, and
aggregate as foci [3]. At present the exact type and num-
ber of xtrRNA species that are trapped in foci versus
free and soluble for any disease is unknown. It is also
not known whether partially degraded xtrRNA frag-
ments are stable enough to accumulate. Furthermore,
there is no distinction between what are the major spe-
cies or which are nuclear versus cytoplasmic.
When mRNAs that contain microsatellite repeat ex-

pansions reach the cytoplasm they may encounter add-
itional quality control mechanisms designed to eliminate
aberrant mRNA and prevent its translation. These in-
clude nonsense-mediated decay (NMD), no-go decay
(NGD), and non-stop decay (NSD) (Fig. 3) [267]. NMD
recognizes premature stop codons through possibly mul-
tiple mechanisms. NMD can be triggered if exon-
junction complexes (EJCs), which are deposited near
splicing junctions, are encountered downstream of a
stop codon [172, 199]. Another mechanism of NMD
may involve the relative length of sequence 3' to the stop
codon [4, 172]. Repeat expansions could conceivably
alter the positioning of a stop codon or extend the 3'
UTR region and trigger NMD. When ribosome transla-
tion is significantly slowed or stalled then NGD can be
triggered. Stalling is thought to be initiated by unusually
stable RNA structures or protein-binding motifs and re-
sult in endonucleolytic cleavage [63]. Since repeat ex-
pansions are believed to fold into stable hairpins or
tetraplexes they could possibly trigger NGD. In the case
of NSD, the ribosome can become stuck on mRNA that
does not possess a stop codon. These complexes must
be resolved by cleavage and degradation of the mRNA

[82, 302]. NSD could become activated if repeat expan-
sions alter the reading frame or cause loss of the stop
codon, such as via mis-splicing.
For xtrRNA embedded in mRNAs, either as exons or

introns, mRNA surveillance mechanisms should act to
reduce translation. Activation of these pathways will lead
to degradation by the cytoplasmic version of the exo-
some and XRN1, a 5'-3' exoribonuclease. Accessory fac-
tors that guide cleavage include the Ski complex
(composed of Ski2, Ski3, and Ski8 proteins) and the Ski7
protein [5, 267]. However, similar to nuclear RNA sur-
veillance mechanisms, the cytoplasmic pathways seem
unable to detect or completely remove xtrRNA and pre-
vent translation. Methods to enhance RNA surveillance
mechanisms might represent reasonable targets for
therapeutic intervention. For example ataluren (PTC124)
is a small molecule drug that increases NMD and might
sensitize mRNA surveillance to repeat expansions [73].
Some studies have uncovered potential RNA turnover

mechanisms associated with repeat expansions. In a re-
cent RNAi screen several RNA processing factors were
identified as suppressors of toxicity in C. elegans ex-
pressing a (CUG)123 repeat expansion in a 3'-UTR of
GFP [88]. These factors included RNases, helicases and
RNA binding proteins that, when knocked-down, caused
increased toxicity and enhanced nuclear foci formation.
A nuclear pore complex (NPC) protein, npp-4, was also
a suppressor in this screen. Interestingly, smg-2, a con-
served helicase and central component of the NMD
pathway, was a strong suppressor. Knock-down of NMD
resulted in a several-fold increase in GFP-(CUG)123
RNA expression levels and increased GFP translation.
The substantial increase in 3'-UTR GC-content was
identified as the likely trigger for NMD of the GFP-
(CUG)123 RNA [88]. Smg-2 was also identified as a sup-
pressor of poly-glutamine aggregation previously, likely
through NMD of aberrant repeat-containing HTT tran-
scripts [328]. These results provide one example of the
role of RNA turnover in controlling toxicity of xtrRNA
in repeat expansion disorders.

Nuclear export and translation of xtrRNA
Canonical mRNA export pathways
RNA export from the nucleus involves several distinct
pathways depending on the RNA and the various protein
factors that constitute the RNP particle [273]. For nu-
clear mRNA there are two main export pathways:
NXF1-mediated and chromosome region maintenance 1
(CRM1)-mediated, although NXF1 is the primary trans-
port system for bulk mRNAs (Fig. 3) [60]. Both mecha-
nisms rely on adapter proteins to specify the RNA cargo
for export. Many of the factors required for successful
export are deposited co-transcriptionally and post-
transcriptionally during mRNP assembly [22]. The C-
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terminal domain of RNA Pol II serves as a docking plat-
form for a wide variety of mRNA processing and mRNP
assembly proteins and plays critical roles in establishing
mRNP composition [139]. Correct processing of mRNA,
such as capping, splicing and 3'-end formation, deter-
mines the ability of these factors to bind mRNA and as-
semble export-competent mRNP particles [36, 60, 335].
The mRNA-associated adapter proteins and com-

plexes represent a complicated matrix of possible in-
teractions that dictate export efficiency [22, 60]. NXF1
can specifically bind the constitutive transport element
found in some mRNAs and viral RNAs, like that of
the Mason Pfizer monkey virus, to directly facilitate
export [101, 178]. However, for bulk cellular mRNA
transport NXF1 uses adapters like TREX (transcription
export complex) [60, 111]. Although the NXF1 protein
interacts loosely with RNA, TREX helps mediate spe-
cific binding through its subunit ALY/REF [124], a
protein previously reported to interact with C9ORF72
GGGGCC RNA repeats [47]. TREX associates with
mRNA during synthesis and processing via mRNA
capping and splicing events [138, 204] and appears to
be primarily recruited to the 5' ends of mRNAs in hu-
man cells via interaction between ALY/REF and the
cap binding complex component CBP80 [36]. In
addition to ALY/REF, TREX is composed of the THO
complex, CIP29, and UAP56, a component of the EJC
[37, 53, 157]. For repeat expansion disorders, NXF1
seems to be the most likely pathway since disease-
associated xtrRNA are transcribed from coding gene
loci and TREX is deposited onto mRNAs early during
transcription [204].

Nuclear export of xtrRNA
A recent study connected NXF1 transport of C9FTD/
ALS intronic xtrRNA via interaction with the export
adapter SR-rich splicing factor 1 (SRSF1) [110]. SRSF1
appeared to interact and colocalize with C9ORF72
xtrRNA. Depletion of SRSF1 prevented neurodegenera-
tion in a fly model and suppressed cell death in patient-
derived motor neurons and astrocytes. Depleting SRSF1
or preventing interaction with NXF1 inhibited nuclear
export of repeat-containing C9ORF72 transcripts and
blocked RAN translation. Thus, SRSF1 might serve as a
therapeutic target in C9FTD/ALS. This report highlights
the value of understanding RNA biology in the context
of repeat expansion disorders.
Most disease-associated xtrRNA is embedded in ex-

onic or untranslated regions (Table 1) and therefore
likely exits the nucleus via mRNA export pathways.
CRM1 exports proteins and their associated RNAs via
interaction with nuclear export signal sequences and
Ran-GTP (Fig. 3) [60, 74, 77]. CRM1 interacts directly
with the NPC at the nuclear periphery and commonly

exports noncoding RNAs like spliceosomal RNA
(snRNA) [10, 74, 131]. There is no reported RNA bind-
ing affinity of CRM1 so selective export of mRNAs de-
pends on the RNA-binding properties of its cargo
proteins [60]. Export of xtrRNA by CRM1 might only
require that the repeat expansion sequence or structure
somehow recruit a CRM1 cargo protein.
Export of intronic xtrRNA would be expected to re-

quire aberrant splicing that resulted in its retention in
mRNA, as has been implicated for the intronic C9FTD/
ALS repeat expansion [227]. Alternative export pathways
exist but seem unlikely given their very specific nature.
For example, transfer RNA (tRNA) undergoes multiple
maturation phases that cumulatively result in two separ-
ate import and export steps [273]. These export path-
ways involve specific RNA-protein interactions, such as
EXP-t and EXP5 [8, 29], that are unlikely to mediate
xtrRNA export. For any export pathway through the
NPC, xtrRNA must somehow establish RNP complexes
that pass the requisite tests for licensing of export.
Nuclear exit of RNP granules, such as nuclear xtrRNA

foci, might also be possible through nuclear envelope
budding (Fig. 3). This mechanism involves TorsinA, nu-
clear lamina, and other uncharacterized factors. Nuclear
budding was discovered as part of the nuclear egress
mechanism of large nucleocapsid particles of Herpes vi-
ruses [55, 78, 200, 221, 277]. Nuclear envelope budding
has been found to be a natural process for nuclear re-
lease of large RNP complexes during development of
neuromuscular junctions in Drosophila melanogaster
[135, 277]. However, knock-out of TorsinA in HeLa cells
had little impact on Herpes virus production [294],
suggesting alternative factors or mechanisms in hu-
man cells. If xtrRNA is exported by nuclear envelope
budding it would have to mimic specific RNP granule
formation that elicits nuclear envelope budding, which
at present involves mechanisms that are largely
uncharacterized [78].

Translation of xtrRNA
If xtrRNA can successfully exit the nucleus it is a po-
tential candidate for translation. However, mRNAs
that contain expanded tandem repeats are possibly
the only practical source for translation of repeat ex-
pansion polypeptides since they contain the prerequis-
ite sequence elements and protein factors to mediate
canonical cap-dependent translation. These typically
include 5' cap structures, bound eukaryotic initiation
factors (eIFs), a poly-A tail, and appropriate mRNP
complexes like the EJC [116, 301, 315]. Translation of
xtrRNA sequence embedded within the coding exon
of a gene, such as is found in SBMA, HD, DRPLA
(dentatorubral-pallidoluysian atrophy), OPMD (oculo-
pharyngeal muscular dystrophy) and several of the SCA
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disorders (Table 1), are translated by canonical mecha-
nisms. Most repeat expansions form stable secondary
structures that have been shown to reduce the amount of
overall translation by presumably inducing stalling,
frame-shifting or abortive translation [72, 222, 244, 313].
In contrast, the specific binding of MID1 protein to
huntingtin mRNA, which contains CAG repeat expan-
sions, has been reported to enhance translation and
lead to greater levels of aberrant protein [160]. This
mechanism has also been proposed to enhance transla-
tion of other CAG repeat expansion-containing genes
that cause disease [98]. Canonical translation of repeat
expansions that are found in-frame in coding se-
quences is expected to generate otherwise normal pro-
tein that simply contain long tracts of repetitive
polypeptide [296].

Repeat-associated non-AUG translation
The translation of noncoding xtrRNA irrespective of a
canonical start codon was recently discovered and
termed repeat-associated non-AUG (RAN) translation
[42, 96, 290, 339]. Repeat expansion diseases where this
mechanism has been observed now include SCA2,
SCA8, SCA31, HD, FXTAS/FXPOI, and C9FTD/ALS
[9, 13, 27, 96, 129, 218, 261, 290, 339, 340]. RAN
translation of xtrRNA sequence can occur in many
contexts, including repeat expansions found in un-
translated regions, retained introns, and even those
embedded in coding exons [96]. The mechanisms of
RAN translation remain poorly understood and could
involve several scenarios, possibly even internal ribosome
entry site (IRES)-like mechanisms (Fig. 3) [96, 339]. For
the CGG repeats of FMR1 that cause FXTAS a more
straightforward mechanism is emerging. In this case,
RAN translation is m7G cap-dependent where a pre-
initiation complex scans the RNA looking for a start
codon [96, 141]. When the CGG repeats are present and
stable structures are presumably encountered then stal-
ling occurs and significantly enhances the ability of the
ribosome to select a near-cognate start codon, or possibly
any codon, to initiate translation [141, 154, 158, 339]. A
similar mechanism is favored for the CAG and CUG re-
peats of sense and antisense transcripts in SCA8 [339].
This mechanism is proposed to allow translation initi-
ation upstream of a repeat expansion in multiple reading
frames [42, 96]. The sequence context, such as the leader
sequence during scanning, the types of potential near-
cognate start codons, and the repeat expansion sequence
and size all appear to modulate the degree of RAN trans-
lation [12, 141, 261, 339].
The mechanism of RAN translation may be related to

translation of upstream open reading frames (uORFs),
a widespread phenomena revealed through high-
throughput ribosomal footprint profiling [128]. RAN

translation could even represent a specialized form of
uORF translation that is triggered by stable xtrRNA
structures. Both mechanisms can initiate at near-
cognate start codons (although RAN translation may
use other codons or other mechanisms, like frame-
shifting) and are influenced by surrounding sequence
context that might impact RNA folding or protein in-
teractions [96, 117].
Recent investigations have demonstrated that certain

RAN translation products of C9FTD/ALS disrupt the
function of membrane-free cellular organelles, such as
stress granules, Cajal bodies and the nucleolus [174,
182]. These polypeptides seem to block the formation or
critical interaction dynamics of membrane-free organ-
elles and RNA granules, which are important for neur-
onal cell signaling and health [269, 288]. Transport of
macromolecules through the nuclear pore complex
depends on interactions that resemble membrane-free
organelle structure [207, 219]. They are organized by dy-
namic protein interactions of low complexity domain
proteins, including phenylalanine-glycine (FG) repeats,
which may explain why certain C9FTD/ALS RAN trans-
lation products are reported to disrupt nucleocytoplas-
mic transport [80, 136, 264, 326]. RAN translation
products can also aggregate and are implicated in the
disruption of a variety of other pathways [12, 42, 96,
142, 286, 339].
Several important questions remain concerning the

mechanisms of RAN translation. For example, how simi-
lar are the mechanisms of RAN translation across di-
verse repeat expansion and sequence contexts [42, 96]?
RAN translation maybe a spectrum of related mecha-
nisms based upon modulation of ribosomal scanning,
translation initiation, and translation elongation [301].
RAN translation can initiate just upstream from the re-
peat expansion, but how often can RAN translation initi-
ate within the repeat sequence itself [339]? In vitro and
cell-based model systems suggest that RAN translation
can proceed uninterrupted through an entire repeat ex-
pansion [141, 213, 339, 340]. Yet some expansions are
massive in size. Therefore, how often do repeat expan-
sions induce frame-shifting or possibly even early trans-
lation termination [313]? Also, what factors are unique
to RAN translation? Finding answers to these mechanis-
tic questions may be critical for developing future thera-
peutic molecules that can target and selectively block
xtrRNA translation.

Conclusion
RNA species that contain simple tandem repeat se-
quences occupy an underexplored world of RNA biol-
ogy. Recent studies have begun to revisit the
transcription and translation of repeat expansions. How-
ever, significant gaps remain for processes like cellular
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transport and turnover of xtrRNA. Placing repeat expan-
sion disease mechanism studies in the context of current
RNA biology will help reveal a better understanding of
how the cell deals with xtrRNA and identify mechanisms
unique to repeat expansions.
Investigations into the biology of xtrRNA promise to

unlock new approaches to therapeutics. Transcription
across repeat expansions has opportunities for thera-
peutic development, such as modulating the function of
Supt4h. Likewise, translation of repeat expansions, espe-
cially RAN translation, may become more targetable as
molecular mechanisms become better characterized and
specific factors identified. Selectively blocking both the
synthesis of xtrRNA or its translation are attractive
therapeutic approaches since they could extrapolate to
multiple repeat expansion disorders. Turnover of
xtrRNA should become increasingly important since
several potential therapeutic strategies employ targeted
and selective degradation of repeat expansion-containing
RNA, such as antisense oligonucleotides and small inter-
fering RNAs [64, 134, 169, 239, 275].
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