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Long noncoding RNAs (lncRNAs) have important regulatory roles in can-

cer biology. Although some lncRNAs have well-characterized functions,

the vast majority of this class of molecules remains functionally uncharac-

terized. To systematically pinpoint functional lncRNAs, a computational

approach was proposed for identification of lncRNA-mediated competing

endogenous RNAs (ceRNAs) through combining global and local regula-

tory direction consistency of expression. Using esophageal squamous cell

carcinoma (ESCC) as model, we further identified many known and novel

functional lncRNAs acting as ceRNAs (ce-lncRNAs). We found that most

of them significantly regulated the expression of cancer-related hallmark

genes. These ce-lncRNAs were significantly regulated by enhancers, espe-

cially super-enhancers (SEs). Landscape analyses for lncRNAs further iden-

tified SE-associated functional ce-lncRNAs in ESCC, such as HOTAIR,

XIST, SNHG5, and LINC00094. THZ1, a specific CDK7 inhibitor, can

result in global transcriptional downregulation of SE-associated ce-

lncRNAs. We further demonstrate that a SE-associated ce-lncRNA,

LINC00094 can be activated by transcription factors TCF3 and KLF5

through binding to SE regions and promoted ESCC cancer cell growth.

THZ1 downregulated expression of LINC00094 through inhibiting TCF3

and KLF5. Our data demonstrated the important roles of SE-associated

ce-lncRNAs in ESCC oncogenesis and might serve as targets for ESCC

diagnosis and therapy.
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1. Introduction

Long noncoding RNAs (lncRNAs) participate in a

wide range of biological and cellular processes through

mechanisms including modulation of chromatin struc-

ture, scaffolding, mRNA stability, or other transcrip-

tional and post-transcriptional processes (Flynn and

Chang, 2014; Gupta et al., 2010; Schmitt and Chang,

2016; Vance and Ponting, 2014). Although some

lncRNAs have well-characterized biological functions,

the vast majority of this class of molecules remains

functionally uncharacterized (Batista and Chang, 2013;

Du et al., 2013; Hosono et al., 2017; Li et al., 2018;

Prensner et al., 2011, 2013; Zhang et al., 2018a,d).

Accumulating evidence predicts that a large number of

lncRNAs may act as competing endogenous RNAs

(ceRNAs) to sponge miRNAs, resulting in the dere-

pression of miRNA targets (Conte et al., 2017; Kar-

reth and Pandolfi, 2013; Paci et al., 2014; Salmena

et al., 2011; Tay et al., 2014; Zhou et al., 2016). The

ceRNA mechanisms might be general acting in down-

stream regulation of lncRNAs (Paci et al., 2014; Poli-

seno et al., 2010). Thus, it is of great interest to

uncover functional lncRNAs through characterizing

lncRNAs acting as ceRNAs (ce-lncRNAs). Indeed,

studies demonstrated that previously uncharacterized

lncRNAs could be functionalized, partly through the

identification of their ceRNA interactors, and pre-

sented a framework for the prediction and validation

of ceRNA interactions (Cesana et al., 2011; Conte

et al., 2017). Especially, Paci et al. proposed a novel

and useful computational approach to identify

lncRNAs to act as ceRNAs through calculating the

difference between Pearson and partial correlation

coefficients (Paci et al., 2014). Based on the approach,

they effectively explored miRNA decoy mechanism in

gene regulatory circuitry using expression data from

breast invasive carcinoma.

Enhancers are cis-acting DNA segments that control

cell type-specific gene expression. Locally clustered

enhancers form super-enhancers (SEs), which are

enriched for binding of a large number of transcription

factors and play prominent roles in control of gene

expression program and cell identity (Amaral and Ban-

nister, 2014; Chipumuro et al., 2014; Hnisz et al.,

2013; Whyte et al., 2013). Importantly, SEs exhibit

much stronger lineage and tissue specificity compared

with typical enhancers (TEs) (Hnisz et al., 2013).

Because SEs are frequently identified near protein-cod-

ing genes (PCGs) or noncoding RNAs that are impor-

tant for controlling cell identity and differentiation,

characterizing the function of SEs provides an oppor-

tunity to quickly identify key nodes driving diseases

and biological processes (Hnisz et al., 2013, 2015;

Jiang et al., 2019; Qian et al., 2019; Tang et al., 2019).

Recently, some enhancer databases were developed,

including SEdb (Jiang et al., 2019), db-SUPER (Khan

and Zhang, 2016), SEA (Wei et al., 2016), and ENdb

(Bai et al., 2020). These databases provided a large

number of SE/TE regions and related annotation

information for various tissue/cell types. SE-associated

upstream and downstream regulatory analysis can be

further performed using the SEanalysis and KnockTF

tool, which characterized SE-associated genes and

transcription factors binding to target SEs (Feng et al.,

2020; Qian et al., 2019). Studies have shown that a

large number of novel noncoding RNAs are capable

of being driven by SEs/TEs (Duan et al., 2016; Hnisz

et al., 2013; Huang et al., 2019; Jiang et al., 2018b;

Miao et al., 2018; Peng et al., 2019; Wood et al., 2018;

Xiang et al., 2014; Xie et al., 2018; Zhang et al., 2017).

Especially, a few SE-associated lncRNAs have well-

characterized functions in cancer (Jiang et al., 2018b;

Peng et al., 2019; Xie et al., 2018), which reveals

upstream regulatory mechanisms of lncRNAs. For

example, SE-associated LncRNA LINC01503 was

recently reported to promote the oncogenic phenotype

of esophageal squamous cell carcinoma (ESCC) cells

and was further identified as a squamous cell carci-

noma-specific lncRNA (Xie et al., 2018). SE-associated

LncRNA HCCL5 activated by transcription factor

ZEB1 can promote the malignancy of hepatocellular

carcinoma (Peng et al., 2019). Co-activation of SE-dri-

ven lncRNA CCAT1 by TP63 and SOX2 promotes

squamous cancer progression (Jiang et al., 2018b).

However, whether and how functional lncRNAs are

regulated by SE-associated genes is incompletely

understood, due to the technical challenges in system-

atics characterization of SEs and functional lncRNAs.

Since ce-lncRNAs have high expression level, they

might be controlled SEs/TEs, which perform impor-

tant functions through regulating ce-lncRNAs to
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driver a large of downstream target genes. Ce-

lncRNAs might appear to be a potential oncogenic

downstream effector of SEs.

Here, we developed a two-stage computational

approach, termed GloceRNA, for the identification of

functional ce-lncRNAs through combining global and

local regulatory direction consistency of expression of

ceRNAs (Fig. 1). We used normal/tumor (N/T)

matched samples to improve prediction of functional

ceRNAs. Especially, GloceRNA can measure the dif-

ferential expression consistency of the lncRNA-PCG

pair at single sample level, which can effectively evalu-

ate possibility of ceRNAs significantly appearing in

some local samples. Using ESCC as a model, Glo-

ceRNA identified many known and novel functional

ce-lncRNAs. We demonstrated that GloceRNA

robustly predicted ce-lncRNAs in multiple ESCC data-

sets, and the predicted ce-lncRNAs strongly regulated

the expression of a large number of cancer hallmark

genes. Moreover, we experimentally validated that

some new predicted ce-lncRNAs were highly associ-

ated with ESCC, including LINC00094, LINC00338,

SNHG10, and MFI2-AS1. Furthermore, we found

that ce-lncRNAs were significantly regulated by enhan-

cers, especially SEs. We further demonstrated that a

novel SE-driven ce-lncRNA – LINC00094 – promoted

the growth and survival of ESCC cells. Lastly, we

showed that TCF3 and KLF5 cooperatively regulated

the express of LINC00094 through activation of its SE

and promoter. Our study improved the original
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Fig. 1. Schematic overview of the GloceRNA method. (A) Flow diagram of GloceRNA. The lncRNA-PCG pairs sharing miRNA target sites

are first established using CLIP-seq-supported miRNA-PCG and miRNA-lncRNA interactions. Next, GloceRNA calculates the local and global

regulatory direction consistency of each lncRNA-PCG pair. Finally, GloceRNA tests whether each lncRNA-PCG pair meets the local and

global direction consistency criteria. A lncRNA-PCG pair sharing miRNAs will be identified as a functional ceRNA if it meets the two

direction consistency criteria. The related lncRNA will be identified as a functional ce-lncRNA. (B) Schematic overview of local regulatory

direction consistency of expression of ceRNAs. (C) Schematic overview of global regulatory direction consistency of expression of ceRNAs.

N, normal; T, tumor. DEC score(l, g): local regulatory direction consistency score of the lncRNA-PCG pair, which can effectively evaluate

possibility of ceRNAs significantly appearing in samples. deci(l, g): the expression consistency score of the lncRNA-PCG pair in the sample i,

which represents the regulatory direction consistency of expression at single sample level. cor(l, g): global regulatory direction consistency

score of the lncRNA-PCG pair, which is calculated using Pearson correlation coefficient of lncRNA-PCG. P: P value of Pearson correlation

coefficient. log2ðFCi
l Þ and log2ðFCi

gÞ: log2FC value of gene expression of lncRNA l and PCG g in sample i, which represent the relative gene

expression level of tumor minus normal. ei
l ¼ log2ðFCi

l Þ and ei
g ¼ log2ðFCi

gÞ.
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ceRNA identification methods, by using local regula-

tory direction consistency of expression strategy in N/

T matched samples and emphasizing identification and

analysis of functional ce-lncRNAs in ESCC.

2. Materials and methods

2.1. Genome-wide gene expression profiles of

ESCC

Four datasets for genome-wide gene expression profiles

of ESCC were used in the study, including: (a) the

GSE53625 (n = 119) dataset; (b) the SRP064894 data-

set (n = 15); (c) the TCGA ESCC dataset (n = 80); (d)

the GSE53625 (n = 60) dataset. The clinical and

pathological characteristics of patients in all datasets

were provided in Table S1 and Appendix S1. The

GSE53625 dataset included two independent experi-

mental subdatasets for gene expression profiles:

GSE53625 (n = 119) and GSE53625 (n = 60). The

GSE53625 (n = 119) dataset contained the 119 N/T

matched samples. The GSE53625 (n = 60) dataset con-

tained the 60 N/T matched samples. These data were

downloaded from Gene Expression Omnibus (GEO)

database (https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE53625). The expression profiles were

performed using the agilent human lncRNA+mRNA

Array v2.0 (4*180k) (Li et al., 2014a). To obtain maps

from probes to annotated lncRNAs, we employed the

blast program to map probes uniquely to the anno-

tated lncRNA sequences. GENCODE (V19) and

Ensembl 75 database were used as the reference anno-

tation, and 8900 lncRNAs with at least unique probes

mapped to it was used as its expression value. The

SRP064894 dataset, which was generated by us,

included the 15 N/T matched samples (Li et al., 2017).

RNA sequencing was performed using the Illumina

HiSeq 2500 (Illumina, San Diego, CA, USA).

Sequencing reads were mapped to the human genome

assembly (NCBI Build 37) using TOPHAT (v2.0.6). The

expression profiles with the lncRNAs and PCGs were

extracted by using EASYRNASEQ (1.6.0). The TCGA

ESCC dataset included the ESCC samples of 80

patients (Cancer Genome Atlas Research et al., 2017).

The GSE53625 (n = 119) and SRP064894 datasets

were used as identifying functional lncRNA-mediated

ceRNAs and evaluating the robust of results. Further,

the TCGA ESCC dataset was used as independent

data to test the expression correlation of functional

lncRNA-mediated ceRNA pairs predicted by Glo-

ceRNA. Using the dataset, we also compared the

expression correlation between functional lncRNA-

mediated ceRNA pairs and other potential ceRNA

pairs sharing miRNAs. The GSE53625 (n = 119) and

GSE53625 (n = 60) collected the survival information

of patients. Therefore, they were used as survival anal-

ysis of functional ce-lncRNAs and ceRNA pairs.

Although the TCGA ESCC dataset also included the

survival time of patients. However, the survival analy-

sis were not performed in the study because survival

time was too short for most of patients (the average

survival time (day) = 193; 63% patients with survival

time < 50 days, see Appendix S1).

2.2. CLIP-seq-supported miRNA-mRNA

interactions

Cross-linking and Argonaute (Ago) immunoprecipita-

tion coupled with high-throughput sequencing (CLIP-

seq) could identify the genome-wide interaction of

miRNAs and their targets (37). The starBase V2.0

database is designed for decoding interaction network

via integrating large-scale CLIP-seq (HITS-CLIP,

PAR-CLIP, iCLIP, CLASH) data (Li et al., 2014b).

MiRNA targets of starBase V2.0 were predicted by

five target predicted algorithms, including TargetScan,

miRanda, Pictar, PITA, and RNA22. In this study, we

downloaded CLIP-seq-supported miRNA-lncRNA

and miRNA-PCG interactions from starBase V2.0

database. In total, we obtained 423 975 miRNA-PCG

interactions with 386 miRNAs and 13 802 PCGs and

10 212 miRNA-lncRNA interactions with 277 miR-

NAs and 1127 lncRNAs. All lncRNAs and PCGs,

which can be assigned to HGNC symbol names, were

used to the following ceRNA identification. The

lncRNA-PCG pairs sharing at least one miRNA were

computed through considering CLIP-seq-supported

miRNA-PCG and miRNA-lncRNA interactions from

starBase V2.0 database. These pairs were used as iden-

tification of functional lncRNA-mediated ceRNAs.

2.3. Identification of functional lncRNA-mediated

ceRNAs

We developed a computational approach, called Glo-

ceRNA, which aims to identify functional lncRNA-

mediated ceRNAs through combining global and local

regulatory direction consistency of expression about

ceRNAs (Fig. 1A). Notably, we first computed all

lncRNA-PCG pairs sharing miRNAs from CLIP-seq-

supported miRNA-PCG and miRNA-lncRNA interac-

tions from starBase V2.0 database. These pairs were

used as the following identification of functional ceR-

NAs. Next, we calculated the local and global regula-

tory direction consistency of each lncRNA-PCG pair.
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Finally, GloceRNA tested whether each lncRNA-PCG

pair meets the local and global direction consistency

criteria. A lncRNA-PCG pair sharing miRNAs will be

identified as a functional ceRNA if it meets the crite-

ria. The related lncRNA will be identified as a func-

tional ce-lncRNA.

We used N/T matched samples to evaluate local reg-

ulatory direction consistency of a potential lncRNA-

PCG ceRNA pair (Fig. 1B). We found that gene

expression profiles with N/T matched samples are

available for ESCC and many other diseases. Based on

ceRNA principle, the increase of lncRNA expression

in the lncRNA-PCG ceRNA pair tends to lead to

increase of the PCG expression, which means that the

expression direction of ceRNA pair tends to be consis-

tent. In N/T matched samples or even a single N/T

matched sample, the expression direction of ceRNA

pair also tends to be consistent. That is, for a pair of

N/T samples from the same patient, a ceRNA pair

usually displays consistently upregulated (or downreg-

ulated) in expression direction. Therefore, we used N/

T matched samples to improve prediction of functional

ceRNAs through capturing the local regulatory direc-

tion consistency information of expression. Suppose

we have an ESCC expression profile dataset with n N/

T matched samples and m genes (lncRNAs and PCGs)

(Fig. 1B, Top panel). For a lncRNA-PCG pair with

lncRNA l and PCG g, the local regulatory direction

consistency, called DEC score(l, g), can be measured

using the expression level of lncRNA l and PCG g.

We first compute the log2FC value of gene expression

for the lncRNA l and PCG g in a N/T matched sam-

ple i (Fig. 1B, Middle panel) as follows:

log2 FCi
l

� � ¼ log2 yil
� �� log2 xil

� �
; ð1Þ

log2 FCi
g

� �
¼ log2 yig

� �
� log2 xig

� �
; ð2Þ

where yil is the tumor expression value of lncRNA l in

the N/T matched sample i, and xil is the normal

expression value of the lncRNA in the N/T matched

sample i. Similarly, yig and xig are the tumor and nor-

mal expression values of PCG g in the N/T matched

sample i. The log2ðFCi
lÞ and log2ðFCi

gÞ values represent
the relative gene expression level of tumor minus nor-

mal. Next, we used the log2FC values of the lncRNA l

and PCG g to compute the differential expression con-

sistency score deci(l, g) of the lncRNA-PCG pair at

single sample level (Fig. 1B, Bottom panel). When two

log2FC values of lncRNA and PCG are larger than 1

(i.e., log2ðFCi
lÞ > 1 and log2ðFCi

gÞ > 1), the lncRNA-

PCG pair will be defined as consistently upregulated

(+1) in differential expression direction. On the con-

trary, the pair is defined consistently downregulated

(�1) if all two values < �1. Therefore, the regulatory

direction consistency of expression at single sample

level was calculated as follows:

deciðl;gÞ¼
1; if log2 FCi

l

� �
[1and log2 FCi

g

� �
[1

�1; if log2 FCi
l

� �
\�1and log2 FCi

g

� �
\�1

0; otherwise

8>><
>>:

;

ð3Þ
where deci(l, g) is the expression consistency score of

the lncRNA-PCG pair in the sample i. The 1 and �1

represent that the lncRNA-PCG pair is consistently

upregulated or downregulated. For example, when

log2ðFCi
lÞ = 3.1 and log2ðFCi

gÞ = 2.2, the value of

deci(l, g) is 1, which means that the lncRNA-PCG pair

is consistently upregulated (see Fig. 1B bottom panel

and Table S2 for more examples). Finally, for a

lncRNA-PCG pair, we computed local regulatory

direction consistency, called DEC score(l, g), through

counting sum of all consistently up/downregulated

samples across all n samples as follows:

DEC� scoreðl;gÞ¼
Xn
i¼1

jdeciðl;gÞj; ð4Þ

DEC score(l, g) represents sample number that meets

the differential expression direction consistency at sin-

gle sample level (see Table S2 for an example of calcu-

lating DEC score(l, g)). DEC score(l, g) can be used to

effectively evaluate possibility of ceRNAs significantly

appearing in some local samples. The higher value of

DEC score(l, g) is, the more samples meet that when a

lncRNA is upregulated (or downregulated) in single

ESCC sample, the corresponding PCG is also upregu-

lated (or downregulated) in the same sample. Com-

pared with global measures, the DEC score focused on

mining ceRNA signals in the local samples since some

strong ceRNA relationships may only exist in some

patients due to cancer heterogeneity. In order to stably

capture the local feature rather than global informa-

tion, the cutoff of DEC score needs to be set appropri-

ately. If the cutoff is set too small (e.g., < 3), we think

that the result of ‘local’ regulatory direction consis-

tency may be not stable due to random probability of

regulatory direction consistency. On the contrary, too

large cutoff (e.g., greater than half of the total number

of samples) may lead to too strict, which makes DEC

score tend to capture global rather than local informa-

tion. In order to stably capture the local feature in

two datasets, we think that the candidate cutoffs can

be set as > 3, 4, 5, 6, 7, or 8, which may be more
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appropriate. We tested these cutoffs in two ESCC

datasets (Table S3). In order to stably capture the

local feature, and keep balance between local feature,

number and similarity of ceRNAs in two datasets, the

cutoff was set as > 5 in the paper. When DEC score(l,

g) > 5, the pair is considered as meeting local regula-

tory direction consistency of ceRNAs.

For each lncRNA-PCG pair sharing miRNAs, glo-

bal regulatory direction consistency was further com-

puted based on the relative gene expression profiles

(Fig. 1C, Top panel). Notably, we first converted the

gene expression profiles (m 9 2n matrix) into a new

gene expression profiles with relative expression level

(m 9 n matrix) (Fig. 1C, Top panel). The log2FC val-

ues were used to represent the relative gene expression

level of tumor minus normal in the new gene expres-

sion profiles. For example, the expression value of the

lncRNA l and PCG g in the sample i of the new gene

expression dataset is log2ðFCi
lÞ and log2ðFCi

gÞ. Next,

we used the Pearson correlation coefficient to evaluate

the global regulatory direction consistency, called cor

(l, g), of the lncRNA-PCG pair based on relative

expression values (log2FC) across all samples of the

dataset (Fig. 1C, Middle panel).

corðl; gÞ ¼
Pn

i¼1 eil � el
� �

eig � eg

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 eil � el
� �2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 eig � eg

� �2
r ; ð5Þ

where eil ¼ log2ðFCi
lÞ and eig ¼ log2ðFCi

gÞ. The eil and

eig are the relative expression levels of lncRNA l and

PCG g in sample i. The el and eg are the average value

of the relative expression levels of lncRNA l and PCG

g across all samples. The cor(l, g) can be used to effec-

tively evaluate possibility of ceRNAs through measur-

ing expression correlation of the lncRNA-PCG pair

across all samples. The statistical significance of cor(l,

g), termed P, was calculated using the significance P

value of the Pearson correlation coefficient. The Pear-

son correlation coefficient was adopt by many ceRNA

studies and have been proved to be effective for identi-

fication of ceRNAs (Paci et al., 2014; Wang et al.,

2015; Xu et al., 2015). These existing studies used the

absolute expression level of genes, whereas the relative

expression levels of genes (log2FC) were considered by

previous studies to be able to reduce the influence of

heterogeneity among different ESCC patients (Li

et al., 2014a). Therefore, instead of the absolute

expression level, we computed Pearson correlation

coefficient by using the relative expression level.

Finally, a lncRNA-PCG pair sharing miRNAs will

be defined as functional ceRNA relationship in ESCC

if it meets the following criteria: (a) DEC score(l,

g) > 5; (b) cor(l, g) > 0 and P < 0.05. The above

method was applied to all CLIP-seq-supported

lncRNA-PCG pairs sharing miRNAs in starBase V2.0

database, and all functional ceRNAs meeting the crite-

ria were identified. The lncRNAs identified in func-

tional lncRNA-mediated ceRNAs were defined as

functional ce-lncRNAs.

2.4. The traditional ceRNA identification

methods

Traditionally, a lncRNA-PCG pair sharing miRNAs

will be defined as functional ceRNA relationship based

on the following criteria: (a) Expression correlation of

lncRNA-PCG pair; (b) Shared miRNAs; and (c) Dif-

ferentially expression level of lncRNAs/PCGs.

Although most of studies identify ceRNAs based on

the three criteria, different combinations of them exist.

Therefore, we used six different combinations for fair

comparison with our method, including SAM

(0.01)+Cor, Limma(0.01)+Cor, SAM(0.05)+Cor, SAM

(0.01)+Hyper+Cor, Limma(0.01)+Hype+Cor, and

SAM(0.05)+Hype+Cor. Notably, Pearson correlation

coefficient (Cor) between a lncRNA-PCG pair is usu-

ally used to identify whether lncRNA-PCG pair is co-

expressed. All lncRNA-PCG pairs with Cor > 0 and

FDR < 0.05 were identified as candidate ceRNA pairs.

The differentially expressed genes are identified using

the SAM or Limma method with FDR < 0.01 or 0.05.

A hypergeometric test is used to compute significance

of shared miRNAs for each possible lncRNA-PCG

pair. All P values were subject to FDR correction. For

example, Limma(0.01)+Hype+Cor represents that ceR-

NAs meet significance of expression correlation (+Cor)
and share miRNAs (+Hyper) between lncRNA-PCG

pairs, with differentially expression of lncRNAs/PCGs

based on Limma FDR < 0.01 (+Limma(0.01)). Limma

(0.01)+Cor represents that ceRNAs meet significance

of expression correlation between lncRNA-PCG pairs,

with Limma FDR < 0.01, but not use the ‘Shared

miRNAs’ criterion with only needing to share at least

one miRNA.

2.5. Degree and betweenness centrality

The most elementary characteristic of a node is its

degree, which represents how many links the node has

to other nodes (Barabasi and Oltvai, 2004). Between-

ness centrality is a measure of a node’s centrality in a

network and is equal to the number of shortest paths

from each node to all others that pass through this

node. It reflects the amount of control that a node
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exerts over the interactions of other nodes in the net-

work.

2.6. Analysis of lncRNA-related cancer hallmarks

Hanahan and Weinberg (2011) have proposed that

cancer cells acquire a number of hallmark biological

capabilities during the multistep process of tumor

pathogenesis (Hanahan and Weinberg, 2011). We used

these hallmarks for analysis of lncRNA-related cancer

hallmarks, including ‘Activating Invasion’, ‘Disrupting

Cellular Energetics’, ‘Angiogenesis’, ‘Enabling Replica-

tive Immortality’, ‘Genome Instability’, ‘Resisting Cell

Death’, ‘Sustaining proliferative signaling’, ‘Tumor-

Promoting Inflammation’, ‘Evading Growth Suppres-

sors’, and ‘Avoiding Immune Destruction’. To obtain

cancer hallmark genes, we firstly corresponded cancer

hallmark to the Gene Ontology (GO) terms according

to the study of Hnisz et al. (2013). Secondly, the genes

annotated to these GO terms were downloaded from

the databases MsigDB V6.1 (Subramanian et al., 2005)

and bioMart (Ensembl v91). Thirdly, for each GO

term, the union of their related genes obtained from

the two databases was used as the annotated genes of

the GO term. The result showed that all cancer hall-

marks can correspond to 31 GO terms with the anno-

tated genes. Finally, these GO terms were used as

proxies for the characteristic hallmark capabilities that

are thought to be acquired in cancers.

To test whether ce-lncRNAs can control broad can-

cer-related hallmarks, we investigated ce-lncRNAs in

the context of cancer hallmarks. On the one hand, we

mapped all ce-lncRNA-related PCGs identified by

GloceRNA from the GSE53625 (n = 119) and

SRP064894 datasets to cancer hallmarks and used

hypergeometric test to calculate the enrichment signifi-

cance of each cancer hallmark GO terms. On the other

hand, we explored hallmark functions associated with

each ce-lncRNA. Notably, for each ce-lncRNA, we

used the ce-lncRNA-related PCGs from two datasets

to identify the enriched hallmark GO terms. The

enrichment significance was calculated using hypergeo-

metric test.

2.7. Survival analysis

A clear understanding of the alterations in lncRNA

expression occurring in cancers will require larger-scale

studies. The GSE53625 (n = 119) and GSE53625

(n = 60) datasets were used as survival analysis of

functional ce-lncRNAs and ceRNA pairs. The clinical

and survival information of patients in the two data-

sets was provided in Table S1 and Appendix S1. For a

lncRNA (or PCG), the relationship between lncRNA

(or PCG) expression and prognosis of ESCC patients

was explored by Kaplan–Meier analysis (Li et al.,

2019). The mean value of gene expression was used as

cutoff to classify patients into high- and low-risk

groups. The statistical significance was assessed using

the log-rank test by calculating the P values. For a

ceRNA pair, an average expression of the correspond-

ing lncRNA and PCG was calculated for each patient.

Then, we used the average expression level of the

ceRNA pair as the ‘pair expression’ to evacuate the

association between survival and the ceRNA pair.

Similarly, the mean value of ‘pair expression’ was used

as cutoff to classify patients into high- and low-risk

groups. The statistical significance was assessed using

the log-rank test by calculating the P values. The

lncRNA, PCG, and the ceRNA pair with P < 0.05

were defined as significant. We used the same ‘mean

value’ strategy as the cutoff to classify patients into

high and low-risk groups in the GSE53625 (n = 119)

and GSE53625 (n = 60) datasets. All analyses were

performed on the R 2.13.2 framework.

2.8. Chromatin immunoprecipitation sequencing

data analysis

Chromatin immunoprecipitation sequencing (ChIP-

seq) files have been obtained from our previous studies

with GEO database (GEO ID: GSE76861 and

GSE106563) (Jiang et al., 2017, 2018b). H3K27ac

ChIP-seq was sequenced in six ESCC cell lines, includ-

ing KYSE140, TT, KYSE510, KYSE70, TE5, and

TE7. H3K27ac ChIP-seq reads were mapped using

BOWTIE ALIGNER (v0.12.9) to hg19 human reference gen-

ome (Langmead et al., 2009). MACS (model-based anal-

ysis of ChIP-seq) (v1.4.2) was used to identify

enhancer enrichment regions (Zhang et al., 2008). The

corresponding wiggle files were generated using read

pileups and were normalized using reads per million

(rpm) by dividing tag counts by the total number of

reads. We converted wiggle files into bigwig files using

WIGTOBIGWIG tool (http://hgdownload.cse.ucsc.edu/

admin/exe/) and visualized them using INTEGRATIVE

GENOMICS VIEWER (http://www.broadinstitute.org/igv/

home). ROSE software was used to identify potential SE

regions as ‘python ROSE main.py -g hg19 -i

*******.gff -r ******* cas.sort.bam –c ******* input.-

sort.bam -o ******* -s 12500 -t 2000’ (Hnisz et al.,

2013). Briefly, H3K27ac peaks that occurred within

�1 kb of transcription start sites were subtracted. ROSE

stitched enhancers within 12.5 kb together. It sepa-

rated SEs from TEs through ranking H3K27ac signal

of them. Finally, a threshold was defined according to
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the geometric inflection point to distinguish between

TE and SE. Both SEs and TEs were assigned to the

overlap, proximal, and closest genes to the center of

the stitched enhancer. If lncRNAs appeared in the

overlap, proximal, or closest genes of SEs or TEs, they

were considered as SE/TE-associated lncRNAs. If SE/

TE-associated lncRNAs belong to ce-lncRNAs in

ESCC, we considered them as SE/TE-associated ce-

lncRNAs in ESCC.

2.9. Identification of transcription factors binding

to SEs of ce-lncRNAs

Identification of transcription factors that were pre-

dicted to bind to SEs of lncRNAs was based on motif

scanning in SE regions associated with ce-lncRNAs.

More than 3000 DNA binding motifs for 695 tran-

scription factors are compiled from the TRANSFAC

database (Matys et al., 2006) and MEME suite (Bailey

et al., 2009), based on the following collections: JAS-

PAR CORE 2014 vertebrates (Mathelier et al., 2014),

Jolma2013 (Jolma et al., 2013), Homeodomains (Ber-

ger et al., 2008), UniPROBE (Robasky and Bulyk,

2011), and Wei2010 (Wei et al., 2010). For each of six

ESCC cell line, we obtained the genomic regions of

the constituents of SEs associated with ce-lncRNAs.

According to these regions, we extracted their corre-

sponding sequence from hg19 human reference genome

using the getfasta function of BEDTOOLS (v2.25.0)

(Quinlan and Hall, 2010) and followed by motif scan-

ning with FIMO (Find Individual Motif Occurrences) at

a P value threshold of 10�4 (Grant et al., 2011). Tran-

scription factors having at least two significant DNA

binding sequence motif instances in the SEs of each

ce-lncRNA were identified. For each of identified tran-

scription factor, we computed unique lncRNAs regu-

lated by it through merging relationships between

transcription factors and SE-associated ce-lncRNAs

for all six ESCC cell lines. All transcription factors

were finally ranked according to number of lncRNAs

significantly regulated by them.

2.10. Gene expression profile for the effects of

THZ1 inhibition for lncRNAs and related PCGs

Gene expression profiles for the effects of THZ1 inhi-

bition were performed in our groups. The data can be

downloaded from NCBI GEO database (GSE number:

GSE76860). The detailed experimental descriptions

were provided in our previous published paper (Jiang

et al., 2017). Briefly, whole-transcriptome RNA

sequencing was performed before/after THZ1 treat-

ment in TE7 and KYSE510 cells using illumina HiSeq

2000. The RNA-seq results were involved in gene

expression level of either THZ1 or DMSO at indicated

time points at 2, 4, 6, and 8 h, which were computed

using FPKM through mapping reads to human refer-

ence genome. We filtered genes according to FPKM,

and those active genes with FPKM > 1 were consid-

ered in following analyses.

2.11. Construction of THZ1-sensitive ceRNA

networks

Firstly, we used gene expression profiles for the effects

of THZ1 inhibition to compute fold changes of the

expression level for SE/TE-associated ce-lncRNAs. If

the expression level of SE/TE-associated ce-lncRNAs

decreased over 1.5-fold at 12 h compared with DMSO,

we defined them as ‘THZ1-sensitive SE/TE-ce-

lncRNAs’. A total of 42 unique THZ1-sensitive SE/TE-

ce-lncRNAs were identified in TE7 and KYSE510 cells.

Secondly, we obtained the 26 shared THZ1-sensitive

SE/TE-ce-lncRNAs in both cell lines. Based on these ce-

lncRNAs, we extracted the first neighbor nodes in

ESCC ceRNA network, and thus, the related PCGs

associated with THZ1-sensitive SE/TE-ce-lncRNAs

were obtained. Finally, a subnetwork of ESCC ceRNA

network, called THZ1-sensitive ceRNA networks, was

constructed through extracting the subgraph using

THZ1-sensitive SE/TE-ce-lncRNAs and their related

PCGs. The nodes in the subnetwork are THZ1-sensitive

SE/TE-ce-lncRNAs or their related PCGs, and edges

are the ceRNA relationships between them.

2.12. Cell culture and RNA interference

Cell lines used in this study and related cell culture

information has been described previously (Long

et al., 2018). The KYSE150, KYSE510, and TE3

human esophageal squamous carcinoma cell lines were

cultured in Roswell Park Memorial Institute (RPMI)

1640 medium (HYCLONE, Logan, UT, USA). ESCC

cell line KYSE450 was cultured in Dulbecco’s modifi-

cation of Eagle’s medium Dulbecco (DMEM) medium

(Thermo Fisher Scientific, Waltham, MA, USA). All

media were supplemented with 10% FBS (Thermo

Fisher Scientific), penicillin-G (100 units�mL�1), and

streptomycin (100 lg�mL�1). Cells were incubated at

37 °C in a humidified atmosphere containing 5% CO2.

In functional assays, KYSE150, KYSE450, and TE3

cells were seeded into 6-well plates or 12-well plates and

cultured for 12–24 h until 70–80% confluence. ESCC

cells were transfected with 25 or 50 nM small interfering

RNA (siRNA) using DharmaFECTTM Transfection

Reagents (Dharmacon, Waltham, MA, USA) or
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Lipofectamine 3000 (Invitrogen, Carlsbad, CA, USA)

according to the manufacturer’s instructions. The

LINC00094, LINC00338, SNHG10, MFI2-AS1, and a

negative control (NC) siRNAs were synthesized by

Dharmacon. The TCF3 and KLF5 siRNAs were syn-

thesized by GenePharma (Suzhou, China). The siRNA

target sequence for lncRNAs and two transcription

factors’ mRNAs is described in Table S4.

2.13. RNA extraction and qRT-PCR

Total RNA from ESCC cells were extracted using

TRIzol (Invitrogen) according to the manufacturer’s

protocol. The purity and concentration of RNA were

determined by OD260/280 using a NanoDrop ND-

2000 spectrophotometer (Agilent, Santa Clara, CA,

USA), and 1 lg of total RNA was reverse transcribed

into cDNA using PrimeScript RT reagent Kit with

gDNA Eraser (TaKaRa, Otsu, Japan) in accordance

with the manufacturer’s instructions. Quantitative real-

time PCR (qRT-PCR) was performed by SYBR Pre-

mix Ex Taq (TaKaRa) using a 7500 Real-Time PCR

System (Applied Biosystems, Waltham, MA, USA).

Primers for quantitative real-time PCR are shown in

Table S5. b-Actin was measured as an internal control

and used for normalization. RNA expression was nor-

malized against the relative value from the NC control

group. qRT-PCR was performed in triplicate and

repeated at least three times.

2.14. Wound healing assay

KYSE150, KYSE450, and TE3 cells were transfected

with siRNAs targeting lncRNAs, and then, cells were

starved in serum-free medium for 12 h after being

transfected for 36 h. Circles 3 mm in diameter were

marked on the bottom of each dish to identify the

areas for image capture and ensure that measurements

were taken at the same locations. A wound was made

by scraping the cell monolayer with a 200-lL pipette

tip. ESCC cells were maintained in RPMI-1640 med-

ium or DMEM medium with 2.5% FBS. Images were

captured at 0 and 36 h using a Leica DMI3000B

inverted phase-contrast microscope (Leica Microsys-

tems GmbH, Wetzlar, Germany). The wound closure

rate was calculated from six images, using IMAGEJ

(National Institutes of Health, Bethesda, MD, USA)

analysis. Each experiment was performed in triplicate.

2.15. Transwell assay

Transwell assay was performed as described previously

(Zhang et al., 2018c). KYSE150, KYSE450, and TE3

cells were starved in serum-free medium for 12 h after

being transfected. A total of 5 9 104 cells were plated

in medium without serum in the upper well of a tran-

swell chamber of a 24-well transwell with 8-lm pores

(BD Biosciences, San Jose, CA, USA), placed in a bot-

tom chamber containing medium supplemented with

10% FBS. After 48 h, the membranes were fixed ice-

cold methanol and stained with hematoxylin solution,

and migration was quantified by counting 10 random

fields under a Leica DMI3000B inverted phase-con-

trast microscope (4009). The migration cell numbers

were counted with IMAGEJ. Each experiment was per-

formed in triplicate.

2.16. Colony formation assay

Colony formation assay was performed as described

previously (Zeng et al., 2017). Briefly, transfected cells

were trypsinized and counted with a cell counter (Bio-

Rad, Hercules, CA, USA). Then, cells were plated at a

density of 1000 cells per well in 6-well plates and incu-

bated for 14 days at 37 °C with 5% CO2. After wash-

ing with 4 °C precooled PBS twice, cultures were fixed

with ice-cold methanol for 15 min and stained with

hematoxylin for 30 min. Colonies were photographed

by ChemiDoc Touch (Bio-Rad). Each experiment was

performed in triplicate.

2.17. Western blotting

ESCC cells were lysed with Laemmli sample buffer

(Bio-Rad), heated for 10 min at 95°C. Western blot-

ting was performed using SDS/PAGE. Proteins were

transferred to PVDF membrane (Millipore, Billerica,

MA, USA), which were then blocked for 1 h with 5%

skim milk in TBST (20 mM Tris, 137 mM NaCl, 0.1%

Tween-20). Membranes were incubated with primary

antibody [1 : 1000 anti-KLF5 (Santa Cruz Biotechnol-

ogy, Delaware Ave, Santa Cruz, CA, USA; sc-398470)

and anti-TCF3 (Cell Signaling Technology, Danvers,

MA, USA; Cat#4865) and anti-b-actin (Santa Cruz

Biotechnology; sc-47778)] overnight in 4 °C. After

three washes with TBST, membranes were incubated

with secondary HRP-conjugated antibody [1 : 5000

(mouse; Santa Cruz Biotechnology; sc-516102) and

1 : 2000 (rabbit; Cell Signaling Technology; cat#

31,460)] for 1 h at room temperature. Signals were

detected with ChemiDoc Touch (Bio-Rad).

2.18. Chromatin immunoprecipitation

Chromatin immunoprecipitation analysis was per-

formed as described previously (Jiang et al., 2018b). In
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brief, ESCC cells KYSE150, KYSE510, and TE3 were

treated with THZ1 (100 nM, 12 h), and then, 1 9 107

cells were cross-linked with 1% formaldehyde solution

(Thermo Fisher Scientific) and neutralized by 1.25 M

glycine. Cross-linked cells were lysed and sonicated

(Covaris E220, Woburn, MA, USA) to release 100–
00 bp fragments. Anti-KLF5 (Santa Cruz Biotechnol-

ogy; sc-398470x), anti-TCF3 (Santa Cruz Biotechnol-

ogy; sc-166411x), or normal IgG was added to each

sonicated chromatin and incubated at 4 °C overnight.

Then, these complexes were conjugated to Dynabeads

protein A/G magnetic beads (Invitrogen) for 4 h at

4 °C. After incubation, DNA was eluted from

immunoprecipitate complexes, reverse cross-linked,

and purified with QIAquick PCR purification kit

(QIAGEN, Hilden, Germany).

The purified DNA was analyzed by real-time PCR

with the use of LINC00094 super-enhancer-specific pri-

mers. Primers for ChIP-PCR were shown in Table S5.

Relative enrichment was normalized to input. IgG

antibody was used as a negative control.

2.19. Statistical analysis

Results are analyzed by SPSS software, 13.0 (SPSS, Chi-

cago, IL, USA) or R 3.1.2 for windows. Where indi-

cated, statistical analysis was performed by calculating

means and SD. Graphs about biological experiments

were mainly made by GRAPHPAD PRISM 6 (GraphPad,

San Diego, CA, USA). Differences between groups

were evaluated with the Student’s t-test. P < 0.05 was

considered to be statistically significant. *P < 0.05,

**P < 0.01, ***P < 0.001. Graphs about bioinformat-

ics were mainly made by R 3.1.2.

3. Result

3.1. Genome-wide identification of ce-lncRNAs

using GloceRNA

To systematically identify functional ce-lncRNAs, we

developed a two-stage identification method, termed

GloceRNA, which integrated miRNA target sequences

and gene expression profile information of lncRNAs

and PCGs in large-scale N/T matched samples (see

Materials and methods). Our hypothesis is that func-

tional ceRNAs display expression direction consistency

in local matched samples and at global gene expression

level cross all samples. Briefly, lncRNA-PCG pairs

sharing miRNA target sites were first established

through using CLIP-seq-supported miRNA-PCG and

miRNA-lncRNA interactions (Fig. 1A). Next, each

lncRNA-PCG pair sharing miRNAs was tested using

two measures DEC score(l, g) and cor(l, g) and identi-

fied as a functional ceRNA relationship if it meets the

following criteria: (a) local regulatory direction consis-

tency of expression at single sample level (DEC score

(l, g) > 5) (Fig. 1A,B); (b) global regulatory direction

consistency of expression (cor(l, g) > 0 and P < .0.05)

(Fig. 1A,C). Finally, the related lncRNAs in func-

tional ceRNAs were identified as functional ce-

lncRNAs. The GloceRNA method has two advan-

tages. On the one hand, using a new measure DEC

score(l, g), local differential expression consistency

between lncRNAs and PCGs can be effectively consid-

ered through computing regulatory direction consis-

tency of expression at single N/T matched sample

level, which can effectively evaluate possibility of ceR-

NAs appearing in parts of samples. On the other

hand, global expression consistency of a lncRNA-PCG

pair is tested through applying Pearson correlation

coefficient to all samples, which can effectively evalu-

ate possibility of ceRNAs through measuring relative

expression correlation of the lncRNA-PCG pair cross

all samples. Therefore, our method not only consid-

ered regulatory direction consistency of expression at

the global level but also mined hidden regulatory

direction information of ceRNAs from single and local

some N/T matched samples.

Since we have previously characterized several

important lncRNAs in ESCC, for which we also gen-

erated RNA-seq data from patient samples (Jiang

et al., 2018b; Li et al., 2017; Xie et al., 2018; Zhang

et al., 2018c), we next applied GloceRNA to this can-

cer type. Using internal dataset (15 paired tumor and

normal samples), 13 268 ceRNA pairs were identified,

involving 98 lncRNAs and 5236 PCGs. To evaluate

the robustness of this result, we analyzed another

large-scale transcriptomic dataset (119 paired tumor

and normal samples). Strikingly, in this independent

cohort, 61 out of 71 lncRNAs (85.91%) were signifi-

cantly shared with our internal dataset (P = 0, hyper-

geometric test, Fig. 2A). The result showed that the

ceRNA networks derived from different datasets

shared similar lncRNAs. Moreover, we found that the

overlaps of PCGs (P = 0) and ceRNA pairs (P = 0)

between the two cohorts were also highly significant

statistically (Fig. 2A), highlighting the consistency and

robustness of our method. We further found that simi-

larities of nodes and edges were obviously different

although the overlaps were highly statistically signifi-

cant. The overlaps between lncRNAs, as well as PCGs,

were much larger than those between ceRNA pairs

(Fig. 2A). This suggests that the ceRNA networks

derived from different ESCC datasets might more tend
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Fig. 2. Identification and analysis of functional ce-lncRNAs in ESCC. (A) Venn diagram showing the overlap of lncRNAs (left), PCGs (middle),

and ceRNA pairs (right) between both ESCC datasets (GSE53625 and SRP064894). (B) Box plots of expression correlation of ceRNA pairs in

TCGA ESCC samples. The bars represent expression of ceRNA pairs (blue) and all background pairs (write). (C) Comparison of results

between our method and other methods. Left panel shows overlap similarity of lncRNAs (red), PCGs (green) and ceRNA pairs (blue). Right

panel shows overlap number of lncRNAs (red), PCGs (green), and ceRNA pairs (blue). Traditionally, a lncRNA-PCG pair sharing miRNAs will

be defined as functional ceRNA relationship based on the following criteria: (a) Expression correlation of lncRNA-PCG pair (Cor); (b) Shared

miRNAs (Hyper); and (c) Differentially expression level of lncRNAs/PCGs (SAM or Limma). We used six different combinations of them for

fair comparison with our method, including SAM(0.01)+Cor, Limma(0.01)+Cor, SAM(0.05)+Cor, SAM(0.01)+Hyper+Cor, Limma

(0.01)+Hype+Cor, and SAM(0.05)+Hype+Cor. Box plots of ce-lncRNAs are displayed according to (D) Length (left) and number (right) of

exons, (E) expression level, and (F) number of miRNA target sites. GSE53625 represents the GSE53625 (n = 119) dataset.
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to share similar nodes compared with edges. In other

words, the nodes in the ESCC ceRNA network may

be more conservative than regulatory relationships

between nodes in different patients and datasets. In

the ESCC tissues of different patients, those lncRNAs,

which perform their ceRNA functions, may usually be

about the same. Moreover, they tend to regulate the

similar terminal target PCGs. However, despite signifi-

cantly sharing some ceRNA regulatory paths in the

different patients, these ce-lncRNAs may adopt many

different regulatory paths to transmit signals and

implement the regulation for the same target PCGs.

Next, we compared the GloceRNA with other

ceRNA identification methods, including SAM and

Limma (Fig. 2C, Fig. S1), and GloceRNA displayed

markedly higher consistency and stability compared

with either SAM or Limma. To further test the perfor-

mance of GloceRNA, we analyzed the TCGA ESCC

datasets. Because TCGA did not have full matched

samples, ceRNAs cannot be identified directly using

our method. Alternatively, we computed Pearson cor-

relation of the expression ceRNAs. Indeed, we

observed that ceRNA pairs identified by our methods

were significantly higher co-expressed than others

(Fig. 2B).

We next focused on the 61 ce-lncRNAs shared in

two datasets. We observed that transcripts for ce-

lncRNAs were longer than other lncRNAs

(P = 5.76E-8, Wilcoxon rank-sum test, Fig. 2D).

Moreover, ce-lncRNAs had more exons per transcript

than other lncRNAs (P = 4.57E-33, Wilcoxon rank-

sum test, Fig. 2D). These observations support previ-

ous findings that lncRNAs with longer transcripts and

a greater number of exons would be expected to have

a higher probability of forming sequence structures

that harbor miRNA target sites (Wang et al., 2015). In

addition, these 61 ce-lncRNAs were expressed higher

and contained more miRNA target sites than other

lncRNAs (Fig. 2E,F), again consistent with known

features of ceRNAs (Wang et al., 2015).

3.2. The topological network analysis identifies

novel functional ce-lncRNAs in ESCC

Using internal dataset (15 paired tumor and normal

samples), 13 268 ceRNA pairs were identified, involv-

ing 98 lncRNAs and 5236 PCGs. We next investigated

the 1365 ceRNA pairs shared in two datasets, involv-

ing 40 lncRNAs and 1004 PCGs (Right panel,

Fig. 2A). To understand this complex regulatory net-

work, we applied the topology theory in biology,

wherein biological molecules sharing components

within the network are predicted to be more

biologically functionally similar. Specifically, we com-

puted the shared PCGs of these lncRNAs in a pair-

wise manner. Importantly, a few known functional

lncRNAs in cancer biology were validated by this

method (Fig. 3A). For example, the lncRNA MEG3

shared multiple PCGs with six other lncRNAs, of

which three (TP73-AS1, LINC00472 and LINC00473)

(Chen et al., 2018; Mazor et al., 2019; Shen et al.,

2015) were also confirmed to be of biological signifi-

cance in cancer (Fig. 3B). On the other hand, we pro-

posed that the functions of poorly characterized

lncRNAs may be predicted on the basis of sharing

PCGs with known lncRNAs (i.e., guilt-by association).

To address this hypothesis, we tested LINC00338, an

uncharacterized lncRNA which shared PCGs with

SNHG1 (Fig. 3C). SNHG1 contributes to cell growth

and survival in several cancer types, and we also found

it connected with other known cancer-associated

lncRNAs, such as GAS5 and SNHG6 (Fig. 3C). To

probe the biological function of LINC00338 in ESCC,

we examined the effect of LINC00338 knockdown and

found that silencing of this lncRNA potently reduced

the proliferation, migration and clonogenicity of ESCC

cells (Fig. 3D,E). These data demonstrate that our

topological network analysis is capable of identifying

both known and novel functional ce-lncRNAs.

3.3. Ce-lncRNAs control broad cancer-related

hallmarks

Next, we investigated ce-lncRNAs in the context of

cancer hallmarks. We collected ten cancer hallmarks

and their associated genes based on 31 GO terms

(Fig. S2A, Appendix S2). Through mapping all ce-

lncRNAs-related PCGs identified by GloceRNA, we

found that seven of ten hallmarks, which corresponded

to 18 GO terms, were significantly enriched (P < 0.05,

hypergeometric test, Fig. 4A, Fig. S2B). The ‘Evading

Growth’ hallmark displayed the most significant

enrichment, followed by ‘Resisting Cell Death’, ‘Gen-

ome Instability’, and ‘Angiogenesis and Activating

Invasion’ (hypergeometric test, Fig. 4A). We next

explored hallmark functions associated with each ce-

lncRNA through enrichment analysis and revealed

that a total of 449 pairs were enriched in the 10 hall-

mark GO terms (Fig. 4B red and yellow part,

Appendix S2). Eighty-nine out of 109 ce-lncRNAs

were significantly associated with at least cancer hall-

mark (Fig. 4C). Notably, up to 51 ce-lncRNAs were

significantly enriched in the ‘Cell proliferation’ and

‘Cell_cycle’ terms (Fig. 4B top panel, Fig. S2C).

On the basis of the number of enriched GO terms,

LINC00094, a novel lncRNA with unknown functions,
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Fig. 3. The functional ce-lncRNAs in the conservative ceRNA network. (A) Similarity between lncRNAs based on the conservative ceRNA

network. For a lncRNA-lncRNA pair, similarity is tested through computing the shared PCGs of two lncRNAs. (B, C) The subnetworks
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was top ranked, and it was enriched in several cancer

hallmarks, including ‘Evading Growth’, ‘Resisting Cell

Death’, ‘Genome Instability’, ‘Angiogenesis’, and

‘Activating Invasion’ (Fig. 4C). To test this, we

silenced this lncRNA and observed that LINC00094

knockdown significantly inhibited proliferation, migra-

tion and clonogenicity in ESCC cells (Fig. 4D,E).

More importantly, RNA-seq data showed that the

downregulated PCGs upon LINC00094 knockdown

significantly overlapped with those predicted by

GloceRNA, strongly validating our method

(P = 7.97E-05, hypergeometric test, Fig. 4G). Some of

LINC00094 target PCGs have well-known functions in

cancer, including BATF3, SCG2, and MCM2. Expect-

edly, their expression levels were significantly corre-

lated with LINC00094 (P = 7.97E-05, Pearson

correlation coefficient test, Fig. 4H).

In addition to LINC00094, we also noted that small

nucleolar RNA host genes (SNHGs), including

SNHG15, SNHG7, SNHG1, SNHG14, SNHG6,
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SNHG5, SNHG12, and SNHG10, were significantly

enriched to most of hallmarks (Fig. 4C). Moreover,

their related PCGs were with high number of anno-

tated genes (Fig. 4B). Interestingly, multiple small

nucleolar RNA host genes were recently frequently

reported in cancers (Damas et al., 2016; Dong et al.,

2018; Guo et al., 2018; Jiang et al., 2018a; Shan et al.,

2018; Sun et al., 2017; Xu et al., 2018; Zhu et al.,

2019). In ESCC, we found that knockdown of

SNHG10, an uncharacterized lncRNA, reduced prolif-

eration, migration, and clonogenicity in KYSE150 and

TE3 cells (Fig. 4D,F). These results suggest that our

hallmark enrichment analysis of ce-lncRNAs may be

used to identify additional functional lncRNAs in can-

cer biology.

3.4. Survival analysis of ce-lncRNAs

An increasing number of studies have suggested that

lncRNAs acting as ceRNAs can be powerful predic-

tors of survival in cancer patients (Wang et al., 2015;

Xu et al., 2015). We next explored the relationship

between ce-lncRNA expression and prognosis of

ESCC patients by Kaplan–Meier analysis and log-rank

test. Eight of 61 (11.26%) ce-lncRNAs were identified

with P < 0.05 (Fig. 5A). Five of them were associated

with cancer hallmarks (Fig. 5B). Three ce-lncRNAs

including LINC00094, LINC00205, and SNHG6

exhibited higher degree/betweenness in the ceRNA net-

work and more numbers of hallmarks than most of

other ce-lncRNAs (Fig. 5C). For the lncRNA

LINC00094, patients with high lncRNA expression

have significantly shorter overall survival (OS) than

those with the low expression (Fig. 5D). These

lncRNAs were all enriched to ‘Evading Growth’, a

hallmark most significantly enriched by ce-lncRNA

network (Figs 4A and 5B). These data suggest that

these three lncRNAs might have potential biological

significance in ESCC.

Further exhaustive survival analysis was performed

on each ceRNA pair (i.e., a pair of lncRNA and

PCG) to test their prognostic value. We observed that

the ceRNA pairs identified by GloceRNA were more

associated with ESCC prognosis than random pairs

(P = 1.16E-38, Wilcoxon rank-sum test), with the

ceRNA pairs in the topological ceRNA network being

more associated (Fig. 5E, ‘overlap’ in Left panel).

Moreover, the ceRNA pairs annotated to functional

pathways were more associated with prognosis than

others (P < 0.01, Wilcoxon rank-sum test, Fig. 5E,

Right panel). Specifically, a total of 31 lncRNA-PCG

pairs were significantly associated with ESCC progno-

sis (Fig. 5F). As an example for the ceRNA pair of

ANAPC10-DLEU2, patients with high expression

have significantly shorter OS than those with the low

expression in the cohort of 119 patients (the

GSE53625 n = 119 dataset) (Fig. 5G, Top panel),

which was validated in another independent ESCC

cohort (GSE53625 n = 60 dataset) (Fig. 5G, Bottom

panel). These data indicate that functional ce-lncRNAs

and ceRNA pairs have prognostic value in ESCC.

3.5. SEs play key roles in the regulation of ce-

lncRNAs

Although the biological functions of a few ce-

lncRNAs have been characterized, the upstream regu-

latory mechanisms of this class of RNAs are largely

unknown. Recent studies have shown that a large

number of novel noncoding RNAs can be driven by

SEs/TEs, which are important for controlling cell

identity and cell type-specific processes (Duan et al.,

2016; Hnisz et al., 2013; Huang et al., 2019; Jiang

et al., 2018b; Miao et al., 2018; Peng et al., 2019;

Wood et al., 2018; Xiang et al., 2014; Xie et al.,

2018). To explore the epigenomic mechanisms regulat-

ing the expression of our ce-lncRNAs, we character-

ized active cis-regulatory elements in six ESCC cell

lines using H3K27ac ChIP-seq data (Jiang et al.,

2018b). We identified SEs and TEs using ROSE soft-

ware (Hnisz et al., 2013) and found that that most of

ce-lncRNAs identified by GloceRNA (102/109, 93%)

were associated with SEs/TEs in multiple ESCC cell

lines (Fig. 6A,C).

Focusing on SE-associated lncRNAs, we determined

that 37 out of 109 (33.94%) ce-lncRNAs were assigned

to SEs (some examples displayed in Fig. S3), exhibit-

ing 3-fold enrichment than total lncRNAs (P = 1.59E-

14, hypergeometric test, Fig. 6B). Expectedly, SE-asso-

ciated ce-lncRNAs were expressed at higher levels than

TE-associated ce-lncRNAs in TCGA ESCC samples

(P = 1.20E-16, Wilcoxon rank-sum test, Fig. 6D).

Moreover, SE-associated ce-lncRNAs had higher prog-

nostic value than TE-associated ce-lncRNAs (Fig. S4).

These data imply that SE-associated ce-lncRNAs

might be of more biological importance.

We next correlated the expression level, the topolog-

ical interactive degree, and cancer hallmark analysis of

SE-associated ce-lncRNAs. Importantly, we observed

that SE-associated ce-lncRNAs with higher topological

degree were strongly associated with expression level

and the number of cancer hallmarks enriched

(Fig. 6E). For example, LINC00094 had the 3rd stron-

gest topological degree, was enriched in the largest

numbers of hallmarks, and was expressed at 9th of all

ce-lncRNAs. The well-established lncRNA NEAT1, a
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SE-associated ce-lncRNAs, was also top ranked in

terms of expression level, the topological degree and

cancer hallmark enrichment. We next explored

whether we could identify novel functional ce-

lncRNAs by this integrative analysis. We selected a

new SE-associated ce-lncRNA (MFI2-AS1), whose

SEs appeared in multiple cell lines, was confirmed by

us as functionally oncogenic lncRNAs (Fig. 6F–H).

3.6. THZ1 inhibits SEs associated ce-lncRNAs

To further investigate the regulation dynamics of SEs

on these ce-lncRNAs, we examined the transcriptomic

data upon CDK7 inhibition (THZ1), which we have

previously shown to preferentially reduce the activity

of SEs over TEs (Jiang et al., 2017). The effects of

THZ1 inhibition for lncRNAs and related PCGs were
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examined using our previous published gene expression

profile (GSE76860) for THZ1 treatment in TE7 and

KYSE510 cells (see Materials and methods). The data

were involved in gene expression levels associated with

either THZ1 or DMSO at indicated time points at 2,

4, 6, and 8 h. We found that although SE/TE-associ-

ated lncRNAs and all background PCGs did not dis-

play significant downregulation by THZ1, THZ1

resulted in global downregulation of SE/TE-associated

ce-lncRNAs at 12 h relative to 0 h (Fig. 7A, Fig. S5).
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Fig. 7. Inhibition of THZ1 for SE/TE-associated ce-lncRNAs. (A) Boxplot of expression of enhancer associated ce-lncRNAs upon either

DMSO or THZ1 (50 nM) at indicated time points. (B) Heatmap showing expression changes (log2 fold changes) of all active TE/TE-

associated ce-lncRNAs upon either DMSO or THZ1 (50 nM) at indicated time points. (C) Box plots of log2 fold changes in global lncRNA

expression in KYS510 and TE7 cells treated with either DMSO or THZ1 (50 nM) at indicated time points. (D) Venn diagram showing the

overlap between SE/TE-associated ce-lncRNAs from KYS510 and TE7 cells which decreased over 1.5-fold at 12 h. The overlapped lncRNAs

were defined as THZ1-sensitive SE/TE-ce-lncRNAs. (E) A THZ1-sensitive ceRNA network that is constructed using THZ1-sensitive SE/TE-ce-

lncRNAs and their related PCGs. (F) The summary bubble plot showing the relationships between topological feature and number of

hallmark GO terms of SE-associated lncRNAs. X- and y-axis represent degree and betweenness of THZ1-sensitive SE/TE-ce-lncRNAs in the

THZ1-sensitive ceRNA network. The bubble size indicates number of hallmark GO terms. (G) Comparison between SE-associated and SE-

associated THZ1-sensitive ce-lncRNAs, including degrees and betweenness in the THZ1-sensitive ceRNA network, as well as the number of

cancer hallmark GO terms.
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We observed that about half of SE/TE-associated ce-

LncRNAs were downregulated by THZ1 at 12 h

(Fig. 7B,C). We termed this group (SE/TE-associated

ce-lncRNAs which decreased over 1.5-fold at 12 h) as

‘THZ1-sensitive SE/TE-ce-lncRNAs’, which comprised

42 ce-lncRNAs and 26 of them were shared in both

cell lines (Fig. 7D).

Focusing on these 26 ce-lncRNAs, we found that

their paired PCGs were also highly sensitive to THZ1

treatment (Fig. S6). We next similarly constructed a

THZ1-sensitive SE/TE-ceRNA topological network

(Fig. 7E) and computed degrees and betweenness of

the network for each ce-lncRNAs. Betweenness is

equal to the number of shortest paths from a node to

all others that pass through this node, which reflects

the ability of control that a node exerts in the net-

work. SE-associated lncRNAs displayed significantly

higher topological importance (degrees and between-

ness) than TE-associated lncRNAs (Fig. 7F,G). More-

over, they regulated significantly more cancer hallmark

pathways than TE-associated lncRNAs (Fig. 7F,G).

Some of these SE-associated lncRNAs including

LINC00094, LINC00205, and RUSC1-AS1, were

shown in Fig. 6E.

3.7. KLF5 and TCF3 regulated LINC00094 through

binding to its SE regions

Master transcription factors play key roles in regulat-

ing the activity of SEs. To identify such transcription

factors responsible for the regulation of SE-associated

ce-lncRNAs, we analyzed the frequency of TF binding

motifs within SE regions associated with ce-lncRNAs

via FIMO software (Grant et al., 2011) from the

TRANSFAC database (Matys et al., 2006) and

MEME suite (Bailey et al., 2009). We ranked tran-

scription factors according to number of SE-associated

ce-lncRNAs significantly regulated by them. 16 tran-

scription factors that regulated most numbers of SE-

associated ce-lncRNAs were identified (Fig. 8A).

Next, because of the functional importance of

LINC00094 for ESCC, we focused on this ce-lncRNAs

to validate the motif analysis results, which predicted

the binding of TCF3 and KLF5 to SEs (E1, E2, and

E3) of LINC00094 (Fig. 8B). To validate this, ChIP-

qPCR was performed and their enrichment was con-

firmed at all three SE regions (E1, E2, and E3)

(Fig. 8C). Furthermore, we confirmed that THZ1 can

inhibit the interaction of TCF3 and KLF5 with the

SEs (E1, E2, and E3) (Fig. 8C). More importantly,

knockdown of TCF3 or KLF5 significantly downregu-

lated expression of LINC00094 (Fig. 8D, Fig. S7). We

also observed decreased expression of TCF3 and

KLF5 in a dose-dependent manner upon THZ1 treat-

ment (Fig. 8E). To further explore the specific mecha-

nism by which signaling pathway this TF-lncRNA axis

regulates, we extracted LINC00094-related PCGs iden-

tified by GloceRNA and annotated these PCGs to

KEGG pathways using the iSubpathwayMiner soft-

ware package (Li et al., 2009, 2013). Then, the path-

ways significantly enriched by LINC00094-related

PCGs were identified using hypergeometric test with

FDR corrected P < 0.05. We found that signaling

pathways and cancer pathways were significantly

enriched, including ‘PI3K-Akt signaling pathway’,

‘Pathways in cancer’, ‘Cell cycle’, and ‘ErbB signaling

pathway’. In these pathways, ‘PI3K-Akt signaling

pathway’ contained many LINC00094-related PCGs

(Fig. S8A). Notably, LINC00094 regulated 19 PCGs

in the pathway (Fig. S8B). Especially, we found that

the core nodes within the ‘PI3K-Akt signaling path-

way’ such as PIK3CA and AKT3 can be regulated by

LINC00094 (Fig. S8C). These data demonstrate that

TCF3 and KLF5 occupy the SEs of LINC00094,

thereby activating its transcription and related down-

stream signaling pathways in ESCC cells.

4. Discussion

Esophageal squamous cell carcinoma is the predomi-

nant histological type of esophageal cancer and is

considered one of the most common and leading

aggressive malignancies with poor prognosis (Jemal

et al., 2011). In China, over 90% of the cases of eso-

phageal cancer are ESCC, which is the fourth most

prevalent cancer of the country (Yang et al., 2005;

Zhao et al., 2010). Recently, researchers have deter-

mined the genomic landscape of ESCC and identified

a number of driver events (Agrawal et al., 2012; Gao

et al., 2014; Lin et al., 2014; Song et al., 2014). How-

ever, genetic alterations of drug targets are infrequent

in patients with ESCC (Agrawal et al., 2012; Gao

et al., 2014; Lin et al., 2014; Song et al., 2014).

Clearly, alternative molecular approaches are needed

to further elucidate the pathogenesis of ESCC for

developing more innovative and effective regimens. It

has now become widely accepted that mammalian

genomes encode numerous lncRNAs. Nonetheless, the

functional roles of most of these transcripts remain

obscure and their upstream/downstream regulatory

mechanisms are largely unknown. To systematically

pinpoint functional lncRNAs involved in ESCC

pathogenesis, we constructed a putative lncRNA-me-

diated ceRNA network by integrating lncRNA and

PCG expression based on high-throughput RNA

sequencing and microarray data. Based on
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bioinformatic and experimental approaches, we identi-

fied many known and novel functional ce-lncRNAs

and found that most of them acted as a ceRNAs to

regulate the expression of broad cancer-related hall-

mark genes in ESCC. Interestingly, these lncRNAs

acting as ceRNAs were significantly regulated by

enhancers, especially SEs. Ce-lncRNAs have recently

been observed to be regulated by SEs. However, ce-

lncRNAs targeted by SEs have not been discovered

thus far in ESCC, and the regulation of SEs on ce-

lncRNAs has not been studied.

MiRNAs can mediate ceRNA interaction. If sample

matched miRNA, lncRNA, and PCG expression pro-

files are available, expression correlation of the

lncRNA-miRNA-PCG triplet can be calculated. Espe-

cially, Paci et al. developed an effective measure, called

sensitivity correlation, to calculate the difference

between Pearson and partial correlation coefficients
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for identification of ceRNAs. However, in the ESCC

study, we did not measure expression correlation of

the lncRNA-miRNA-PCG triplet because our miRNA

expression profiles are unavailable. We also found that

for many diseases, it is difficult to obtain the sample

matched lncRNA, miRNA, and PCG expression pro-

files. Instead, we focus on prediction of functional ce-

lncRNAs using N/T matched samples. The functional

ce-lncRNAs are predicted using GloceRNA based on

merging global and local expression associated with

ceRNAs. Especially, using a new measure deci(l, g),

expression direction consistency between lncRNAs and

PCGs can be effectively considered at single sample

level. Suppose that a lncRNA-PCG ceRNA pair is

true. Then, when the expression level of lncRNA in

the pair increases in the tumor sample of a patient

compared with normal sample, expression of the corre-

sponding PCG should also tend to increase. Therefore,

for a pair of N/T samples from the same patient, a

ceRNA pair usually displays consistently upregulated

(or downregulated) in expression direction. We used

deci(l, g) to measure consistency at single sample level,

which displayed hidden regulatory direction informa-

tion of ceRNAs from single N/T matched samples.

Based on deci(l, g), we further counted sample number

of up/downregulated differential expression consistency

across all samples, defined as DEC score, for obtaining

local regulatory direction consistency. DEC score can

evaluate possibility of ceRNAs significantly appearing

in parts of samples through testing times of consis-

tency at single sample level across all samples. We

demonstrated that our methods robustly predicted ce-

lncRNAs in multiple ESCC datasets, and the predicted

ce-lncRNAs strongly regulated cancer hallmarks.

Moreover, we experimentally validated that some new

ce-lncRNAs predicted by GloceRNA were highly asso-

ciated with oncogenic functions of ESCC, including

LINC00094, LINC00338, SNHG10 and MFI2-AS1.

Especially, a SE-associated ce-lncRNA, LINC00094,

can promote ESCC cancer cell growth through being

activated by TFs binding to SEs. Taken together, if

the N/T matched data are available, GloceRNA can

provide some useful predictions through effectively

using N/T matched samples. GloceRNA thus has

potential to complement the existing ceRNA identifica-

tion methods, as the effective use of N/T matched data

and focusing on functional ce-lncRNAs in ESCC.

We found that most of them significantly regulated

the expression of cancer-related hallmark genes. These

ce-lncRNAs were significantly regulated by enhancers,

especially SEs. Landscape analyses for lncRNAs fur-

ther identified SE-associated functional ce-lncRNAs in

ESCC, such as HOTAIR, XIST, SNHG5, and

LINC00094. THZ1, a specific CDK7 inhibitor, can

result in global transcriptional downregulation of SE-

associated ce-lncRNAs. We further demonstrate that a

SE-associated ce-lncRNA, LINC00094 can be acti-

vated by transcription factors TCF3 and KLF5

through binding to SE regions and promoted ESCC

cancer cell growth. THZ1 downregulated expression of

LINC00094 through inhibiting TCF3 and KLF5.Our

data demonstrated the important roles of SE-associ-

ated ce-lncRNAs in ESCC oncogenesis and might

serve as targets for ESCC diagnosis and therapy.

Efforts to interpret the functional consequences of

SEs have mainly focused on the regulation of PCGs,

although in a few cases lncRNA regulation was stud-

ied. Recent report demonstrated that master transcrip-

tion factors TP63 and SOX2 promote SCC

tumorigenesis such as ESCC through lineage specifi-

cally regulating a lncRNA mediated by SEs. We

defined a new class of lncRNA, SE-associated ce-

lncRNA, and performed a thorough investigation of

its functional relevance in ESCC cancer cells. Some

SE-associated ce-lncRNAs with high degree/between-

ness were highly associated with cancer hallmarks,

including lncRNAs reported in cancer (e.g., NEAT1,

HOTAIR, XIST, and SNHG5). Two novel SE-associ-

ated ce-lncRNAs (LINC00094 and MFI2-AS1) was

identified and validated by us as functionally onco-

genic lncRNAs. Our previous studies showed that the

unbiased high-throughput small-molecule inhibitor

screening discover a highly potent anti-ESCC com-

pound, THZ1, a specific CDK7 inhibitor. Targeting

SE-associated coding gene activation by THZ1 shows

powerful antineoplastic properties against ESCC cells

(Jiang et al., 2017). Furthermore, we found that THZ1

resulted in global downregulation of SE/TE-ce-

lncRNAs. Furthermore, 26 THZ1-sensitive SE/TE-ce-

lncRNAs in both cell lines were identified by us and

the related THZ1-sensitive ceRNA network was

extracted. In the network, SE-associated lncRNAs dis-

played significantly higher topological importance than

TE-associated lncRNAs. Moreover, they significantly

regulated more cancer hallmark pathways than TE-as-

sociated lncRNAs, such as LINC00094, LINC00205,

and RUSC1-AS1. Our findings support recent studies

suggesting that SEs can function as important regula-

tors of lncRNAs. SEs play important roles by ce-

lncRNAs.

In process of analysis, we found an important func-

tional ce-lncRNA, LINC00094. The enrichment analy-

sis showed that the SE-associated lncRNA was closely

related to more than number of cancer hallmarks than

other lncRNAs (Fig. 4). LINC00094 parted in core

cancer hallmark of ESCC ceRNAs such as ‘Evading
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Growth’ and ‘Genome Instability’, and its overexpres-

sion was highly associated with poor clinical outcome

in ESCC patients (Fig. 5D). In all eight significant

prognostic ce-lncRNAs, LINC00094 was with highest

degree, betweenness in the ceRNA network and

related to most numbers of hallmarks (Fig. 5C).

LINC00094 was strongly inhibited by THZ1 and

located at the center of the THZ1-sensitive ceRNA

network (Fig. 7E,F). Kr€uppel-like transcription factors

(KLF) play important roles in development and can-

cer. KLF4 is a master transcription factor for main-

taining the pluripotency of embryonic stem cells

(Takahashi and Yamanaka, 2006). It has been

reported that KLF5 is highly expressed in multiple

cancer types and promotes cancer cell proliferation,

migration and survival (Ben-Porath et al., 2008; Chia

et al., 2015; Jia et al., 2016; Nandan et al., 2008; Qin

et al., 2015; Zhang et al., 2018b). Especially, KLF5

activates cell identity genes and cancer genes in squa-

mous cell carcinomas (Nakaya et al., 2014). KLF5 is

also able to occupy the lncRNA RP1 promoter to

enhance RP1 expression, which plays an oncogenic

role in breast cancer (Jia et al., 2019). All the evidence

indicates the importance of KLF5 activation in human

cancer. We confirmed that transcription factors TCF3

and KLF5 occupied the SE constituents of

LINC00094, thereby activating its transcription in

ESCC cells. THZ1 decreased expression of TCF3 and

KLF5 and inhibited the occupancy of TCF3 and

KLF5 (Fig. 8). These results demonstrate that TCF3

and KLF5 can occupy the SEs of LINC00094, thereby

activating its transcription in ESCC cells. THZ1 down-

regulated expression of LINC00094 through inhibiting

TCF3 and KLF5.

GloceRNA successfully predicted many ce-lncRNAs

and experimentally validated some new functional ce-

lncRNAs. However, our study has also some limita-

tions. For example, we integrated large-scale CLIP-seq

(HITS-CLIP, PAR-CLIP, iCLIP, CLASH) from the

starBase database to obtain enough experimental

miRNA-lncRNA and miRNA-mRNA interactions.

Although these ‘big’ data provided the comprehensive

high-quality information, the datasets used were based

on different biological sources such as patients, cell

lines, and some did not came from squamous cells and

cancer cells. With the accumulation of esophageal

squamous cell data, use of cell type-specific data would

be helpful for more accurately identifying ceRNAs and

ce-lncRNAs. Furthermore, there is still much room for

improvement in the usability and stability of Glo-

ceRNA. For example, although GloceRNA displayed

higher stability for identification of ceRNA pairs com-

pared with other state-of-the-art methods, there is still

much room for improvement in the stability of ceRNA

pairs. Also, the current version of GloceRNA must

input the N/T matched data. Therefore, GloceRNA

was still unavailable for input of data with non-

matched samples. Some ‘single sample’ strategies of

expression profiling analysis may be useful for improv-

ing the ability of our method to identify ceRNAs in

nonmatched data in the future (Li et al., 2020; Liu

et al., 2016, 2017). In addition, in the current version

of GloceRNA, the cutoff of DEC score needs to be

manually set and adjusted. The different flexible strate-

gies for setting the cutoff of DEC score, as well as

automatic parameter adjustment, would facilitate the

identification of functional ce-lncRNAs. The current

strategy for setting the cutoff in the paper is simple

and intuitive, and setting the same cutoff in two data-

set can also penalize the dataset with small sample

size, in which the higher proportion of samples need

to meet regulatory direction consistency. We think that

other strategies for setting cutoffs may also be effec-

tive. For example, the different cutoffs can be selected

such as setting the cutoffs according to proportion of

samples meeting regulatory direction consistency. With

advances in our identification strategy and the accu-

mulation of genomic/transcriptomic profiling data,

performance of GloceRNA would continue to

improve.

5. Conclusion

In summary, we focus on prediction of functional ce-

lncRNAs using N/T matched samples. We developed

the GloceRNA method for identification of functional

ce-lncRNAs based on merging global and local regula-

tory direction consistency of expression associated with

ceRNAs. The ce-lncRNAs unique to squamous cell

carcinomas have not been studied extensively. Glo-

ceRNA identified many known and novel functional

ce-lncRNAs which regulated the expression of a large

number of cancer hallmark genes. Interestingly, we

identified novel SE-associated ce-lncRNAs in ESCC.

Among them, we identified a SE mediated mechanism

for the upregulation of a novel oncogenic lncRNA,

LINC00094, in ESCC. Considering this gene’s ESCC-

specific nature, its association with poor patient sur-

vival, and its oncogenic functions, LINC00094 repre-

sents a potential biomarker and/or therapeutic target

in this group of deadly cancers.
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Fig. S1. Identification ce-lncRNAs in ESCC. Venn dia-

gram showing the overlap of lncRNAs (left), PCGs

(middle) and ceRNA pairs (right) between both ESCC

datasets (GSE53625 (n=119) and SRP064894). Tradi-

tionally, a lncRNA-PCG pair sharing miRNAs will be

defined as functional ceRNA relationship based on the

following criteria: (1) Expression correlation of

lncRNA-PCG pair (Cor); (2) Shared miRNAs

(Hyper); (3) Differentially expression level of

lncRNAs/PCGs (SAM or Limma). We used six differ-

ent combinations of them to identify ceRNAs, includ-

ing (A) SAM(0.01)+Cor. (B) Limma(0.01)+Cor. (C)

SAM(0.05)+Cor. (D) SAM(0.01)+Hyper+Cor. (E)

Limma(0.01)+Hype+Cor. (F) SAM(0.05)+Hype+-

Cor.

Fig. S2. The ceRNA network controls broad cancer

associated hallmarks. (A) The cancer hallmarks corre-

sponding to GO terms. The colors corresponds to differ-

ent cancer hallmarks. (B) The cancer hallmarks related

GO terms enriched by ce-lncRNA-related PCGs in the

ceRNA network. The colors of bars corresponds to dif-

ferent cancer hallmarks. (C) Number of significantly

enriched ce-lncRNAs for each cancer hallmark.

Fig. S3. H3K27ac ChIP-seq signals at the SE-associ-

ated lncRNA locus in six ESCC cell lines.

Fig. S4. Box plots of prognostic value associated with

the SE-associated ce-lncRNAs, TE-associated ce-

lncRNAs, as well as other random pairs.

Fig. S5. Inhibition of THZ1 for SE/TE-associated ce-

lncRNAs. (A) Boxplot of expression of SE/TE-associ-

ated ce-lncRNAs upon either DMSO or THZ1 (50nM)

at indicated time points in KYSE510 cells. SE/TE-as-

sociated ce-lncRNAs were identified in KYSE510 or in

all other five cell lines. (B) Boxplot of expression of

SE/TE-associated ce-lncRNAs upon either DMSO or

THZ1 (50nM) at indicated time points, which involved

in KYSE510 or TE7 cell lines. * P < 0.05, ** P < 0.01,

*** P < 0.001. P values were determined using Wil-

coxon rank-sum test.

Fig. S6. Box plots of log2 fold changes in expression

of lncRNA associated ce-PCGs in KYS510 and TE7

cells treated with either DMSO or THZ1 (50nM) at

indicated time points. * P < 0.05, ** P < 0.01, *** P <
0.001. P values were determined using Wilcoxon rank-

sum test.

Fig. S7. Western blotting detection for the expression

of KLF5 and TCF3 in three ESCC cell lines

(KYSE150, KYSE510 and TE3) upon silencing of

KLF5 and TCF3 by using different siRNA.

Fig. S8. The downstream pathway analysis of

LINC00094. (A) The pathways significantly enriched

by LINC00094-related PCGs in the ceRNA network.

Enrichment significance was performed by the iSub-

pathwayMiner software package using hypergeometric

test. The pathways with FDR corrected P < 0.05 were

considered as significant. Number of (*) represents the

annotated gene number in the corresponding pathway.

(B) LINC00094-related PCGs that were annotated to

the ‘PI3K-Akt signaling’ pathways. (C) The ‘PI3K-Akt

signaling’ pathways where LINC00094-related PCGs

were annotated. The genes (rectangular nodes) mapped

by LINC00094-related PCGs were shown with red

node labels and borders.

Table S1. Clinical and pathological characteristics of

patients in four datasets for genome-wide gene expres-

sion profiles of ESCC.
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Table S2. An example of calculating local regulatory

direction consistency of a potential lncRNA-PCG

ceRNA pair.

Table S3. The overlap and similarity of ceRNA pairs

and ce-lncRNAs identified in two ESCC datasets.

Table S4. siRNA target sequences.

Table S5. Primers used in this study.

Appendix S1. The clinical and pathological characteris-

tics of patients in ESCC datasets.

Appendix S2. Cancer hallmarks and their associated

genes based on 31 GO terms.

2230 Molecular Oncology 14 (2020) 2203–2230 ª 2020 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

Characterizing super-enhancer ce-lncRNAs in ESCC Q.-Y. Wang et al.


	Outline placeholder
	mol212726-aff-0001
	mol212726-aff-0002
	mol212726-aff-0003
	mol212726-aff-0004
	mol212726-fig-0001
	mol212726-fig-0002
	mol212726-fig-0003
	mol212726-fig-0004
	mol212726-fig-0005
	mol212726-fig-0006
	mol212726-fig-0007
	mol212726-fig-0008
	mol212726-bib-0001
	mol212726-bib-0002
	mol212726-bib-0003
	mol212726-bib-0004
	mol212726-bib-0005
	mol212726-bib-0006
	mol212726-bib-0007
	mol212726-bib-0008
	mol212726-bib-0009
	mol212726-bib-0010
	mol212726-bib-0011
	mol212726-bib-0012
	mol212726-bib-0013
	mol212726-bib-0014
	mol212726-bib-0015
	mol212726-bib-0016
	mol212726-bib-0017
	mol212726-bib-0018
	mol212726-bib-0019
	mol212726-bib-0020
	mol212726-bib-0021
	mol212726-bib-0022
	mol212726-bib-0023
	mol212726-bib-0024
	mol212726-bib-0025
	mol212726-bib-0026
	mol212726-bib-0027
	mol212726-bib-0028
	mol212726-bib-0029
	mol212726-bib-0030
	mol212726-bib-0031
	mol212726-bib-0032
	mol212726-bib-0033
	mol212726-bib-0034
	mol212726-bib-0035
	mol212726-bib-0036
	mol212726-bib-0037
	mol212726-bib-0038
	mol212726-bib-0039
	mol212726-bib-0040
	mol212726-bib-0041
	mol212726-bib-0042
	mol212726-bib-0043
	mol212726-bib-0044
	mol212726-bib-0045
	mol212726-bib-0046
	mol212726-bib-0047
	mol212726-bib-0048
	mol212726-bib-0049
	mol212726-bib-0050
	mol212726-bib-0051
	mol212726-bib-0052
	mol212726-bib-0053
	mol212726-bib-0054
	mol212726-bib-0055
	mol212726-bib-0056
	mol212726-bib-0057
	mol212726-bib-0058
	mol212726-bib-0059
	mol212726-bib-0060
	mol212726-bib-0061
	mol212726-bib-0062
	mol212726-bib-0063
	mol212726-bib-0064
	mol212726-bib-0065
	mol212726-bib-0066
	mol212726-bib-0067
	mol212726-bib-0068
	mol212726-bib-0069
	mol212726-bib-0070
	mol212726-bib-0071
	mol212726-bib-0072
	mol212726-bib-0073
	mol212726-bib-0074
	mol212726-bib-0075
	mol212726-bib-0076
	mol212726-bib-0077
	mol212726-bib-0078
	mol212726-bib-0079
	mol212726-bib-0080
	mol212726-bib-0081
	mol212726-bib-0082
	mol212726-bib-0083
	mol212726-bib-0084
	mol212726-bib-0085
	mol212726-bib-0086
	mol212726-bib-0087
	mol212726-bib-0088
	mol212726-bib-0089
	mol212726-bib-0090
	mol212726-bib-0091
	mol212726-bib-0092
	mol212726-bib-0093
	mol212726-bib-0094
	mol212726-bib-0095
	mol212726-bib-0096
	mol212726-bib-0097
	mol212726-bib-0098


