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The influence of light on mammalian physiology and behavior is due to the entrainment of

circadian rhythms complemented with a direct modulation of light that would be unlikely

an outcome of circadian system. In mammals, physiological and behavioral circadian

rhythms are regulated by the suprachiasmatic nucleus (SCN) of the hypothalamus. This

central control allows organisms to predict and anticipate environmental change, as well

as to coordinate different rhythmic modalities within an individual. In adult mammals,

direct retinal projections to the SCN are responsible for resetting and synchronizing

physiological and behavioral rhythms to the light-dark (LD) cycle. Apart from its circadian

effects, light also has direct effects on certain biological functions in such a way

that the participation of the SCN would not be fundamental for this network. The

objective of this review is to increase awareness, within the scientific community and

commercial providers, of the fact that laboratory rodents can experience a number of

adverse health and welfare outcomes attributed to commonly-used lighting conditions in

animal facilities during routine husbandry and scientific procedures, widely considered

as “environmentally friendly.” There is increasing evidence that exposure to dim light

at night, as well as chronic constant darkness, challenges mammalian physiology and

behavior resulting in disrupted circadian rhythms, neural death, a depressive-behavioral

phenotype, cognitive impairment, and the deregulation of metabolic, physiological, and

synaptic plasticity in both the short and long terms. The normal development and good

health of laboratory rodents requires cyclical light entrainment, adapted to the solar cycle

of day and night, with null light at night and safe illuminating qualities during the day.

We therefore recommend increased awareness of the limited information available with

regards to lighting conditions, and therefore that lighting protocols must be taken into

consideration when designing experiments and duly highlighted in scientific papers. This

practice will help to ensure the welfare of laboratory animals and increase the likelihood

of producing reliable and reproducible results.

Keywords: lighting conditions, constant darkness, nightly dim light, laboratory rodents, circadian rhythms,

suprachiasmatic nucleus, free running, health
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INTRODUCTION

In mammals, light is sensed by three types of retinal cells
(photoreceptors): the outer rods/cones and the inner ganglion
cells. Through a visual pathway, rods and cones regulate
vision and allow representation of the environment; rods are
responsible for vision at low light levels (scotopic-night vision)
while cones are active at higher light levels (photopic-day vision)
and capable of color vision. In addition, based on the level of
light intensity and schedule of exposure, light exerts profound
effects on physiology and behavior. This “non-image forming”
function of light contributes to the behavioral and physiological
responses that occur to environmental lighting conditions via the
hypothalamic suprachiasmatic nucleus (SCN), the brain’s master
circadian clock, and a direct pathway that is not supposed to
include the circadian system (1–25).

Most physiological and behavioral functions of vertebrates
exhibit a diurnal rhythm which is generated by the bilateral
SCN. This rhythm exhibits self-sustained oscillations at regular
intervals of ∼24 h (circadian period; circa diem: near 1 day)
in electrical activity, glucose utilization and gene expression
(9, 11, 16, 26, 27). Its molecular machinery lies in individual
pacemaker neurons, and their single-cell rhythmicity is driven by
an intrinsic molecular transcription/translation oscillation loop
in which protein products regulate the expression of “clock”
genes (including the period genes Per1 and Per2, and the
crypotochrome genes, Cry1 and Cry2) and the transcription
factors Clock (Circadian Locomotor Output Cycles Kaput)
and Bmal1 (Brain and Muscle ARNT-like 1) (9, 28, 29). In
addition to the SCN, there are central and peripheral tissues
containing cells with self-sustaining circadian oscillations that
control local time- and tissue-specific processes. These are known
as “peripheral clocks” and include notably the olfactory bulb,
neocortex, cerebellum, amygdala, caudate-putamen, nucleus
accumbens, hippocampus, ventral tegmental area, dorsomedial
hypothalamus (DMH) retina, heart, kidney, lung, gastrointestinal
tract, and liver (4, 30–32). The timing (phase and period)
of these peripheral clocks is controlled by the SCN in order
to maintain coherence among a wide array of behavioral
and physiological circadian rhythms; this process is known as
“internal synchronization” (9, 11, 16, 27, 29, 30, 33, 34).

Gene activation-deactivation in the circadian master-clock is
reset daily by external time cues called zeitgebers (“time givers”)
that have the ability to adjust SCN clock mechanisms and overt
circadian rhythms to environmental changes. The light-dark
(LD) cycle is the most conspicuous zeitgeber for the circadian
system and synchronizes the phase of endogenous rhythms
with the appropriate daytime (light) and night (dark) phase;
this process is known as “photoentrainment” (4, 7, 9, 14). The
SCN predominantly entrains the circadian oscillations found in
the hypothalamic–pituitary–adrenal (HPA) axis, the autonomic

Abbreviations: DD, long-term constant darkness; DMH, dorsomedial

hypothalamus; SPV, subparaventricular zone; DWLN, continuous dim white

light at night; DBLN, continuous dim blue light at night; DRLN, continuous

dim red light at night; DimRR, constant dim red light; LD, light-dark; mRGCs,

melanopsin-containing ganglion cells; NA-LC, noradrenergic locus coeruleus;

ROS, reactive oxygen species; SCN, suprachiasmatic nucleus.

nervous system and neuronal systems to the LD cycle through
the subparaventricular zone (SPV) and via relays in the DMH
(15, 24, 27, 35–38).

In diurnal and nocturnal mammals, a subset of photosensitive
inner retinal ganglion cells that express melanopsin (mRGCs)
contribute to the non-visual response to light in collaboration
with classical outer rods/cones photoreceptors. All these
photoreceptors transform photic energy into an electrical
signal (transduction) which passes to the brain in order to
control circadian photoentrainment, locomotor activity, sleep,
arousal, melatonin release, thermoregulation, heart rate, mood,
cognitive functions, and pupillary light reflex (1, 4–7, 10, 12, 13,
17, 19–22, 25).

The retinal ganglion cells project to tens of brain regions
and the mRGCS innervate most of them for integrating light
responses and mediating photoentrainment of the circadian
clock (3, 17, 18, 23). In agreement, the absence of mRGCs
attenuates the phase resetting of light (1, 4, 10, 39–42).
Photosensitivity is not uniform during the day. According to
the time of day, light adjusts the spontaneous cycle of gene
expression across the SCN to the day-night cycle, thus causing
the phase shifts necessary for daily photoentrainment (2, 4, 9,
11, 16, 18). The most important time cues for resetting the
principal circadian clock are the transitions between light and
dark: light delays the phase of the endogenous rhythms over
most of the night period while induces phase advances in the late
night/early morning (4, 16, 43). For example, brief pulses of light
at night have the ability to drop body temperature facilitating
EEG sleep (“photosomnolence”) in mice (39, 44, 45). This drop in
core temperature would itself modulate other responses to light
mediated via mRGCs-SCN, ultimately resulting in phase shifts
(44). Furthermore, an acute dark pulse given during the light
period triggers an alerting response through mRGCs (39, 45).
Indeed, when the period of SCN rhythms is shorter than the
period of the environmental LD cycle, entrainment requires a
small delay that can be accomplished by night light exposure.
When the period of the SCN rhythm is longer than the period
of the external light cycle, entrainment requires a phase advance
that can be achieved by late night/early morning light exposure
(2, 9). The resetting effect of light on peripheral clock expression
and organ-specific output is thought to be transmitted via SCN
control over hormonal pathways and autonomic innervation
(46). For example, melatonin is a neurohormone synthesized
and secreted by the pineal gland; secretion is facilitated during
darkness and the circadian rhythm is maintained and entrained
by a multi-synaptic SCN-sympathetic pathway. Pineal melatonin
levels provide a direct entrainment of the peripheral clock
together with SCN feedback, further synchronizing circadian
physiology over the entire organism (47–49).

The SCN presents two coupled, but anatomically and
functionally distinct, oscillators: the ventrolateral (VL) SCN sub-
division or “core,” and the dorsomedial (DM) SCN, or “shell.”
The VL SCN receives the major input from the retina via the
retinohypothalamic tract; clockwork mechanism and dependent
rhythms are entrained by light and oscillate with a period equal
to the external LD cycle. The DM SCN is not entrained by
light and runs free in a manner which is independent of the
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lighting conditions with dependent rhythms which also free-run
and oscillate with a period equal to the master self-sustaining
circadian oscillation (9, 27, 50, 51). The DM area requires the
VL SCN to maintain circadian rhythmicity and keep the related
rhythms in synchrony with the LD cycle (2, 27, 51–56). Coupling
and synchronization between the molecular circadian oscillators
is mediated by neurotransmitters (26, 57). At the molecular
level, light-induced resetting is primarily mediated by the rapid
induction of the clock genes, mPer1 and mPer2, in the VL SCN,
which then spreads to the DM SCN. In particular, the early night
delay phase induces mPer1 and mPer2 initially in the VL SCN,
which later induces mPer2 expression in the rhythmic cells of
the DM SCN. In contrast, the late night advancing phase is only
accompanied by mPer1 gene expression in the VL SCN, which
then spreads to the DM SCN without significant induction of
mPer2 expression (2).

But how can SCN neurons manage to respond to light-dark
transitions? The differing sensitivity of the retinal photopigments
guarantees that the central clock will respond to irradiance
and perceive the wavelength of transitions from twilight to
daylight (blue-yellowish dark-light transitions) (58). The mRGCs
are more sensitive to short wavelengths of light (blue light,
450–495 nm) than green light (495–570 nm) and are practically
insensitive to long wavelengths of light (red light, 620–750 nm).
Instead, in the majority of rodents, rhodopsin-rod cells transduce
low light intensities and exhibit peak sensitivity at 498 nm
(blue-green light), while cones are sensitive under brighter
conditions and express cone opsins that are maximally-sensitive
at 360 nm (UV) and 508 nm (green) light (58). The mRGCs
receive inputs from both rods and cones and modulates
their activity (17, 21). Rod-phototransduction converges into
mRGCS through two pathways, the rod bipolar pathway for
circadian photoentrainment at low light intensities, and the
rod-cone pathway for circadian photoentrainment at high light
intensities (1). Cones use a direct pathway to the mRGCs for
photoentrainment (59). In direct response to light, the mRGCs
become depolarized and via the release of glutamate from the
retinohypothalamic nerve terminals, activate the SCN light-
sensitive pacemaker neurons (25, 50, 51), although there are
some differences in this mechanism across different species (60).
Accordingly, blue light which represents the maximal sensitivity
of the mRGCs, evokes the highest expression of Fos, Per 1, and
Per2 in the SCN (20).

By having their physiological and behavioral rhythms in
phase, and coordinated with environmental lighting conditions,
individuals have the capacity to make the homeostatic
adjustments necessary for their adaptation throughout the
day. The whole system is in harmony with environmental
demands and is able to respond in a manner suited to a changing
and predictable milieu. Light is the strongest environmental
influence on circadian timing and altering the LD cycle from
the solar cycle of day and night affects the integrity of the
circadian system and the SCN-dependent rhythms start to run in
a misaligned manner, both between each other and with respect
to the LD cycle. This is known as “internal desynchronization”
and has serious consequences for the brain and body in both the
short and long term (11, 14, 34, 61–68).

Apart from the SCN, light may also regulate certain
mammalian biological functions through circuits directly
influenced by mRGCs, which include pretectal olivary nuclei,
SPV, lateral geniculate nucleus of the thalamus (the ventral
division and the intergeniculate leaflet), medial amygdala, lateral
habenula, ventral preoptic area, and lateral hypothalamus. These
are implicated in the effect of light on circadian entrainment
and the modulation of sleep, mood, and cognitive functions and
pupillary light reflex, crude vision, glare, heart rate, and cortisol
levels (3, 4, 8, 13, 14, 18, 20, 21, 23, 69, 70).

It is assumed that experimental animals are raised and
housed under strict and controlled standard lighting conditions
as outlined in the Guide for the Care and Use of Laboratory
Animals, which is published in a number of different countries.
Nevertheless, certain lighting conditions, which have potentially
long-lasting adverse outcomes on the welfare of laboratory
animals, are often used in holding rooms and during tasks by
animal care personnel and indeed, by some researchers.

The purpose of this review is to emphasize the need to
avoid certain inadvertent or frequently used artificial lighting
conditions on diurnal and nocturnal laboratory animals that
challenge the appropriate development and function of the
circadian system and other non-circadian brain areas. These
artificial lighting conditions can impair the nervous system and
alter physiological and behavioral processes in both the short and
long term, thus invalidating experimental outcomes.

WHICH LIGHTING CONDITIONS SHOULD
WE BE AWARE OF? IDENTIFYING THE
RISKS

Time of day and the wavelength/intensity of the photic stimulus
are variables that we should take careful control of because of
their capacity to directly affect biological functions and shift the
master clock and/or modulate photic synchronization (20, 71).
Even a brief light pulse at night elicits circadian rhythm phase
shifts (18, 19, 71).

In mammals (including humans), the relevance of lighting
conditions on health/disease begins as early as the intrauterine
period, in which the circadian integrity of the mother is a key
factor in conveying key environmental information related to
time. During development, the fetal SCN is predominantly
synchronized to the LD cycle by maternal hormonal signals and
becomes vulnerable to environmental insults incurred by the
mother (72–77). Once born, and until the SCN acquires its full
functional capability (∼3 weeks in rodents) (78–80), developing
photoreceptors in the neonatal pineal organ, which will
subsequently develop into typical secretory pinealocytes in adult
(81), directly transmits information relating to environmental
light conditions and collaborate with maternal cues in the
regulation of biochemical rhythms during the first few days
postnatally (79, 82). Thereafter, maternal entrainment declines
and the development of a retina-SCN connection facilitates that
this form of entrainment begins to be replaced by environmental
cues such as the light-dark cycle for the photoentrainment of
rhythms in the newborn (73, 74). As a direct consequence,
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the manipulation of gestational or postnatal photoperiods can
influence the normal development and performance of the SCN,
thus exerting influence over the outcome of circadian rhythms
in both the short and long term (please refer to the following
sections).

Most of us live under daily lighting schemes that do not
follow the natural LD cycle in terms of schedule or the duration,
wavelength and intensity of light, thus challenging our circadian
system. In the evening, we are exposed for hours to incandescent
bulb- and blue-enriched light from televisions, cell phones, and
computer screens. Morning light has beneficial effects but at
night can suppress melatonin concentrations, delay the onset
of sleep by increasing alertness, decreases the efficiency of
sleep at night and can reduce cognitive performance the next
morning (8, 67, 83–90). According to the maximal sensitivity
of the mRGCs, blue light evokes the maximal magnitude of the
phase-shift for human alertness, thermophysiology and heart
rate (6). Misalignment of our internal timing with socially
imposed environmental lighting conditions (“social jetlag”)
weakens synchronism between circadian rhythms and can exert
dramatic effects upon physiology and behavior. Office workers
and subway drivers that remain in dimly-lit environments for
most of the day, along with frequent trans-meridian flyers
and workers without a standard daytime schedule, are exposed
to significant shifts in lighting cycles. As a result, irregular
rhythms can emerge, which increase the risk of chronic health
conditions such as sleep and mood disorders, cardiovascular and
autoimmune diseases, cancer, obesity, stress, diabetes, premature
aging, increased preterm births, spontaneous abortion, and lower
birth weight (11, 63, 67, 68, 88, 89, 91–96).

Ordinarily, we would not even consider that such events
could happen in animal housing facilities or experimental
settings, since these animals must surely be held under safe and
controlled lighting conditions. However, by lack of commitment
or knowledge, the exposure of laboratory animals to aberrant
lighting conditions is unexpectedly frequent.

Lighting Conditions in Holding Rooms
Since light represents the main environmental factor involved in
the synchronization of biological rhythms and directly modulates
sleep, mood and cognition, the consequences in terms of health
and quality of life clearly depend on a regular LD cycle in
agreement with local time, including sufficient light exposure
time with adequate wavelength range and intensity during the
day, and complete darkness at night. Based on scientific studies,
worldwide guidelines for the management of environmental
conditions recommend a semi-natural light cycle of 12:12 or
10:14 h with lighting within cages during the light phase below
the threshold of aversion for mice/rats. For most pigmented
strains, the recommended light level is below 60 lux, and for
albino strains this is set to below 20–25 lux [(97)1,2, reviewed by
(98, 99)].

1ARRP Guideline 22: Guidelines for the Housing of Mice in Scientific Institutions

Animal Welfare Unit, NSW Department of Primary Industries, Australia.
2European convention for the protection of vertebrate animals used for

experimental and other scientific purposes – Appendix A, Council of Europe

Convention ETS 123.

Nevertheless, certain properties of light, such as intensity,
wavelength range and distribution, are not clearly regulated
by the Institutional Animal Care and Use Committee and are
therefore frequently dismissed by providers and researchers. It
is very common to find that rodents in holding rooms are
exposed to different light intensities according to their location
in the cage rack. Animals housed at the top of a rack are
exposed, at the front of the cage, to more than 500 lux (up
to 900 lux) while those at the bottom of the rack, nearest to
the floor, can be exposed to 6 lux or less (97, 99)1, personal
observation and personal communication with USA providers].
High light levels can dramatically affect retinal morphology and
biochemistry. Consequently, rodents exposed to 130–270 lux
above the light intensity under which they were raised are at risk
of retinal damage (97, 102–104)1. A survey of Contract Research
Organizations (CROs) located in North America, Europe, and
Asia, using similar 12:12 lighting conditions, reported a high
incidence of light-dependent retinopathy at a mean range of
210–490 lux in albinos (99). Susceptibility is likely to be greater
for older animals (105), and in both young and old animals
undergoing certain treatments that cause pupillary dilation (e.g.,
clonidine) (106) or exert direct effects on photoreceptors (107);
this susceptibility can be dependent upon both strain (99, 105,
108, 109) and previous light-history (98, 109–113). Moreover,
animals that are exposed for long periods to low lighting
conditions are more susceptible to retinal damage in response to
light (98)1. Thus, placing animals housed in the bottom of a rack
on to shelves in the upper part of a rack is not recommended.
Light-induced retinal damage is likely to cause differences in
biological rhythm parameters between animals and thus lead
to significant variation in experimental results. There is no
information available (either published or via the manufacturers)
relating to the light properties inside the newest ventilated cages;
this represents an important gap in our knowledge.

To guarantee the accuracy and integrity of future research,
laboratory animals should be kept under similar homogenous
and safe lighting conditions during housing, transport and
house-keeping tasks such as the cleaning and sanitization of cages
and rack holders, in order to avoid changes in biological rhythms,
which could, in turn, affect parameters associated with behavior
and physiology (Boxes 1, 2).

Nocturnal Dim Light
In animal holding rooms, it is common to see light during
the night through translucent observation windows and around
doorframes as a result of the leakage of white light originating
from constantly illuminated corridors. It is also frequent to
expose animals to occasional dim red light during experimental
procedures to facilitate tasks in the dark. Some researchers
believe that it is possible to expose laboratory animals to low
intensities of light similar to those experienced naturally by
rodents at night (much like a moon-like glow, <1 lux) (114)
and that this type of exposure is not harmless to health and
will not cause functional changes in the circadian system. In
contrast, light exposure during the night can have adverse effects
on laboratory animals even at intensities below the thresholds
required to stimulate light-responsive neurons in the SCN (0.1
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Box 1 | Tips to measure light intensity

- It is recommended to measure light levels using radiometric units based

upon unweighted power measurements (e.g., µW/cm2 ) in place of lux

measurements (100).

- Light intensity decreases with the square of the distance from its source

(97) and light measurements depend on placement and orientation of the

light meter in relation to the light source. Most cages for rodents have

the food- and water-bottle holder as part of the lid, which systematically

changes light intensity when compared to uncovered cages. To get reliable

values, the actual light intensity checks must be performed with the

light meter vertical to the light source at the animal’s eye level while the

cage is covered (with bottles and food), keeping the habitat intensity as

imperturbable as possible during this procedure.

- Compared to clear plastic cages, tinted cages alter the photic environment

and disrupt endocrine andmetabolic circadian rhythms in albino rats (101).

Thus, care must be taken when exchanging cages to maintain the same

type of colored box. Therefore, transparency/color of the boxes must be

indicated in Materials and Methods when publishing the results.

Box 2 | Recommendations

- Cyclic light entrainment, is essential to maintain the robustness of the

oscillators and circadian integrity.

- Animals must be under the regular support of an LD cycle with clear

contrast between day and night, and with similar lighting conditions during

the diurnal phase and complete darkness (0 lux) during the nocturnal

phase.

- Light intensity should be monitored regularly within the cage at the

animal’s eye level to avoid experimental variability due to fluctuating lighting

conditions.

- The lighting intensity inside of the home cage must be highly consistent

between cages.

- The circadian system becomes sensitive to photic input at night. Thus, light

pollution should be avoided, even low intensities of any color. To perform

tasks, or during routine maintenance under darkness, use infrared goggles

or maintain red-light intensity at 0 lux at the animal’s eye level.

- The gestational or lactational photoperiods can shape behavior and

physiology in the short- and long-term. Ask your provider for a report

about the “lighting history” of your animals (LD cycle, intensity, and spectral

transmittance) to confirm normal development and good health, and to

adopt the appropriate habituation period to stabilize biological functions.

lux in the rat and 1 lux in the hamster) and at wavelengths to
which mRGCs are practically unresponsive (red light) (16, 115).
However, phototransduction via the rods, which are the most
sensitive of the photoreceptors, even at low light intensities,
converges on mRGCs (4).

Dim illumination at night (“light pollution”) resets the
circadian time-keeping system (115) of both the central and
peripheral clocks, resulting in maladaptive or dysfunctional
rhythms that increase the risk for chronic health conditions. Even
a 1 h pulse of dim white light during the dark phase is enough
to induce sleep in mice (19). Compared to the dark (0 lux),
dim white light at night (DWLN) exerts both short- and long-
term effects on the molecular clock, physiology, metabolism,
hormonal rhythms, behavior, mood, hippocampal morphology,
and cognition (Table 1). Dauchy et al. (130) described the

detailed changes that can be made to a traditionally designed
animal room in order to avoid light pollution, and how these
improvements impact on the circadian regulation of biological
rhythms.

At 5 lux, DWLN reduced post-weaning growth rates and
had long-lasting effects by increasing anxiety-like and fear-like
behavior and the fearful responses to foot-shock in adults that
had been exposed pre-and/or post-natally (111, 116). According
to the period of exposure during rearing, the metabolic functions
during adulthood are affected differently by DWLN. Weanling
mice, exposed since they were juveniles or adolescents, showed
disrupted timing of food intake during adulthood by phase
advancement of eating time and progressively increased daytime
food intake; however, only males that had been exposed since
adolescence showed increased body mass and gonadal fat
mass relative to their dark counterparts in adulthood. During
adulthood, none of these animals expressed alterations in glucose
tolerance (117). In contrast to exposure at a younger age,
exposure to DWLN during adulthood reduced glucose tolerance
and increased bodymass; these are both factors that are indicative
of a pre-diabetic-like state (118). More recently, Stenvers et al.
(127) showed that in adults, DWLN exposure reduced food
intake and energy expenditure without affecting either body
weight or impaired glucose tolerance. Certain differences in
experimental procedures, such as the period of adaptation to
DWLN, and the methodology used during testing, could be
important factors for such discrepancy. These development-
dependent alterations in metabolic energy homeostasis were
associated with the disruption of circadian expression in crucial
components of the molecular circadian clock in both the SCN
and peripheral tissues that regulate metabolic functions. In
particular, post-weaning exposure beginning at the juvenile or
adolescent stage increases and decreases the amplitude of daily
rhythm in the hypothalamicClock and the expression of Rev-ERB
in adulthood, respectively (111). However, during adulthood,
DWLN attenuates the rhythmic expression of the core circadian
clock genes Per1 Per2, Cry1, and Cry2 and PER1 and PER2 in the
SCN, along with Bmal1, Per1, Per2, Cry1, and Cry2 and Rev-ERB
in the liver and adipose tissue (119).

Five lux of DWLN also induces maladaptive behaviors
such as reduced sleep efficiency, depression and cognitive
impairment. The regulation of circadian sleep-wake rhythm,
and synchronicity with the light-dark cycle, is achieved by
both oscillators of the SCN via the SPV and mainly the DMH
which conveys circadian information to both sleep and wake
mechanisms (15, 24, 54, 131–133). DWLN progressively reduces
the amplitude of the sleep-wake circadian rhythm by gradually
reducing sleep during the light (inactive) phase, but leaving the
daily total sleep amount unchanged (127). These intrusions of
waking episodes during the light phase reduce the amplitude of
the daily rhythm of beta frequencies (16–19Hz) and notably slow
wave activity during non-rapid eye movement (non-REM) (127),
both under strong influence from the endogenous circadian
clock (134). It has been suggested that desynchronization
between intra-SCN-oscillators was responsible for this circadian
dysregulation, as shown by an endogenous free-running rhythm
in locomotor activity with a period of ∼25 h next to the
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TABLE 1 | Summary of the main deleterious effects of dim white light at night vs. Dark (0 lux) on laboratory animal health.

Strain Period of

exposure-sex

Effects References

5lux • Prenatal

• Prenatal to P21

• P21

♂ ♀

↓ post-weaning growth rates

In adulthood:

↑ anxiety-like behavior

↑ fearful responses to footshock

(116)

• P21 to

adulthood

• P35 to

adulthood

♂ ♀

In adulthood:

↑ anxiety-like behavior

↑ fear-like behavior

↑ fearful responses to footshock (under dim light since P35)

↑ clock amplitude gene expression in hypothalamus

↓ Rev-ERB gene expression in hypothalamus

(111)

Mice (Swiss

Webster)

• P21 to

adulthood

♂ ♀

In adulthood:

-no change in body mass

↑ day-time food intake (females ate more than males)

-no change in gonadal fat mass

-no change in locomotor activity

-no change in hepatic clock genes expression

-does not affect glucose

tolerance

-no change in 24-h food consumption

(117)

• P35 to

adulthood

♂ ♀

In adulthood:

↑ body mass (males)

↑ day-time food intake (males)

↑ gonadal fat mass (males)

-no change in locomotor activity

-no change in hepatic clock genes expression

-does not affect glucose

tolerance

-no change in 24-h food consumption

(117)

Adult

♂

↑ body mass

↑ day-time food intake

-no change in locomotor activity

-no change in plasmatic glucocorticoid concentrations

↓glucose tolerance

-no change in 24-h food consumption

(118)

-attenuated rhythmic expression Per1, Per2, Cry1, Cry2 in SCN

↓PER1 and PER2 expression and attenuates rhythm in SCN

↓ rhythmic expression Bmal 1, Per1, Per2, Cry1, Cry2 in liver

↓Rev-erba mRNA in white adipose tissue and liver during light

phase

-clock genes expression in hippocampus unchanged

(119)

-overreaction of immune system (120)

Mice

(C57bl/6)

Adult

♂

-anxiety-like phenotype

- no change in circadian pattern of locomotor activity

↓ power of the locomotor activity rhythm

(121)

Mice

(C3H/HeNHsd)

Adult

♂

-depressive-like phenotype

↑ body mass

↓ hippocampal BDNF gene expression

(122)

Adult

♂

-depressive-like phenotype

-no change in locomotor activity

↓ dendritic length in dentate gyrus and CA1dendrites

-impaired learning and memory

(123)

Rat (Nile

grass)

Adult (wild caught

background)

♂

↑ immunological capabilities

↑ plasma corticosterone levels during active phase

(124)

(Continued)
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TABLE 1 | Continued

Strain Period of

exposure-sex

Effects References

5lux Adult

(ovariectomized)

-depressive-like phenotype

↓ density of CA1dendritic spines

(125)

Siberian

hamster

-depressive-like phenotype

↓ density of CA1dendritic spines

↓ locomotor activity during the night

(43)

Adult (wild caught

background)

♂

↓ post-saline (i.p.) locomotor activity in both dark and light phases

↓ immune function

(126)

Rat (Wistar) Adult

♂

↓ amplitude of the sleep-wake rhythm

↓ amplitude of the SWA and high frequencies in NREM sleep

-induces an endogenous free run

(127)

0.11–1.08 lux Syrian

hamster

Adult

♂

↓ night-time pineal melatonin levels (128)

0.2 lux Rat (Sprague

Dawley)

Adult

♂

-suppresses melatonin secretion

-phase delayed glucose peaks

-normoglycemic

-phase-advanced lactic acid peaks

-phase delay corticosterone peak

↑corticosterone levels

-body growth unchanged

(129)

BDNF, brain-derived neurotrophic factor; LD, light-dark cycle; P, postnatal day; SWA, slow-wave activity; SCN, suprachiasmatic nucleus; ZT, zeitgeber time.

entrained 24-h period (127). However, there is some disparity
over this issue because investigators found no difference in the
circadian pattern or daily locomotor homecage activity in mice
(118, 121) or in diurnal rats (123). Moreover, depression is
a persistent disorder that impairs mental and physical health.
This condition has been historically associated with clock-related
genes and dysfunction of circadian rhythms, particularly in
terms of sleeping and waking (91, 135–138). Because of these
alterations in the circadian system, adult nocturnal (43, 121,
122, 125), and diurnal rodents (123) under DWLN have been
shown to exhibit a depressive-behavioral phenotype. Under
DWLN, adults also show reduced hippocampal expression of
the brain-derived neurotrophic factor (BDNF) gene (122),
a neuroprotective growth factor responsible for the growth
and function of nerve cells and fundamental for plasticity,
learning and memory. Hence, DWLN make these animals more
susceptible to stress-oxidative damage (139) and impairs spatial
learning task performance and memory (123). Such changes in
performance and memory are related to lower dendritic length
in the dentate gyrus and the Cornu Ammonis 1 (CA1) in male
diurnal rats (123), and a reduction in spine density (125) on the
apical and basilar dendritic branches of CA1 pyramidal neurons
in ovariectomized hamsters (43) which was not found in diurnal
male rats (123). This discrepancy could be ascribed to the fact
that ovariectomy per se causes a profound decrease in dendritic
spine density in CA1 pyramidal cells of the hippocampus (135).

At 5 lux, DWLN is also known to have a profound effect
on the immune system in different species. When exposed
to pathogens, diurnal rats (from a wild stock background)

showed enhanced immune reactions that were associated with
an increased concentration of plasma corticosterone during the
active phase (124), while inbred laboratory mice over-reacted
and showed elevations of the inflammatory response in the
peripheral and central nervous system, along with sickness
behavior (120). In addition, research has shown an impairment of
immunological capabilities in hamsters derived from wild caught
stock and held under an inverse LD cycle (126). It is possible
that the disparity shown in previous studies could be attributed
to certain critical aspects of methodology and differences in the
resistance/susceptibility of the immune system between species.
For example, laboratorymice show greatly reduced survival when
exposed to the pathogen at the early evening (140). Moreover,
delayed-type hypersensitivity (DTH) has been assessed during
the rest period in hamsters and during the active period in diurnal
rats; data indicate that the differential immunological outcomes
could be related to daily DTH variation (124). Furthermore,
hamsters and diurnal rats, when derived from wild-caught stock,
may still retain some wild immunological traits (141) that
differ from the antigen-inexperienced immune system of inbred
laboratory mice.

Aside from illuminance, another property worthy of
consideration is the wavelength of light at night. Certain
wavelengths play a more relevant and efficient role and exert a
greater perturbing effect on the circadian system than others.
Green light exerts the maximum phase shift of locomotor
activity (142), and blue light is the most efficient in suppressing
pineal melatonin levels, followed by green light and yellow
light, while near-ultraviolet and red light are the least efficient
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(143). More recently, Bedrosian et al. (43) conducted a study
in ovariectomized hamsters that investigated the effect of
different wavelengths of dim light (5 lux) on SCN-activation,
mood, behavior and hippocampal cell proliferation. In line
with previous studies, chronic DWLN produces a depressive-
behavioral phenotype (121–123, 125), although mood disorder
was considerably more pronounced in animals under dim blue
light at night (DBLN) (43). Moreover, like DWLN (43, 125),
DBLN reduced the number of dendritic arbors in the CA1 region
of ovariectomized hamsters (43). Furthermore, unlike juvenile
and adolescent mice (117), ovariectomized hamsters exposed to
DWLN expressed reduced locomotor activity in holding cages
during the dark phase with 24 h lower power than a nightly
dark control group, while dim red light (DRLN) resulted in
an increase of activity. DBLN did not significantly affect total
activity but induced the greatest reduction in the 24 h power
of activity rhythm (43). Moreover, during the early subjective
night, a 5 lux brief pulse of DWLN, and notably of DBLN,
activated the retinorecipient-SCN region, in a manner similar
to a 150-lux pulse of white light (43). In agreement with this
finding, a pulse of blue light (250 lux) during the dark phase
evoked the greatest increase of Fos, Per1, and Per2 expression
in the SCN and the adrenal gland, resulting in the highest levels
of corticosterone secretion, which are normally associated with
behavioral arousal (20). It is worth noting that while 250 lux
blue light evokes higher gene induction in both the SCN and
adrenal gland resulting in higher corticosterone levels and wake,
the same intensity of green light produced a greater response in
the major sleep promoting area (the ventrolateral preoptic area,
VLPO), lower responses in the adrenal gland and corticosterone
levels, and induces sleep. This opposite wavelength effect is
melanopsin-dependent and provided evidence of two potentially
different pathways with different spectral sensitivities for the
wakefulness and sleep-promoting induction of light in nocturnal
rodents (20).

To assess the effect of continuous dim light at night, all of the
studies mentioned above used 5 lux night-time light, which is five
times brighter than maximal moonlight (<1 lux). However, it is
important to highlight the fact that lower intensities of light can
also affect the circadian timing system.

DWLN of low light intensity (0.2 lux; 0.08 µW/cm2) disrupts
the normal circadian output from the peripheral clocks (144).
Indeed, peaks in glucose plasma concentration were phase-
delayed by 4 h although animals remained normoglycemic
throughout the entire 24-h period. Plasma lactic acid
concentration remained unchanged, although peak levels
were phase-advanced by 4 h, thus increasing its level of uptake
during the night; corticosterone showed elevated daily plasma
levels with peak amplitude delayed by 4 h. Plasma levels, and
the diurnal rhythm of total fatty acid and lipid fractions, along
with dietary and water intake and body growth rate, were similar
to a 12:12 LD cycle without light pollution (129). Light is a key
factor that controls the night-time secretion of melatonin from
the pineal gland (144) and at 0.20 or 1.08 lux, DWLN suppresses
the levels of melatonin in both the plasma (129) and pineal gland
(128) of rats and hamsters, respectively, in a manner similar to
nightly white bright light (300 lux) (129). As melatonin restricts

tumor growth (145), rats exposed to 0.20 lux DWLN also showed
an enhanced tumor growth rate (146, 147). Even low intensity
green light (0.005 lux) may entrain the activity rhythms of
hamsters exposed to different entrainment paradigms (148).

In short, animals must be protected from nightly light
exposure at any intensity and wavelength. The studies described
herein clearly highlight that there is a clear connection between
dim light at night and maladaptive behavioral and physiological
outcome with both short- and long-term effects. Compared to
the dark (0 lux), light spectral transmittance associated with
a blue wave-length (white light and notably, blue light) has
the most perturbing effect upon the circadian system, behavior,
synaptic plasticity, metabolic function, immune system, mood
and cognition, even at very low intensities. These behavioral
and physiological consequences would be consistent with the
coding of different wavelength sensitivities attributed to each
type of photoreceptor, and the predominant participation of
melanopsin-RGCs (which are particularly sensitive to blue light)
in order to convey the stimulus to circadian and non-circadian
systems.

Constant Darkness
The synchronization of behavioral and physiological circadian
rhythms can only be achieved through the entrainment of both
SCN oscillators by a time signal environment with circadian
characteristics close to the solar LD cycle. In the absence of
light, and without other external time cues, the period of the
circadian rhythms can be controlled by the intrinsic oscillation of
their specific central clock (referred to as “free running rhythm”)
(9, 27); these rhythms then begin to free run with different
period lengths and a lower amplitude (34, 149). This tool is
used by chronobiologists to eliminate entrainment effects by light
and therefore “unmask” the endogenous rhythm created by the
machinery involved in the specific central clock.

Despite the elevated risk of depression in response to limited
light exposure/intensity (138, 150), the consequences of long-
term total darkness (free-running conditions) on behavior and
neuronal systems were only reported a few years ago in laboratory
animals (151, 152). For example, rats under complete darkness
(0 lux) for several weeks exhibit distinct behavioral and
anatomical features that are characteristic of depressed patients
(Table 2). Behaviorally, these animals exhibited a delayed sleep
phase and a lower amplitude sleep-wake circadian rhythm which
was caused by an increase in sleep during the active period (151);
these animals also showed increased immobility in a modified
forced swim test (FST), increased locomotor activity in a novel
environment, and a sensitized response to subsequent stressors
(152). Anatomically, these animals expressed increased levels
of apoptosis in the three monoaminergic systems associated
with the pathology of depression, namely the noradrenergic
(NA)-locus coeruleus (LC), the serotoninergic-raphe and the
dopaminergic-ventral tegmental area systems, as well as a
significant and continuous reduction in the number of NA
boutons in the frontal and prefrontal cortex (151, 152). Long-
term light deprivation (DD) did not affect body weight gain or
adrenal weight, indicating that it is not stressful and therefore
that damage to the NA-LC was not the result of chronic
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TABLE 2 | Summary of the main deleterious effects of constant darkness (0 lux) on laboratory animal health.

Strain Period of exposure—sex Effects References

Rat (Sprague Dawley) Adult

♂

- delayed sleep phase

↓ amplitude of the sleep-wake rhythm

↓ NA fibers and boutons in Frontal Cortex

(151)

- depressive-behavioral phenotype

- sensitized response to acute stress

↑ locomotor activity in a novel environment

- neuronal death in the NA-LC, 5-HT-DRN, DA- VTA

↓ NA fibers and boutons in Prefrontal Cortex

(152)

↑ Pyroglutamyl-peptidase I in retina and anterior hypothalamus (153)

Rat (Wistar) Prenatal-P49

♂♀

• tested in adulthood

↓ neurogenesis in dentate gyrus

(lower in ♂)

-spatial memory impairment (worst in ♂)

(154)

P0–P24

♂♀

• tested the following 3

days under a LD cycle

↓ number of neurons and glial cells in the SCN (155)

Adult

♂

-depressive behavioral phenotype (156)

↓ body weight gain

↓ c-Fos positive cells in the SCN

(157)

Mice (C57BL/6J) P0–P21

♂♀

followed by 24 h LD cycle

• tested at P1–P50

↓ dam body weight during suckling time

-no change in maternal behavior or stress markers

At P10:

↓ body weight

↑ glucocorticoid receptor protein expression at ZT16 in the PVN

(112)

P0–P21

♂♀

followed by 24 h LD cycle

• tested at P50

-depressive-like phenotype

↓ glucocorticoid receptor in dentate gyrus, no changes in PVN

↑ plasma corticosterone level at ZT12 (♂) in response to acute stress

- no change in CrhmRNA in the PVN

(158)

Adult

♂

- depressive-behavioral phenotype

↑ levels of IL-6, IL-6 mRNA, NF-κB p65, phospho-NF-κB p65, and

phospho-IκBα in hippocampus

(159)

Mice (ICR) -depressive-behavioral phenotype (more severe in ♀)

↓ intrinsic excitability of layer V pyramidal cells in motor cortex (lower in ♀)

(160)

P0–P21

♂♀

• tested at P22–P35

- depressive-behavioral phenotype

- weakened locomotor activity

- layer V pyramidal cells in motor cortex

↓ morphological complexity

↓ intrinsic excitability

↓ burst-firing

(161)

Mice (YFP-H) P0–P21

♂♀

• tested at P22-P35

↑ dendritic arbors density in RGCs (subtype RGA )

↓ morphological complexity of layer V pyramidal cells of both primary visual

and auditory cortex

(162)

Mice (C57BL/6N) Adult

♂

- depressive behavioral phenotype

↑ IL-6 plasma

In hippocampus:

↓ cell proliferation

↓ per2 protein level

↑ npas2 protein level

↑ IL-6 and IL-I receptors protein levels

↑ NF-κB DNA binding activity

(163)

BDNF, brain-derived neurotrophic factor; DA, dopaminergic; VTA, ventral tegmental area; LD, light-dark cycle; NA, noradrenergic; LC, locus coeruleus; P, postnatal day; RGCs, retinal

ganglion cells; serotoninergic (5-HT)-dorsal raphe nucleus; SWA, slow-wave activity; SCN, suprachiasmatic nucleus, ZT, zeitgeber time.
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stress (152)]. In this study, apoptotic death was progressive
but could be restrained by the chronic administration of the
tricyclic antidepressant desipramine, which also causes NA
axonal regrowth and amelioration of the depressive behavioral
phenotype, thus validating light-deprived rats as a non-stressful
and genetically-intact model of depression (152). The depressive
profile induced by light deprivation is not an acute effect, since
an extension of 2 h to the dark period of LD animals (12:14)
for 1 day did not affect immobility time during FST during
the last hour of darkness (152). These results suggested that
the absence of light input to brain centers which control mood
disorders may be involved in the etiology of depression. As for
the neural component, we originally proposed that the absence
of light input would interrupt the synchronism between the
SCN oscillators and dissociate rhythmic outputs, thus leading
to depression after the dysregulation of the transynaptic efferent
circuits that modulate the brain’s monoaminergic systems and
their associated behaviors (sleep, arousal, motivation, and mood)
(151, 152). In agreement, more recently, we showed that a
depressive phenotype can emerge from the desynchronization of
cellular oscillators within the master circadian clock itself (164),
suggesting for the first time in a genetically and neurologically
intact animal, that the biological clock can exert functional
implications upon the etiology of mood disorders and the
specific mechanisms which underlie the beneficial effects of
bright light therapy. Certainly, an impact of DD on the
direct photic regulation on sleep and mood cannot be ruled
out.

Subsequently, several studies have confirmed our results
and additionally reported a range of other deleterious effects
associated with DD. For example, light-deprived rodents
expressed a depression-like phenotype (112, 156–161, 163),
with more severe symptoms evident in females than males
(160). Furthermore, in light-deprived adults, the enzymatic
activity of pyroglutamyl-peptidase I in the retina, and anterior
hypothalamus, was increased, thus indicating dysregulation in
themetabolism of neuropeptides in the nervous system including
alterations in reproductive function (153). The absence of
photic stimuli also reduced neuronal activation in the SCN
without affecting the circadian rhythmicity of corticosterone
and melatonin plasma levels and increased and decreased body
weight gain after 3 and 7 weeks, respectively, without affecting
daily food ingestion (157). However, we did not find any
differences in body weight gain after 3–6 weeks in DD rats
(152). We should also mention that these authors have previously
submitted animals to an inverted LD cycle and weighed them
after behavioral stressful tests (by their characteristic overreaction
to stress, the body weight of these animals may also have been
affected), while our DD animals were previously housed in a
12:12 LD cycle and weighed before the behavioral test.

Apoptosis, along with neurodegeneration and inflammatory
diseases, is associated with an accumulation of oxidative damage
caused by the overproduction of free radicals such as reactive
oxygen species (ROS) (165, 166). Accumulative oxidative stress
reduces the levels of BDNF (167), a neurotropin that promotes
neuronal survival, and its synaptic plasticity effectors, synapsin
I and cAMP response element binding protein (CREB) (167,

168). Increased oxidative stress and reduced BDNF expression
and/or function, particularly in the hippocampus, have also been
implicated in both the pathophysiology of major depression
and the typical overreaction to stress (169, 170). Confirming
light-deprived animals as a model of depression, DD was
shown to aggravate the outcome of oxidative stress, as shown
by proinflammatory processes in the hippocampus (159, 163)
which impaired neural plasticity and neurogenesis resulting in
a subsequent deficit of learning (154), susceptibility to stress
(152), and reduced c-Fos and CREB expression in several limbic
areas involved in the reward and motivation mechanism (171).
The depressive behavioral phenotype, inflammatory profile,
and associated hippocampal neurodegeneration correlated with
the DNA methylation–related chromatin remodeling process
(172) that regulates neuronal activity dependent of BDNF gene
expression (173). It was suggested that the circadian system
would contribute to cellular homeostasis by regulating the
expression of neuroprotective proteins that curtail oxidative
damage and prevent synaptic damage in the nervous system
(174). In agreement with this, transgenic mice featuring the
knockout of the brain-specific clock genes Bmal1 or Clock and
neuronal PAS domain protein 2 (Npas2) show severe astrogliosis,
oxidative damage and exacerbated neurodegeneration (175), thus
suggesting that alterations in the hippocampal protein levels of
the clock genes Per2 and Npas2 induced by DD (163) would be
involved in neuronal death, and the morphological and synaptic
changes described previously. This action would be facilitated by
increased binding activity of NF-κB DNA (163), a transcription
factor that is activated by ROS and regulates the inflammatory
and immune response (165). Moreover, Qi et al. (176) recently
found that the apoptosis triggered by DD extends to the liver
due to the oxidative damage caused by the overproduction of
ROS after a marked reduction in the mRNA levels of antioxidant
enzymes.

The harmful effects of DD occur relatively swiftly and cannot
be rapidly undone. In a previous study, 7 days were enough
to elicit a depressive behavioral phenotype that could not be
reversed by 1–2 days in 12:12LD (156). This time period was also
sufficient to reduce levels of BDNFmRNA and protein expression
in the visual cortex and affect the regulation of hippocampal
genes that are critical for neural plasticity (172).

The effects of the absence of light when the SCN is still
immature and has not yet completely configured its synaptic
connections (78, 80) are reflected by long-term consequences
on circadian rhythm outputs, clock gene expression, mood,
physiology, stress markers, neuronal function, plasticity, and
cognition. During the suckling period, DD causes a reduction
in the number of neuronal and glia cells responsible for
the coupling between SCN oscillators (155). This structural
alteration will certainly affect the development and performance
of the SCN, which may, in turn, desynchronize rhythms and
modify animal physiology and behavior. Restricted to certain
developmental periods, light deprivation causes morphological
and physiological ontogenetic changes when compared against
normal maturational processes, which may result in a depressive
phenotype in juveniles and into adulthood, together with other
benchmarks of clinical depression which are not prevented by
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post-weaning housing under a 12:12 LD cycle (158, 160, 161).
In particular, pups raised up to the weaning stage in DD,
followed by standard 12:12 LD conditions, showed a depressive-
like phenotype during adulthood, with reduced expression of the
glucocorticoid receptor in the hippocampus but without changes
in the paraventricular nucleus (PVN). These effects were seen
with higher plasma corticosterone levels in response to acute
stress only inmales, indicating sexual dimorphic sensitivity in the
nervous system during development to the lighting conditions
(158). Only at 10 days of age (P10), did pups raised in DD show
reduced body weight and increased expression of glucocorticoid
receptor mRNA in the paraventricular nucleus (PVN), thus
leading to a higher level of activity in the hypothalamic-pituitary-
adrenal axis (112). Light deprivation did not alter the levels
of maternal stress markers and did not change maternal care
behavior (except for a different temporal distribution) but did
reduce body weight in dams during the suckling stage (112). This
result ruled out the fact that altered maternal behavior may have
been a factor responsible for the changes found in adults reared
under DD and also highlight the absence of light as a main trigger
that would affect the HPA axis only at a specific development
stage. The absence of photic stimuli during the suckling period
also reduced the morphological complexity of the primary visual
and auditory cortical layer V pyramidal cells, with increased
morphological complexity in a specific mRGC subtype (mRGCA

cells), as shown later during the pre- and peri-puberal periods,
suggesting that postnatal DD promotes “cross-modal plasticity”
among different neuronal systems during brain development
(162). Moreover, light-deprived animals from the prenatal period
to adulthood showed reduced levels of neurogenesis in the
dentate gyrus, which was more severe in adult males than females
and associated with subsequent impairment of spatial memory
(154).

It was suggested that the dimorphic behavioral-depressive
phenotype described in previously reared-DD juveniles was
associated to weaker locomotor activity during stressful tests
(161) and that this was related to the simplified morphological
complexity and lower excitability of the motor cortical dendritic
arbors of layer V pyramidal cells (the major output from the
cortex) exhibited in cortical slices, principally from females
(160, 161). We have previously shown that in adult rats under
DD, the increased immobility during FST was not caused by a
deficit in motor activity or a response to salient stimuli. Indeed,
these animals showed increased ambulatory activity in a novel
environment (152). Moreover, and contrary to the findings of
Lu et al. (160) and Zhang et al. (161) light deprivation did
not affect motor tasks such as swimming and pawing during
the FST (152). It is possible that exposure to DD during
development has amajor impact on the cortex than it does during
adulthood. We cannot dismiss the fact that our animals were
provided with a flotation aid to allow more confident motor
behavioral scoring and guarantee that the escape deficit was
primarily caused by DD treatment and not by the unnatural FST
stressor.

Animals that are regularly used in research are born and
grown, over many generations, under a regular 12:12 LD cycle
with light intensities that differ from wild conditions. This

difference in “lighting background” could predict the fact that
the circadian system in these animals would evolve differently.
It has become clear that unlike animals in the wild, laboratory
rodents respond negatively to lighting conditions present
in natural conditions (177). Constant darkness would be an
unnatural condition for diurnal and nocturnal inbred laboratory
rodents. Indeed, constant light deprivation became a very useful
tool for studying the mechanisms involved in the etiology of
depression and the identification of new and efficient therapeutic
strategies. Furthermore, light-deprived animals are likely to
represent a useful model for gaining new insights on the specific
mechanisms which occur during brain/neuronal injury, such as
neurodegeneration and inflammation and where the cell damage
is induced spontaneously and not by impact/acceleration
brain injury (178) or exposure to unnatural stressors
(179, 180).

In short, like other aberrant lighting conditions (constant
light, short day light) (14), light-deprived animals show
anatomical, physiological and behavioral depression-related
alterations, which are considered as clinical benchmarks of
depression. In laboratory animals, light deprivation shapes the
brain in developing pups and in adults, which end up with
damaged neural systems, maladaptive behaviors, dysfunctional
physiology, and impaired cognition, all of which are associated
with oxidative damage. The detrimental effects of DD call
for caution in the interpretation of experimental results and
a re-evaluation of the use of “free-running” conditions. Such
damage is progressive and the temporal evolution of its negative
effects suggests that there is not a safe window for long-term
experimental use.

There are still several key questions at stake. Is there a light-
dependent process responsible for the neuroprotective/trophic
effect? Is this process related to the well-known direct masking
effect of light? Is the poor visual sensory environment a cause
of depression? There would be one way to address these critical
doubts. A non-photic conditioned stimulus (air flow) that was
previously associated to an unconditioned stimulus (a light pulse)
has the ability, by itself, to induce Fos expression in the SCN
and phase shift the spontaneous activity and body temperature
SCN-dependent rhythms during the subjective night, thus
mimicking the effect of a pulse of light (181). This would be
an alternative to keep the rhythms of light-deprived animals
synchronized with the natural LD cycle. If the use of Pavlovian
conditioning provides healthier light-deprived animals, then the
neuroprotective/trophic effect of light per se, and the reduced
sensory environment, could be discarded as principal factors for
the genesis of the morphological, behavioral and physiological
changes described previously; the synchronization of rhythms by
light, known as the “masking effect of light” would be the key to
this process.

Dim Red Light Is Not an Alternative
Certain housing facilities use red-tinted observation windows or
hold animals under red light throughout the night to facilitate
maintenance and experimental procedures. Like white light,
exposure to nightly red light (DRLN) acts as a zeitgeber by altering
the entrainment of circadian activity rhythms and suppresses
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melatonin (100). Asmentioned earlier, DRLN (5 lux) significantly
increased locomotor activity in holding cages during the dark
phase compared to a control group without any light exposure
during the night (43). At higher intensities (8 lux), DRLN
dramatically disrupted the rhythmic circadian pattern and altered
the physiological parameters of nocturnal albino rats (182).
Even though there was no significant difference in the phase
and period of the circadian rhythm associated with melatonin,
the amplitude was reduced by a suppression of peak-dark
phase secretion to almost daytime values. Moreover, the daily
rhythms of arterial plasma glucose and lactate concentrations,
along with arterial pO2 and pCO2, were almost identical
to controls, although their levels were higher over the 24-h
day. Moreover, corticosterone and insulin showed a disrupted
circadian rhythm; peaks of plasma corticosterone and insulin
were both phase-advanced, and the 24 h-day concentrations
were reduced. In terms of leptin, 24 h-cycling was absent, the
plasma peak was phase-delayed and the 24 h-day concentration
was increased. Furthermore, the plasma levels of total fatty
acid were elevated throughout the 24-h day and the circadian
rhythm was abrogated [(182). Even at very low intensities (<1
lux), short-term (2 h) DRLN exposure entrains wheel-running
activity and the time of ovulation in light-deprived animals
(free-running animals). This occurs by phase advancement when
applied at the end of their active period, and by phase delay
when applied at the beginning of their active period (98,
183).

Constant dim red light (DimRR) is far from an ideal option
instead of DD because it also promotes circadian dysfunction. In
adult nocturnal rats, DimRR, at very low intensities (0.5–1 lux),
progressively reduces the amplitude of sleep-wake by decreasing
the amount of sleep during the rest phase. This changes the
rhythmic pattern of locomotion and drinking activities, along
with brain and intraperitoneal temperature, as well as increasing
the number of REM sleep episodes during the active phase (184).
Long-term DimRR at higher intensity (5 lux) generates free-
running locomotor activity (185, 186) and uncouples melatonin
rhythm from that of locomotor activity and body temperature
(185). Moreover, at 5 lux, DimRR slightly reduced the amplitude
of the rhythm of Per1 mRNA expression in the SCN and
noticeably increased the overall variability of Per1 mRNA
expression in the SCN, the clock-controlled gene arylalkylamine
N-acetyltransferase (Aa-nat) mRNA in the retina and pineal
gland (186), and the plasma levels of melatonin, although their
circadian rhythm persisted (185, 186). These effects of DimRR
on the circadian system would result in the loss of coupling
between the SCN-oscillators, thus affecting the temporal pattern
and synchronization of behavioral and physiological rhythms
(184–186).

In short, we must not underestimate the effect of red
light, which effectively disrupts physiological and behavioral
circadian rhythms. Consequently, red light, even at very low
intensities, should not be regarded as functionally equivalent
to darkness. For scientists who need to carry out tasks under
darkness, it is extremely important to maintain light intensity
at 0 lux for all wavelengths when measured at the animal’s eye
level.

CONCLUDING REMARKS

An increasing body of literature describes the immediate impact
of light in the development of fetal rhythms and on the
wellbeing of offspring and adults. Collectively, this literature
aims to improve awareness in the scientific community with
regard to the use of aberrant lighting conditions as a risk
factor. Without light-dark transitions to reset the principal clock,
the risk for lifelong physiological and behavioral maladaptive
responses is increased. Dim light at night, as well as DD, can
profoundly alter the circadian timing system along with the
downstream control it exerts on mood, behavior, DNA repair,
apoptosis, synaptic plasticity, cellular proliferation, endocrine
and metabolic function, the immune system, and cognition.
We cannot underestimate a direct influence of these lighting
conditions on mechanisms that are independent of the circadian
system, but further research is needed to understand how both
direct and indirect pathways interplay and contribute to the
disruptive effects of dim light at night and DD on health and
wellbeing.

It is important to ensure that we control lighting in a
stricter manner and to give broader consideration to the
potential effects of light leakage at night. Animal facilities
that do not comply with the Guide for the Care and Use of
Laboratory Animals must be redesigned in order to improve
blackout conditions. Even minimal “accidental” light exposure
during the dark phase should not be disregarded, independently
of the intensity and wavelength. Furthermore, a complete
report, which describes lighting conditions from prenatal and
postnatal periods, including the intensity and spectrum of light,
should be communicated by providers to the customer. It is
important that suppliers provide us with a detailed history of
the lighting conditions in which our laboratory animals were
reared in order to verify that such animals are appropriate for
research.

In addition, the color and intensity of light at the animal’s
eye level need to be specified and published in detailed scientific
protocols to avoid substantial variations in quality and thus
increase our chances of obtaining reliable and reproducible
results.

Constant darkness, which is used by chronobiologists
to release an individual’s rhythms of the main zeitgeber
(the light), should not be considered a natural environment
but rather, as a bad scenario for the wellbeing and health
of nocturnal and diurnal laboratory animals. Indeed, light
deprivation became an inexpensive and simple method
with which to produce an anatomical, physiological and
behavioral depressive phenotype in laboratory animals. Long-
term light deprivation can exacerbate oxidative damage by
disrupting the expression of clock genes and weakening the
molecular substrates required for maintaining neuronal and
synaptic function. Therefore, light should not be dismissed
as an environmental condition when research studies are
evaluating normal function in the whole body of laboratory
animals.

In conclusion, a stable 24 h LD photoperiodwith clear contrast
between day and night, with safe light during the day and

Frontiers in Neurology | www.frontiersin.org 12 August 2018 | Volume 9 | Article 609

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


González Unhealthy Experimental Lighting Conditions

null light at night, is key to maintaining the circadian integrity
of mammals from pre- and post-natal periods to adulthood,
which in turn, will result in normal development and good
health. Outside this criterion, the stability of biological function
becomes altered and thus affects the wellbeing of animals, and
experimental results in the short and long-term. Because of
these reasons, experimental lighting conditions deserve special
attention and should be periodically checked throughout the
entire life of laboratory animals to provide an optimal effect
and ensure good welfare. We need to reach a consensus
on this matter so that we can adopt international standard
criteria for photoperiods to be used for laboratory animals,
which follow similar methodologies to measure the properties
of light. Furthermore, the Institutional Animal Care and Use
Committees should call for compliance with a universal set

of rules and clearly explain how the failure to comply with
such codes of practice could have very serious consequences for
the animals.
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