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A 65-year-old man undergoes percutaneous coronary
intervention (PCI) to treat an acute myocardial infarc-

tion. He has a nonzero risk of dying; that risk may be
predicted using models built chiefly through logistic regres-
sion of a sample of variables believed to impact survival after
acute myocardial infarction. The number of variables is
restricted because integrating the independent (or, worse,
interactive) impact of many factors when building risk
prediction models is difficult, and the burden of having to
enter many variables manually into a prediction tool makes
the tool less useful.

Machine learning (ML) is the process of applying statis-
tical algorithms to data sets to model and infer predictions.
It is formally a subset of artificial intelligence, but to the
nontechnical user, ML may seem like the thinking, reasoning
part of artificial intelligence. Good reviews of ML applications
in medicine are available to the interested reader; the
approachable, clinically oriented summary by Rahul Deo of
the University of California, San Francisco, is a good starting
point.1 An algorithm is trained on a corpus of information
that contains labeled data on clinical features and defined
outcomes (eg, the characteristics of patients with acute
myocardial infarction and the frequency of their of dying).
Although not explicitly programmed, the algorithm builds a
model that predicts linkage between the input variables and
the target outcome. This process is referred to as supervised
learning. With the right training and access, machines can
pluck data from source pools without any human interaction,
which greatly enhances their utility. After training, ML
models can process huge volumes of data quickly and

provide enhanced predictive power compared with conven-
tional risk models. Furthermore, formerly disparate data sets
can be combined to improve predictive power. As an
example, computers taught to integrate clinical, laboratory,
and image data for patients with rheumatoid arthritis have
recently been used to generate automated cardiovascular
risk prediction models that proved superior to standard risk
models for individual patient risk assessments.2 However,
the real magic of ML is in unsupervised learning, that is, the
ability to observe trends or patterns in unlabeled data and
speed the creation of hypotheses about their meaning. When
given the right instructions and access, computers can
perform novel work without any direct human interaction.
The abilities of a machine to generate plausible hypotheses,
test them, and draw conclusions increase with exposure and
experience, much like humans. Because of this, ML has the
potential to suggest new, independent discoveries when
studying large data sets. This aspect of ML has been
harnessed thoroughly in some disciplines, like genomic and
protein structure basic research, but it is just getting started
in clinical medicine. For example, a report earlier this year
described how several distinct immune phenotypes were
identified in a population of patients with group I pulmonary
hypertension when ML algorithms studied markers of
systemic inflammation.3

Al’Aref and colleagues report in this issue of the Journal of
the American Heart Association (JAHA) on their use of
advanced ML methods to develop a tool to predict risk of
death after PCI.4 They used a fairly broad set of clinical and
demographic variables drawn from a statewide database of
nearly one half million patients undergoing PCI, including
factors not always considered in traditional models but that
are likely to impact outcome, such as lesion complexity,
postprocedure complications, and day of the week that PCI
was performed. The authors used several techniques to
optimize utility of the data set. For example, when multiple
data points were missing, an advanced method for imputing
values based on remaining data was used. They used 4
different adaptive learning algorithms to produce prediction
models, using the results of each to improve the output of the
others. Although the language of this work will be foreign to
most clinicians, the methods are well established. The
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resulting final tool produced greater precision in risk estima-
tion than traditional tools.

This is the first known application of ML to predict
outcomes in a large sample of patients with PCI. Like similar
studies in other patient groups, the current study shows that
ML, when given access to rich data sources, can both
enhance the precision and simplify the use of risk prediction
instruments. The data source for this work was a state-based
registry containing many factors that would not necessarily be
thought of as essential to a reliable risk model. Although this
study demonstrates the value of making more variables
available to ML algorithms, it also underscores the limitations
imposed with use of any curated data set rather than
complete data. The ubiquity of actual or potential data
sources (computer-oriented living environments, home-based
electronics, wearable sensors, and implanted devices, all with
the potential for interconnectivity) creates an infrastructure
for collecting comprehensive data. But before overreaching,
we should focus on an extremely rich data pool available now:
the electronic health record (EHR).

The fact that an electronic learning instrument could
theoretically reside within a hospital’s computing system
raises interesting possibilities for risk prediction tools. Why
rely on models built from abstracted registry data when ML
can exploit everything in the EHR? Using an institution’s own
data may produce results more applicable to that organiza-
tion’s patient population. In addition to an expanded set of
input variables, more potential outcome measures should be
available, providing there is reasonably good entry of follow-
up data. Removing the barriers imposed through use of
abstracted outcome measures would support the supervised
and unsupervised functions of an embedded ML algorithm.
Theoretically, linkage between hospital systems using the
same EHR (or, in a perfect future state, all EHRs) could create
a vast, comprehensive medical data set suitable for auto-
mated production of near-perfect outputs. Early work using
EHR-embedded ML shows that greatly improved risk analytics
are possible for cardiology patients.5 Imagine being able to
quantify and estimate the consequences of every key clinical
decision for our theoretical patient with acute myocardial
infarction, based on experience in tens of millions of patients
and hundreds of millions of interactions, before executing an
order.

Risk assessment would be just one aspect of care to
benefit. Just as registry data combine the efforts of many
institutions, linked EHRs with ML capabilities would allow
continuous learning at a system level. It is easy to imagine a
computer advising on medical therapies: not just a reminder
about guideline recommendations, but a digital assistant that
surveys cardiac monitors for rhythm patterns, radiologic
studies for changes in pulmonary congestion, and laboratory
results for metabolic patterns, and then guides subsequent

decisions. Integration of newer medical information, like
genomics, will advance abilities further, as will EHR capture of
data from nonstandard sources, such as wearable electronics.
This is a new way of thinking that requires acceptance and
thoughtful application, but as pointed out by Weintraub and
colleagues, incorporation of ML into the EHR has the potential
to speed us toward our collective goal of personalized,
precision medicine perhaps faster than any other single
action.6 As a result of this potential, consulting firms like
Accenture forecast explosive growth in use of ML and artificial
intelligence, predicting its commercial value to approach
$7 billion by 2021.7

Enhanced predictive analytics through ML may be an
important stepping stone toward integration of big data
processing intelligence into clinical care environments. Al’Aref
and colleagues4 are congratulated for demonstrating the
utility of ML in predicting outcomes in a large sample of
patients undergoing PCI, a population that involves both high
risk and high costs, personally and for health systems.
Improving risk assessment facilitates efficient management of
this population. We must acknowledge, however, that imple-
mentation of ML instruments into clinical practice to enhance
mortality risk estimation is neither simple nor inexpensive.
Modest improvements in predictive accuracy may hardly
seem worth the effort. The real payoff may well come when
the more advanced abilities of ML are put to work in the
clinical environment. Next steps for ML, including full
integration into EHRs, comprehensive support for clinical
decision making, and establishment of structures to search
for clinically relevant new discoveries, could come quickly, but
this means clearing some big hurdles. Some challenges ahead
are technical, certainly, but the greatest challenges are likely
to be nontechnical: administrators, corporate interests, and
regulators must find ways to share data in novel ways,
whereas physicians and other providers must learn to trust
that machines making millions of observations can offer good
advice to augment usual clinical judgement.
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