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A B S T R A C T

This study investigated the effects of metformin, high-intensity interval training (HIIT), and moderate-intensity 
continuous training (MCT) on miR-133a expression in a diabetic rat model. miR-133a, a microRNA associated 
with skeletal muscle insulin resistance, served as a key indicator of treatment efficacy. Diabetic rats exhibited 
elevated miR-133a levels compared to healthy controls. Both HIIT and MCT, alone and in combination with 
metformin, significantly reduced miR-133a expression. Importantly, the combination of HIIT and metformin 
demonstrated the most potent effect, reducing miR-133a levels more than other treatments. We used the Cat-
Boost algorithm to develop a predictive model for miR-133a expression based on metabolic parameters. The 
model accurately predicted miR-133a levels using body weight, blood glucose, insulin levels, and cholesterol 
metrics. The findings suggest a potential clinical strategy combining metformin and exercise, with miR-133a 
potentially serving as a biomarker for personalized diabetes management.

1. Introduction

The World Health Organization (WHO) estimates that 347 million 
people worldwide suffer from diabetes [1], making it a global epidemic 
[2] that could double the number of deaths between 2005 and 2030 [3,
4]. Diabetes mellitus (DM) is characterized by hyperglycemia and is a 
major threat to human health [5]. Long-term metabolic dysregulation in 
diabetes leads to microvascular, macrovascular, and neuropathic com-
plications, highlighting the need for novel therapeutic strategies tar-
geting glucose homeostasis [6].

Exercise is commonly used to manage blood glucose levels, delay or 
prevent complications, and reduce inflammation in diabetic patients 
[7–9]. The health benefits of exercise are influenced by the duration and 
intensity of the activity [10]. Regular exercise improves blood glucose 
levels in type 2 diabetes mellitus (T2DM) and reduces the risk of car-
diovascular disease in individuals with prediabetes [11]. The 

Framingham study has shown that high-intensity interval training 
(HIIT) can enhance cardiac and metabolic health in diabetic patients 
[12]. Several studies suggest that combining moderate continuous 
training (MCT) with HIIT improves survival rates in T2DM patients [13]. 
Both HIIT and MCT have been found to lower blood sugar levels in 
diabetic patients, with HIIT showing greater effectiveness [14]. Strength 
training enhances insulin sensitivity primarily by increasing muscle 
mass, whereas aerobic exercises like HIIT and MCT improve insulin 
sensitivity by boosting skeletal muscle metabolic activity [15].

There is a growing interest in the molecular mechanisms underlying 
the effects of increased exercise and dietary changes in managing dia-
betes [16]. Lifestyle modifications are often combined with pharmaco-
logical interventions, such as the use of metformin, to help regulate 
blood glucose levels [17]. Metformin has been a widely used first-line 
treatment for T2DM for over six decades, although its exact molecular 
mechanism of action is still not fully elucidated [18]. However, studies 
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have shown that this antihyperglycemic medication reduces hepatic 
glucose production and intestinal glucose absorption, and enhances in-
sulin sensitivity by facilitating peripheral glucose uptake and utilization 
[19]. Importantly, unlike some other antidiabetic drugs, metformin does 
not typically induce hypoglycemia when used as a standalone therapy 
[20].

MicroRNAs (miRNAs or miRs) have emerged as potential novel 
biomarkers for T2DM due to their ability to modulate the expression of 
various genes involved in metabolism [21,22]. MicroRNAs are a class of 
small endogenous non-coding RNAs, approximately 22 nucleotides in 
length, that target and bind to the 3′-untranslated region (3′-UTR) of 
specific transcripts. This action leads to the downregulation of the 
expression of genes implicated in a range of cellular processes, including 
development, metabolism, differentiation, survival, proliferation, 
maturation, inflammation, angiogenesis, and immune responses 
[23–25]. Dysregulated expression of miRNAs can contribute to the 
pathogenesis of various diseases, including diabetes [23].

MiRNAs have been identified as significant players in the patho-
physiology of diabetes and its associated complications, as they exert 
regulatory control over glucose metabolism and insulin activity in 
pivotal metabolic tissues such as the liver, adipose tissue, and skeletal 
muscle [24]. Skeletal muscle, in particular, plays a crucial role in gov-
erning whole-body energy metabolism and glycemic regulation, ac-
counting for approximately 80 % of glucose uptake [25]. The impact of 
exercise on cellular homeostasis involves the modulation of miRNA 
expression in skeletal muscle [25]. Among these miRNAs are myo-
miRNAs, including miR-1, miR-133a, and miR-206, which are encoded 
by myosin genes and are specifically expressed in skeletal muscle during 
exercise and in the context of T2DM [26].

Prolonged aerobic exercise induces rapid fluctuations in plasma miR- 
133a, suggesting its role in exercise adaptation [27]. While the miR-133 
family (miR-133a-1, miR-133a-2, and miR-133b) promotes myoblast 
proliferation and differentiation by suppressing serum response factor 
(SRF) in C2C12 cells [28], exercise upregulates SRF in human skeletal 
muscle [28]. Interestingly, skeletal muscle miR-133a levels decrease 
during exercise, returning to near-normal levels post-exercise [29].

In the context of T2DM, the expression of miR-133a is elevated in the 
skeletal muscles of affected individuals, suggesting a potential link to 
insulin resistance. Endurance exercise has been shown to reduce miR- 
133a levels, but research findings are somewhat contradictory. For 
instance, a 14-week endurance training regimen resulted in increased 
expression of both miR-1 and miR-133a in certain muscle types. Spe-
cifically, miR-133a gene expression decreased in finger flexor muscles 
but increased in soleus muscles following the same duration of endur-
ance training [30]. Moreover, other studies have indicated that the in-
duction of diabetes leads to decreased expression of miR-133a and 
miR-1, followed by an increase in their levels post swimming exercise. 
These observations indicate that the regulation of miRNAs is complex 
and may be influenced by various factors such as muscle type, exercise 
modality, and the metabolic state of the individual. Consequently, the 
impact of resistance training on miR-133a expression remains to be fully 
elucidated, prompting further investigation into the differential effects 
of various exercise types on microRNA regulation in the context of 
diabetes [31].

Artificial intelligence (AI) is revolutionizing healthcare, particularly 
in managing chronic conditions like diabetes and researching molecular 
markers such as microRNAs (miRNAs). AI significantly enhances pre-
diction, diagnosis, and treatment strategies in these areas. AI’s impact 
on diabetes management is profound, improving patient outcomes 
through early detection, precise monitoring, and tailored treatments. 
Applications range from risk prediction using large datasets (genetic, 
clinical, lifestyle) to predict diabetes onset and identify high-risk in-
dividuals for proactive screening; to automated insulin delivery systems 
using continuous glucose monitoring (CGM) data for optimized glyce-
mic control; and to AI models predicting diabetic complications (reti-
nopathy, nephropathy, neuropathy, cardiovascular events) enabling 

early diagnosis and intervention. Furthermore, AI personalizes treat-
ment plans by considering individual factors and provides patient sup-
port tools and educational platforms for enhanced self-management 
[31–34].

Similarly, AI significantly advances miRNA research. AI algorithms 
can identify and classify miRNAs from large datasets, predict their target 
genes and regulated pathways, identify miRNAs as biomarkers for 
diagnosis, prognosis, and treatment response, and integrate miRNA data 
with clinical and genomic information for a holistic understanding of 
disease mechanisms supporting precision medicine approaches. This 
research highlights the synergistic effects of metformin and exercise 
training on miR-133a expression in diabetic rats and uses machine 
learning (specifically, the CatBoost algorithm) to develop a predictive 
model for miR-133a expression. This model identifies key metabolic 
predictors that could serve as biomarkers for personalized diabetes 
management. The combined power of AI in diabetes management and 
miRNA research promises significant advancements in diagnosis, treat-
ment, and personalized medicine.

2. Materials and methods

2.1. Animals

The experiments adhered to the NIH Guide for the Care and Use of 
Laboratory Animals (IR.MEDILAM.REC.1399.097). Sprague-Dawley 
rats (240 ± 20 g) were randomly assigned to one of nine groups (n =
10 rats/group). 

1. Control group (CG): Distilled water
2. Control group + MCT intervention (CMTG)
3. Control group + HIIT intervention (CHTG)
4. Diabetic control group (CDG): Distilled water
5. Diabetic group + metformin (DMG)
6. Diabetic group + MCT intervention (DMTG)
7. Diabetic group + HIIT intervention (DHTG)
8. Diabetic group + metformin + MCT intervention (DMMTG)
9. Diabetic group + metformin + HIIT intervention (DMHTG)

Rats were housed under standard laboratory conditions (21 ± 2 ◦C, 
60 ± 5 % humidity, 12-h light/dark cycle) with ad libitum access to 
standard rodent chow and water. An 8-day treadmill acclimation period 
preceded the main exercise protocols.

2.2. Induction of diabetes

Diabetes was induced in overnight-fasted rats via intraperitoneal 
injection of streptozotocin (STZ, 60 mg/kg in normal saline), followed 
15 min later by nicotinamide (200 mg/kg in normal saline) [16]. Blood 
glucose levels were measured seven days later; animals with plasma 
glucose >300 mg/dL were considered diabetic [32].

2.3. Metformin administration

Rats in groups DMG, DMMTG, and DMHTG received metformin 
(200 mg/kg BW) by oral gavage daily for 8 weeks [33]. All other groups 
received distilled water. It is important to note that this study investi-
gated the effects of metformin within the context of pre-existing dia-
betes. A separate control group of non-diabetic rats receiving metformin 
was not included.

2.4. Training protocol

The MCT regimen involved a 6-min warm-up at 40–50 % of VO2max 
(maximal oxygen consumption) at the start of the running protocol, 
followed by 40–60 min of exercise at 65%–75 % of VO2max, and 
concluded with a 6-min cool-down at 40–50 % of VO2max. The HIIT 
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protocol consisted of a 6-min warm-up phase at 50–60 % of VO2max at 
the beginning of the running protocol, followed by 3 intervals of 4 min 
each at an intensity of 90–100 % of VO2max. This was then succeeded 
by a 6-min cool-down phase at 50–60 % of VO2max. This was per-
formed three days a week for 15 min per session, for a total of 14 
weeks.

2.5. Measurement of biochemical factors

The rats’ body weights were measured 24 h post their final training 
session. The animals were anesthetized with ketamine (30–50 mg/kg, i. 
p) and xylazine (3–5 mg/kg, i.p). Blood samples were collected from 
their hearts for the analysis of glucose, triglycerides (TG), total choles-
terol (TC), high-density lipoprotein (HDL), low-density lipoprotein 
(LDL), and insulin levels. The serum samples were divided into aliquots 
and stored at − 20 ◦C.

Anticoagulant EDTA tubes were used to transfer the blood specimens 
for measuring HbA1c. Insulin concentrations in the serum were deter-
mined through the enzyme-linked immunosorbent assay (ELISA) 
method using the ELISA plate reader ELx800TM from BioTek, Winooski, 
VT, USA, following the manufacturer’s guidelines (DEVELOP, Canada).

Winooski, VT, USA, following the manufacturer’s guidelines 
(DEVELOP, Canada).

Fasting blood glucose (FBG), TG, TC, HDL, and LDL serum concen-
trations were enzymatically assessed using commercial kits from Pars 
Azemoon, Tehran, Iran, and analyzed with an autoanalyzer from Hita-
chi, Tokyo, Japan, according to the manufacturer’s instructions.

2.6. Skeletal muscle removal

The skeletal muscles of the thigh were carefully excised post blood 
sample collection to ensure minimal degradation. Following the 
removal, the tissues were promptly placed in a cryogenic container and 
immediately stored at − 80 ◦C to preserve RNA integrity for subsequent 
extraction.

2.7. Total RNA extraction and real-time PCR

Total RNA (mRNA and microRNA) was extracted from skeletal 
muscles using TRIzol reagent from Biotechnology-Iran following the 
manufacturer’s instructions. The concentration, purity, and quality of 
the total RNA were assessed using a NanoDrop 1000 spectrophotometer 
from Thermo Fisher Scientific, and sample integrity was confirmed 
through gel electrophoresis.

MicroRNA was transcribed into cDNA and quantified with a Quan-
tiMir RT kit from Bonyakhteh as per the manufacturer’s guidelines. 
Real-time PCR, employing SYBR Green reagent from Biotechnology- 
Iran, was utilized to measure the gene expression levels of miR-133a, 
with Snord-47 serving as an internal normalization control for RNA. 
Duplicate runs of all samples were conducted simultaneously, including 
negative controls without cDNA. The 2-ΔΔct method was applied to 
determine the relative quantitative levels of miR-133a.

2.8. Statistical analysis

Data analysis was performed using SPSS software (version 16.0). 
Normality of all parameters was assessed with a one-sample Kolmo-
gorov-Smirnov test. Differences within each group were analyzed with 
paired independent Student t-tests. Post-hoc least significant difference 
tests and one-way analysis of variance (ANOVA) were employed to 
compare differences between groups. Statistical significance was set at p 
< 0.05.

2.9. Machine learning model development and evaluation

A dataset comprising the measured metabolic parameters (body 

weight, blood glucose, insulin levels, HOMA-IR, HbA1c, total choles-
terol, HDL, LDL, and triglycerides) and the corresponding miR-133a 
expression levels was used to train and evaluate ML models. We 
compared the performance of multiple ML models, including Linear 
Regression, Ridge Regression, Lasso Regression, Random Forest, 
Gradient Boosting, Support Vector Regression, K-Nearest Neighbors, 
Decision Tree, XGBoost, CatBoost, and LightGBM. Model performance 
was assessed based on Mean Squared Error (MSE) and R-squared (R2) 
metrics.

2.9.1. Model evaluation metrics
To assess the performance of the models, we utilized the following 

metrics. 

• Mean Squared Error (MSE): This metric measures the average of the 
squared differences between actual and predicted values. The for-
mula for calculating MSE is:

MSE=
1
n
∑n

i=1
(Yi − Ŷi)

2 (1) 

where yiyi represents the actual values, ŷiŷi the predicted values, and nn 
the number of data points. Lower MSE values signify better model per-
formance, indicating smaller discrepancies between actual and pre-
dicted values. 

• R-squared (R2): This metric indicates how well the model’s pre-
dictions match the actual data. An R2 value closer to 1 suggests a 
better fit. The R2 is calculated using the formula:

R2 =1 −

∑n

i=1
(Yi − Ŷi )

2

∑n

i=1
(Yi − Y)2

(2) 

where ȳȳ is the mean of the actual values, and it reflects how closely the 
predicted values approximate the actual data.

2.9.2. Model performance summary
The performance of each model on the test dataset is summarized in 

Table 1. To provide a visual representation of the model performance, a 
3D scatter plot is presented in Fig. 1.

2.9.3. Analysis and best model selection
Based on the results outlined in Table 1, the CatBoost model emerges 

as the best-performing model with the lowest MSE (0.0003) and the 
highest R-squared value (0.8894). This indicates that CatBoost provides 
the closest predictions to the actual values and captures the variance in 
the data effectively.

Other models, such as XGBoost, also demonstrate strong perfor-
mance with positive R2 values, suggesting a good fit. Conversely, 
traditional models like Linear Regression and Ridge Regression exhibit 
poorer performance, as indicated by their negative R2 values, implying 

Table 1 
Performance of each model.

Model MSE R-squared

Linear Regression 0.0338 ¡12.5251
Ridge Regression 0.0241 ¡8.6554
Lasso Regression 0.0166 ¡5.6294
Random Forest 0.0050 ¡1.0114
Support Vector Regression 0.0234 ¡8.3768
K-Nearest Neighbors 0.0170 ¡5.8000
Decision Tree 0.0050 ¡1.0000
XGBoost 0.0022 0.1017
CatBoost 0.0003 0.8894
LightGBM 0.0515 ¡19.6122
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that they are less suitable for this particular dataset.

3. Results

The biochemical characteristics of rats in the nine experimental 
groups (Table 2) revealed that initial body weights did not differ among 
the groups. As a result, a significant decrease in body weight was 
observed in the CDG group compared to all other diabetic treatment 
groups, with the metformin-treated group (DMG) showing the most 
significant weight improvement.

Blood glucose levels were notably lower in the DMHTG group 
compared to CDG, while insulin levels were significantly reduced in 
both DMHTG and DMMTG compared to CDG. The Homeostatic Model 
Assessment-Insulin Resistance (HOMA-IR) index showed no significant 
differences among diabetic treated groups but significantly differed 
between these groups and CDG. HbA1c levels were significantly lower in 

DM and DM training groups than CDG. The body weight of rats in the 
healthy control group (CG) was 250 g, while the body weight of rats in 
the diabetic control group (DCG) decreased to 200 g. The body weight of 
rats in the treated diabetic groups that consumed metformin alone 
(DMG) and in combination with both type of exercise (DMMTG and 
DMHTG) increased compared to the diabetic control group (DCG).

Cholesterol levels were lower in all treated groups, particularly 
DMHTG, than in CDG. HDL levels increased in CDG but decreased in all 
diabetic treated groups. LDL levels were consistently low in diabetic 
treated groups. TG levels were significantly lower in DMHTG and 
DMMTG compared to CDG.

3.1. The expression levels of miR-133a in skeletal muscles

In skeletal muscles, the expression levels of miR-133a showed a 
significant increase in CDG compared to CG rats (p < 0.001) (Fig. 2). 
Treated diabetic rats exhibited decreased expression levels of miR-133a, 
with the lowest levels seen in DMMTG and DMHTG. While there were 
non-significant decreases in miR-133a expression in DMHTG and 
DMMTG groups, DMG showed lower expression of miR-133a compared 
to DMTG and DHTG (p < 0.001). Additionally, there was a non- 
significant decline in miR-133a expression in DMMTG compared to 
DMG (p > 0.001). The expression level of miR-133a in DMTG was higher 
than in DHTG, although this difference was not significant (p > 0.001).

3.2. Feature importance analysis

Understanding the importance of each feature in the predictive 
model is crucial for interpreting the model’s behavior and making 
informed decisions. The CatBoost algorithm provides a mechanism to 
evaluate the importance of each feature used in the model. Fig. 3 illus-
trates the feature importance based on the tuned CatBoost model.

3.2.1. Key insights

1. Body Weight (g):This feature emerged as the most significant pre-
dictor of miR-133a expression, with an importance score of 27.273. 
This highlights the strong relationship between body weight and 
miR-133a expression levels.

2. Blood Glucose (mg/dL): The second most important feature, with an 
importance score of 14.008. This indicates that blood glucose levels 
play a substantial role in predicting miR-133a expression.

3. Insulin (μIU/mL): This feature also showed high importance 
(11.684), suggesting that insulin levels are a key factor in the 
model’s predictions.

Fig. 1. 3D Scatter Plot of Model Performance. The plot visualizes the Mean 
Squared Error (MSE) and R-squared values for each model, with the z-axis 
representing the model indices.

Table 2 
Clinical and biochemical variables in diabetic and healthy rats.

Variables 
Groups

Weight (g) Glucose (mg/dl) Insulin (μIU/mL) Insulin resistance HbA1C (mmol/l) LDL (mg/dl) HDL (mg/dl) TC (mg/dl) TG (mg/dl)

CG 250 ± 9 105.2 ± 20 3.6 ± 0.1 0.93 ± 0.10 4.1 ± 0.06 26.2 ± 0.65 27.0 ± 0.12 60.4 ± 2 106.01 ± 9
CMTG 240 ± 5 95.01 ± 15 3.12 ± 0.06 0.73 ± 0.09 4.0 ± 0.08 24.9 ± 0.3 25.5 ± 0.13 58.01 ± 9 95.02 ± 10
CHTG 231 ± 6 95.0 ± 10 3 ± 0.08 0.70 ± 0.06 3.8 ± 0.05 23.5 ± 0.48 22.0 ± 0.26 56.21 ± 4 89.1 ± 4
CDG 200 ± 4# 400.01 ± 22 5.58 ± 0.1 5.51 ± 0.02 7.0 ± 0.15 34.1 ± 0.3 36.7 ± 0.34# 82.1 ± 8 166.3 ± 5
DMG 230 ± 6#* 152.05 ± 9 4.02 ± 0.22 1.50 ± 0.06* 5.7 ± 0.06* 28.4 ± 0.24 29.5 ± 0.14 70.2 ± 4 114.4 ± 10*
DMTG 215 ± 7 175.1 ± 10 4.56 ± 0.19 1.97 ± 0.03* 6.4 ± 0.05 33.2 ± 0.2 29.5 ± 0.1 65.7 ± 10 141.2 ± 7
DHTG 212 ± 3 170.5 ± 17 4.38 ± 0.16 1.84 ± 0.01* 6.1 ± 0.1 31.5 ± 0.29 27.0 ± 0.15* 62.3 ± 10* 138.1 ± 4
DMMTG 225 ± 5* 140.3 ± 9* 3.6 ± 0.07* 1.24 ± 0.08* 5.5 ± 0.08* 28.4 ± 0.1* 26.0 ± 0.2* 63.1 ± 5* 109.3 ± 10*
DMHTG 222 ± 4* 128.5 ± 7* 3.6 ± 0.1* 1.14 ± 0.10* 5.3 ± 0.09* 25.6 ± 0.2* 25.0 ± 0.1* 62.2 ± 4* 106.4 ± 3*
p-value 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

CG: Control group, CDG: diabetic control group, CMTG: control performing MCT group, CHTG: control performing HIIT group, DMG: diabetic receive metformin 
group, DMTG: diabetic performing MCT group, DHTG: diabetic performing HIIT group, DMMTG: diabetic receiving metformin and performing MCT group, DMHTG: 
diabetic receiving metformin and performing HIIT group. LDL: low-density lipoprotein, HDL: High-density lipoprotein, triglyceride (TG), total cholesterol (TC), 
Glycosylated Hemoglobin (HbA1C), Data are means ± SEM (n = 10). *Significant difference with diabetic (C) (p˂0.05). # Significant difference with healthy group 
(p˂0.05).
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4. HDL (mg/dL) and Total Cholesterol (mg/dL):** Both features had 
importance scores of 11.156 and 9.618, respectively, indicating their 
significant influence on the prediction of miR-133a expression.

5. HOMA-IR: With an importance score of 7.955, this feature was also 
identified as a critical predictor.

6. Triglycerides (mg/dL) and LDL (mg/dL): These features had impor-
tance scores of 6.021 and 4.916, respectively, contributing notably to 
the model.

7. HbA1c (mmol/l): This feature had a moderate importance score of 
5.587.

8. Group Variables: Among the categorical group variables, 
Group_DMHTG showed the highest importance (1.029), while other 
group variables had lower importance scores, indicating their rela-
tively smaller impact on the prediction.

The feature importance analysis underscores the significance of body 

Fig. 2. Fold change in the expression levels of miR-133a in the skeletal muscles of healthy and diabetic rats (n = 10). The groups compared are indicated as follows: 
healthy rats (#), diabetic rats (*), and additional comparisons (@). #: Represents the expression levels in healthy rats,*: Represents the expression levels in diabetic 
rats, @: Indicates comparisons among different experimental groups.

Fig. 3. Feature Importance in Predicting miR-133a Expression Levels Using CatBoost Regression Model.
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weight, blood glucose, insulin levels, and cholesterol-related metrics in 
predicting miR-133a expression. This information is valuable for un-
derstanding the underlying factors influencing miR-133a levels and for 
potentially guiding further biological research or clinical interventions.

3.3. Visualizing model predictions vs. actual values

To assess the performance of our CatBoost regression model, we 
visualized the relationship between the actual and predicted values for 
miR-133a expression levels. The plot in Fig. 4 provides a scatter plot of 
the actual versus predicted values, with additional annotations high-
lighting the differences between these values. We created a combined 
dataset that includes both the training and testing data predictions. The 
difference between the actual and predicted values was calculated for 
each data point, and these differences were annotated on the scatter 
plot. The scatter plot in Fig. 4 reveals the accuracy of the CatBoost 
regression model by illustrating how closely the predicted values align 
with the actual values. The red dashed line serves as a benchmark for 
perfect predictions. Data points that lie closer to this line indicate higher 
prediction accuracy. The annotations showing the differences provide 
insight into the magnitude of prediction errors, which helps in identi-
fying areas where the model may require further tuning or 
improvement.

In Fig. 4, each data point represents the relationship between actual 
and predicted miR-133a expression levels across different experimental 
groups in the study. The x-axis displays the actual miR-133a expression 
levels obtained through real-time PCR measurements, while the y-axis 
shows the predicted values generated by the CatBoost machine learning 
model based on metabolic parameters. Each point on the scatter plot 
corresponds to an individual observation (rat), where the proximity of 
the point to the red dashed line indicates the accuracy of the prediction. 
Points closer to the line signify a minimal difference between actual and 
predicted values, reflecting higher model accuracy.

4. Discussion

The purpose of this research was to explore the influence of two 
different exercise regimens (HIIT and MCT) as well as metformin, either 
independently or in combination, on the expression of miR-133a in rats 
with diabetes and those without. Moreover, we investigated the effects 
of exercise training, metformin, and their combination on body weight, 
various biochemical parameters, and lipid profiles across all the animal 
groups.

Our results revealed a notable increase in miR-133a expression in the 
skeletal muscles of the CDG group in comparison to the CG group. In 
summary, miR-133 is implicated in the pathophysiology of diabetes 
through various mechanisms. Specifically, research has demonstrated 
that miR-133 in human skeletal muscle is regulated by sterol regulatory 
element-binding protein 1c (SREBP-1) and myocyte enhancer factor 2C 
(MEF2C), which are associated with impaired insulin response in pa-
tients with T2D [35]. Notably, SREBP-1 is activated by insulin, which 
inhibits MEF2C, leading to the downregulation of miR-133 [36,37]. 
Additionally, studies on insulin-resistant mice revealed that miR-133 is 
dysregulated in skeletal muscle due to altered insulin-like growth factor 
1 (IGF-1) signaling, which includes validated targets of miR-133 [38]. 
This microRNA has been shown to downregulate IGF-1 receptor 
(IGF-1R) expression, impacting the signaling pathways involved in 
skeletal myogenesis, hence positioning miR-133 as a potential thera-
peutic target for muscle disorders [37]. Importantly, low levels of IGF-1 
are correlated with insulin resistance, contributing to the development 
of impaired fasting glucose, impaired glucose tolerance, and T2D [39,
40]. Furthermore, overexpression of miR-133 in cardiomyocytes has 
been linked to a reduction in insulin-sensitive glucose transporter 
(GLUT4) expression, thereby diminishing insulin-stimulated glucose 
uptake through the targeting of KLF15, a key transcription factor 
regulating GLUT4 [41]. Additionally, several targets of miR-133, 
including IGF-1, SLC7A8, SLC46A1, SLC2A12, and CD47, have been 
predicted [39]. Collectively, these findings underscore the significance 
of miR-133 in glucose metabolism and insulin signaling, suggesting its 
potential role in the management of diabetes and related muscle 
disorders.

The levels of miR-133a were significantly reduced in the groups that 
underwent exercise training and/or received metformin, as opposed to 
the CDG group. Particularly, diabetic rats engaged in MCT and HIIT 
exercises along with metformin administration exhibited a substantial 
decrease in miR-133a expression when compared to the other groups 
receiving diabetic treatments. Additionally, Drigny et al. have substan-
tiated that both long-term HIIT and MCT training can bring about 
similar effects on ventricular repolarization indices, with HIIT showing a 
more pronounced effect in enhancing certain cardio-metabolic risk 
factors [40].

Adaptive responses to HIIT compared to traditional exercise require 
less time commitment [42]. The efficacy of HIIT over MCT in T2DM 
patients may stem from its rapid metabolic impact due to maximal en-
ergy utilization [43]. While MCT proves as effective as HIIT over an 
extended period for enhancing glucose metabolism, recent research in-
dicates that the myomiRs miR-1, miR-133a/b, and miR-206 exhibit 
variations in response to endurance exercise and training [44]. Studies 
reveal an initial rise in miR-1 and miR-133a levels pre-training, which 
return to baseline post-training cessation. However, contrary to some 
findings, miR-133a expression in T2DM patients’ skeletal muscles is 
reportedly reduced. Endurance exercise has been linked to increased 
miR-133a expression, while endurance training may downregulate 
miR-192 expression. Notably, resistance and endurance training in 
muscle tissue did not significantly impact miR-133a levels in some in-
vestigations. Circulating miRNAs remained stable after a combined ex-
ercise regimen in healthy men, whereas swimming training notably 
increased miR-133a and miR-21 gene expression [45].

The regulation of miR-133a expression in skeletal muscles through 
exercise training is intricately linked to the intensity, duration, and type 
of exercise [44]. While the role of specific miRNAs in metabolic regu-
lation is known, only a limited number have been studied in diabetic 
patients’ skeletal muscles. Limited research exists on the effects of HIIT 
and MCT, alone or combined with metformin, on miR-133a expression 
in diabetic rats’ skeletal muscles. The observed reduction in miR-133a 
expression in diabetic rat muscles with metformin treatment suggests 
its potential in regulating glucose levels.

The current research suggests that a combination of metformin and 
different types of exercise training can lead to decreased insulin and Fig. 4. Model Performance: Actual vs. Predicted values.
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glucose levels in diabetic rats [46]. Various studies offer both supporting 
and contradictory evidence to this conclusion. Reductions in insulin and 
serum glucose levels following exercise may be attributed to factors such 
as increased glucose transporter proteins (GLUT4), reduced free fatty 
acid secretion, enhanced muscle glucose uptake, and improved glucose 
availability for muscles [47]. In the diabetic group receiving metformin, 
blood glucose levels decreased compared to the control group. Metfor-
min is known to lower blood glucose levels by inhibiting hepatic glucose 
production and enhancing insulin sensitivity [48]. A decrease in insulin 
and glucose levels typically signifies improved insulin sensitivity. In this 
study, the Homeostatic Model Assessment of Insulin Resistance 
(HOMA-IR) values in the treated diabetic group decreased compared to 
the control group, indicating lower insulin resistance and higher insulin 
sensitivity [49].

HbA1C levels in diabetic rats and those undergoing MCT and HIIT 
training decreased compared to the control group [50]. While some 
studies have reported various effects or no changes in HbA1C levels 
post-exercise, our findings align with significant reductions [51]. 
Metformin-treated diabetic rats showed unexpected decreases in 
average weight and blood glucose levels, possibly attributed to 
enhanced fat burning and reduced fat mass in the HIIT group compared 
to MCT. Notably, HDL, LDL, total cholesterol (TC), and triglyceride (TG) 
levels were lower in treated diabetic rats compared to the control group. 
These changes in lipid profile could be linked to increased lipoprotein 
lipase activity, which promotes fat metabolism, and reduced triglyceride 
lipase activity [52].

HDL levels increased unexpectedly in the control diabetic group 
compared to the healthy control group, likely due to its role in removing 
and transferring excess cholesterol in the diabetic group. Cholesterol 
levels in the diabetic group also significantly increased, possibly due to 
HDL’s removal action, leading to higher HDL levels. These findings are 
in line with a study by Eatemady-Boroujeni et al. creating a consistent 
pattern of results [53]. The synergistic effect observed with HIIT com-
bined with metformin highlights the potential for multimodal thera-
peutic strategies in diabetes management. This effect might be 
attributed to the combined actions of HIIT, which increases glucose 
uptake and utilization in skeletal muscle, and metformin, which en-
hances insulin sensitivity and reduces hepatic glucose production. The 
decreased miR-133a levels, in turn, may contribute to the improved 
metabolic response.

Nie Y.(2022) reported that six weeks of endurance exercise training 
increased the transcriptional level of miR-133a and stimulated mito-
chondrial biogenesis in wild-type mice, but failed to improve mito-
chondrial function in miR-133a–deficient mice. He mentioned an 
increase in the potential target of miR-133a, the IGF-1 receptor, along 
with hyperactivation of Akt signaling in miR-133a-deficient mice, which 
was consistent with lower transcription of mitochondrial biogenesis 
regulators. These findings indicate an essential role of miR-133a in 
skeletal muscle mitochondrial biogenesis, exercise tolerance, and 
response to exercise training [54].

In this study, the expression level of mir-133a decreased with exer-
cise but increased in diabetic control rats. It was determined that the 
effect of HIIT exercise was greater than MCT in reducing miR-133a 
expression, although this difference was not significant. These discrep-
ancies may be due to variation in the severity, duration, age and gender 
of the research samples. The results indicated that skeletal muscle 
miR133a is upregulated in diabetic control rats, and through exercise, its 
expression is downregulated. Therefore, we hypothesize that mir-133a 
may serve as a biomarker for T2DM. Additionally, microRNAs could 
be used for early diagnosis, and monitoring the progression and severity 
of T2DM, given their pancreatic specific expression and stability in 
various body fluids and muscles (57).

4.1. Implications for biological research and clinical interventions

The identification of key predictors such as body weight, blood 

glucose, insulin levels, and cholesterol metrics suggests important con-
siderations for biological research and clinical practice, warranting 
further investigation.

4.1.1. Biological research
Mechanistic Studies: The observed association between body 

weight and miR-133a expression indicates a potential link between 
adiposity and miRNA regulation. Further research is needed to confirm 
these findings explore the molecular mechanisms that may underlie 
these associations.

Metabolic Pathways: By examining the relationships between 
blood glucose, insulin levels, and miR-133a expression, future studies 
could investigate how these metabolic pathways interact. This could 
enhance our understanding of metabolic regulation linked to miRNA 
profiles.

Lipid Metabolism: The connection between HDL, total cholesterol, 
and triglycerides in miR-133a expression suggests that lipid metabolism 
may influence this regulation. Further research could investigate how 
change in lipid homeostasis impact miRNA expression, potentially 
identifying areas for therapeutic exploration.

4.1.2. Clinical interventions
Biomarker Development: Changes in miR-133a levels may be 

investigated as indicators in patients with abnormal body weight or 
blood glucose levels. More research is essential.

Personalized Medicine: The insights from studies like this one 
could inform more individualized treatment strategies based on a pa-
tient’s metabolic profile. This might help prioritize interventions in at- 
risk populations based on miR-133a expression patterns.

Therapeutic Targeting: The new findings from future studies, may 
provide initial ideas for therapeutic avenues aimed at modulating miR- 
133a expression.

4.1.3. Future directions
Further validation in larger and more diverse cohorts is essential to 

confirm our findings. Also, Future research should include longitudinal 
studies to track changes in miR-133a expression over time in relation to 
the identified key predictors. This would help establish causal re-
lationships and temporal dynamics. Integrating miRNA data with other 
omics datasets (e.g., genomics, proteomics, metabolomics) could pro-
vide a more comprehensive understanding of the regulatory networks 
influencing miR-133a

expression.Additionally, experimental studies exploring the effects 
of specific interventions (e.g., dietary changes, pharmacological treat-
ments) on miR-133a expression and its key predictors could provide 
actionable insights for clinical practice.

Elevated miR-133a expression is observed in the skeletal muscle of 
diabetic rats. Combining exercise training (especially HIIT) with met-
formin shows promising synergistic effects in reducing miR-133a levels 
and managing diabetes. Both MCT and HIIT training, even without 
metformin, are effective in lowering miR-133a levels in diabetic rats, 
indicating that intensive exercise alone can positively impact miR-133a 
levels and regulate biochemical factors in diabetic animals.

5. Conclusion

This study indicated the notable potential of combined interventions, 
including exercise (HIIT and MCT) a long with metformin, in reducing 
miR-133a expression. The synergistic effect of these interventions is 
especially, noticeable when HIIT is combined with metformin. Addi-
tionally, the use of machine learning techniques, specifically CatBoost, 
in predicting miR-133a expression, yielded promising results. Therefore, 
it seems that miR-133a may be useable as a biomarker for monitoring 
intervention effectiveness and predicting disease progression. Further 
research should focus on exploring the underlying mechanisms of these 
synergistic effects and translating these findings into actionable clinical 
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