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Abstract: Technology to generate single cell RNA-sequencing (scRNA-seq) datasets and tools to
annotate them have advanced rapidly in the past several years. Such tools generally rely on existing
transcriptomic datasets or curated databases of cell type defining genes, while the application of
scalable natural language processing (NLP) methods to enhance analysis workflows has not been
adequately explored. Here we deployed an NLP framework to objectively quantify associations
between a comprehensive set of over 20,000 human protein-coding genes and over 500 cell type
terms across over 26 million biomedical documents. The resultant gene-cell type associations
(GCAs) are significantly stronger between a curated set of matched cell type-marker pairs than
the complementary set of mismatched pairs (Mann Whitney p = 6.15 × 10−76, r = 0.24; cohen’s D
= 2.6). Building on this, we developed an augmented annotation algorithm (single cell Annotation
via Literature Encoding, or scALE) that leverages GCAs to categorize cell clusters identified in
scRNA-seq datasets, and we tested its ability to predict the cellular identity of 133 clusters from nine
datasets of human breast, colon, heart, joint, ovary, prostate, skin, and small intestine tissues. With
the optimized settings, the true cellular identity matched the top prediction in 59% of tested clusters
and was present among the top five predictions for 91% of clusters. scALE slightly outperformed an
existing method for reference data driven automated cluster annotation, and we demonstrate that
integration of scALE can meaningfully improve the annotations derived from such methods. Further,
contextualization of differential expression analyses with these GCAs highlights poorly characterized
markers of well-studied cell types, such as CLIC6 and DNASE1L3 in retinal pigment epithelial
cells and endothelial cells, respectively. Taken together, this study illustrates for the first time how
the systematic application of a literature-derived knowledge graph can expedite and enhance the
annotation and interpretation of scRNA-seq data.

Keywords: single cell genomics; natural language processing

1. Introduction

The development of single cell transcriptomic technologies has enabled the dissection
of cellular heterogeneity within complex tissue environments [1–5]. Typically, the process-
ing workflows for such studies involve unsupervised clustering of single cells based on
their gene expression profiles followed by the assignment of a cell type annotation to each
identified cluster. While cell type annotation was initially performed via manual inspection
of cluster-defining genes (CDGs), there have been a number of algorithms developed
recently to automate this process [6–13].
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Manual cell type annotation inherently relies on an individual’s knowledge of cellular
gene expression profiles. For example, an immunologist may know based on their literature
expertise and firsthand experience that CD19 and CD3E are specific markers of B cells and
T cells, respectively. On the other hand, the existing methods for automated annotation
leverage previously generated transcriptomic datasets or curated lists of cell type-defining
genes to determine which cell type a newly identified cluster most closely resembles.
Interestingly, it is now common for researchers to employ both manual and automated
methods for cluster annotation [14–17], as one can be used to check the veracity of the other.
Importantly, there remains an unmet need for tools which augment manual annotation
by transparently and objectively leveraging the associations between genes and cell types
which are embedded in the literature.

Rare or novel cell types which are marked by well-studied genes have been iden-
tified through scRNA-seq, such as the CFTR-expressing pulmonary ionocyte described
recently [18,19]. Conversely, scRNA-seq should also enable researchers to identify novel
markers of even well characterized cell types. However, there is currently no standardized
method to assess the level of literature evidence for each individual CDG during the pro-
cess of manual or automated cell type assignment. As a result, this step is often foregone in
practice, in favor of proceeding to downstream workflows such as differential expression,
pseudotime projection, or analysis of receptor-ligand interactions.

Here, we leverage a literature-derived knowledge graph to augment the annotation
and interpretation of scRNA-seq datasets. We first deploy an NLP framework to quantify
pairwise associations between human protein-coding genes and cell types throughout
the biomedical literature contained in PubMed. We validate that these quantified gene-
cell type associations (GCAs) recapitulate canonical cell type defining genes and then
harness them to perform unbiased literature-driven annotation of scRNA-seq datasets.
Finally, we demonstrate that integration of these literature encoded GCAs into a differential
expression workflow can highlight unappreciated gene expression patterns that warrant
further experimental evaluation.

2. Methods
2.1. Generation of Cell Type Vocabulary

To create a database of cell types, we first manually curated over 300 cell types into
a directed acyclic graph structure. Specifically, each unique cell type corresponds to one
node in the graph, which can be connected to one or more parent nodes (i.e., broader cell
type categories) and one or more child nodes (i.e., more granular subsets of the given cell
type). For example, “T cell” corresponds to one node, of which “lymphocyte” is a parent
node and “CD4+ T cell” is a child node. Where applicable, we also manually added aliases
or acronyms for each cell type. We merged this manually curated cell graph with the EBI
Cell Ontology graph [20–22] by mapping identical nodes to each other and preserving all
parent child relationships documented in each graph. This merging was needed because
there are various cell types which have been identified in the scRNA-seq datasets that we
used in this study (e.g., cell types defined by markers or functional states) which have not
yet been incorporated into the Cell Ontology graph. Further, there are some instances in
which relevant edges are missing from Cell Ontology (e.g., there is no relationship captured
between “foam cells” and “macrophages”).

We expanded each node to include synonymous tokens by considering synonyms
from the EBI Cell Ontology and Unified Medical Language System database [23] and from
our own custom alias identification service. After expansion, we reviewed our updated
graph to remove erroneously introduced synonyms and performed an internal graph check
to ensure that each token (i.e., cell type name or synonym thereof) occurred in one and
only one node. The complete cell graph is given in File S1.

For the cell type annotation algorithm described subsequently, this graph was filtered
to retain the 556 nodes which were strongly associated (local score ≥ 3; see description
of local scores below) with at least one human protein-coding gene; these 556 nodes are
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subsequently referred to as “candidate cell types”. We also defined a set of 104 “priority
nodes” which intend to capture major cell types or cell type categories, to which all other
candidate cell types in the filtered graph are mapped. The set of all candidate cell types,
along with the priority nodes to which they map, are given in File S2 (indexed by candidate
cell type) and File S3 (indexed by priority node).

2.2. Generation of Gene Vocabulary

We obtained the full set of human protein-coding genes from HGNC [24] and curated
potential gene synonyms from various sources including ENTREZ, UniProt, Ensembl, and
Wikipedia. For specific gene families, we also manually added family-level synonyms
which are not captured by synonyms curated at the single gene level. This included genes
encoding the following proteins: T cell receptor subunits, immunoglobulin subunits, class
II MHC molecules, hemoglobin subunits, surfactant proteins, chymotrypsinogen subunits,
CD8 subunits (CD8A, CD8B), and CD3 subunits (CD3E, CD3G, CD3D, and CD247). The
complete gene vocabulary is given in File S4.

For the cell type annotation algorithm described subsequently, we only considered
protein-coding genes which were strongly associated with at least one cell type in the
literature (local score ≥ 3; see description of local scores below). Further, we excluded mi-
tochondrially encoded genes (gene names starting with “MT-”), genes encoding ribosomal
proteins (gene names starting with “RPS”, “RPL”, “MRPS”, or “MRPL”), and MHC class I
genes except for HLA-G (HLA-A, HLA-B, HLA-C, HLA-E, HLA-F). These filtering steps
yielded a final set of 5113 “eligible genes” for consideration during the cell type annotation
steps (indicated in File S4).

2.3. Quantification of Literature Associations between Genes and Cell Types

To quantify gene-cell type associations (GCAs) in biomedical literature, we computed
local scores as described in detail previously [25]. Briefly, this metric measures how
frequently two tokens A and B are found in close proximity to each other (within 50 words
or fewer) in the full set of considered documents (corpus), normalized by the individual
occurrences of each token in that corpus. In this case, the two tokens are a gene and a cell
type, and the corpus includes all abstracts in PubMed along with all full PubMed Central
(PMC) articles.

To calculate the score, we first compute the pointwise mutual information between A
and B as pmiAB = log10([AdjacencyAB * NC]/[NA * NB]), where AdjacencyAB is the number
of times that Token A occurs within 50 words of Token B (or vice versa), NA and NB are the
number of times that Tokens A and B each occur individually in the corpus, and NC is the
total number of occurrences of all tokens in the corpus. The local score between Tokens A
and B is then calculated as LSAB = ln(AdjacencyAB + 1)/[1 + e−(pmiAB−1.5)]. A local score of
0 indicates that Tokens A and B have never occurred within 50 words of each other, and
a local score of 3 indicates a co-occurrence likelihood of approximately 1 in 20. Thus, we
typically consider a local score greater than or equal to 3 to represent a significant literature
association.

A matrix of GCAs (i.e., pairwise local scores between all genes and all candidate cell
types) is provided in File S5. Notably, the maximum GCA varies substantially across the set
of candidate cell types (range 3.00–12.54; see Figure S1), which reflects the fact that different
cell types have been characterized to different degrees with respect to the landscape of all
human genes. To account for this, we also computed “scaled GCAs” by dividing all GCAs
for a given cell type by the maximum GCA for that cell type, such that the maximum scaled
GCA for every cell type is equal to 1. The matrix of scaled GCAs is provided in File S6.

2.4. Curation of Canonical Cell Type Defining Genes

To test the utility of literature-derived GCAs in capturing gene expression profiles, we
first manually curated a set of cell type defining genes that were indicated by authors to
have been used during cell type annotation in previously published manually annotated
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scRNA-seq datasets [26–33]. The complete set of manually curated cell type defining genes
is provided in Table S1. We also obtained a previously curated set of cell type defining
genes from the Panglao database [34]. From this database, genes were extracted that were
labeled as canonical human markers with a ubiquitousness index < 0.06, human sensitivity
> 0, and mouse sensitivity > 0 (File S7).

Using these curated sets of defining genes, all pairwise gene-cell type combinations
and their corresponding local scores (GCAs) were then classified as “matched” or “mis-
matched”. A matched GCA refers to the local score between a cell type and one of its
defining genes (e.g., B cells and CD19); a mismatched GCA refers to the local score between
a cell type and any non-defining gene for that cell type (e.g., B cells and CD3E). That is,
the mismatched pairs are obtained by simply excluding matched pairs from the set of all
unique pairwise combinations of the genes and cells contributing to the matched pairs.
From the manually curated set, there were 174 matched pairs and 5678 mismatched pairs;
from the Panglao database, there were 2291 matched pairs and 154,313 mismatched pairs.

For the manually curated set, we found that each cell type had at least one “matched”
gene with a local score ≥ 3. To depict this finding and to illustrate that generally a gene
that is strongly associated with one cell type is not strongly associated with most others,
we plotted a heatmap of local scores in which the dimensions were cell types and genes,
where one gene with a local score ≥ 3 was selected for each cell type.

2.5. ROC Analysis of Local Scores to Classify Matched GCAs versus Mismatched GCAs

To evaluate the ability of our literature-derived GCAs (local scores) to classify gene-cell
type pairs as matched or mismatched, we performed a Receiver Operating Characteristic
(ROC) analysis and computed the area under the ROC curve (AUC) using the “pROC”
package (version 1.17.0.1) in R (version 4.0.3). Briefly, we tested over 500 thresholds (sliding
intervals of 0.01 starting at 0) to determine the sensitivity and specificity of local scores
in classifying gene-cell type pairs as matched or mismatched. We also repeated this ROC
analysis 10,000 times with randomly shuffled assignments of “matched” and “mismatched”
to empirically confirm a lack of predictive power for local scores in performing this classifi-
cation with the given sets of genes and cell types when labeled at random.

2.6. Processing of scRNA-seq Studies

For each individual human scRNA-seq study listed in File S8 [26–30,33,35–68], we ob-
tained a counts matrix and metadata file (if available) from the Gene Expression Omnibus
or another public data repository. We then processed each dataset using Seurat v3.0 [69].
Cells with fewer than 500 counts or with more than 10% of counts mapping to mitochon-
drial genes were excluded. Doublets were excluded using scrublet (double score > 0.3) [70].
Normalization was performed using the NormalizeData function, with the method set
to “LogNormalize” and the scale factor set to 10,000, such that unique molecular index
(UMI) counts were converted into values of counts per 10,000 (CP10K). Scaling was per-
formed for all genes using the ScaleData function. The top 2000 most variable genes were
identified using the FindVariableFeatures function, and these genes were used as input
to the subsequent steps. Linear dimensionality reduction was performed using principal
component analysis (PCA), and then clusters were identified using the FindNeighbors
and FindClusters functions. The top principal components explaining at least 90% of the
variance were used in the FindNeighbors function, and various cluster resolutions (0.25, 0.5,
1.0, 1.5, 2.0) were tested in the FindClusters function. Cell type annotations were obtained
from associated metadata files if available; otherwise, annotation was performed manually,
guided by the cell types reported in the associated publication.

2.7. Cell Type Annotation Algorithm

To perform automated annotation of a given cluster identified from a scRNA-seq
dataset using our literature-derived knowledge graph, we established an algorithm (single
cell Annotation via Literature Encoding, or scALE) following these steps: (1) identify the
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top N cluster defining genes (CDGs); (2) compute local scores between these CDGs and all
candidate cell types; (3) compute local score vector norms for each candidate cell type; and
(4) rank candidate cell types for annotation plausibility based on their vector norms. Each
of these steps is described in further detail in the Supplemental Methods.

At each step, we tuned one or more hyperparameter settings including: (1) the
reference data used to compute fold change values, which were used to rank candidate
CDGs (within study, within tissue, or pan-study); (2) the number of CDGs used to compute
GCA vector norms (1, 3, 5, 10, or 20); (3) the weighting metric used in calculating GCA
L2 vector norms (fold change, log2FC, or unweighted); (4) the GCA version used to
calculate L2 vector norms (raw or scaled); and (5) the metric used to rank the outputted
cell type predictions (L2 norm, modified L0 norm, or composite rank). Each tuning
setting is described in further detail in the Supplemental Methods. In total, we tested 195
combinations of hyperparameter settings.

2.8. Optimization and Evaluation of Cell Type Annotation Algorithm

For each cluster CA and a given combination of hyperparameter settings (“mode”),
scALE outputs a table which ranks all 556 candidate cell types, from most likely annotation
to least likely annotation. We used our cell graph to map the true identity of CA to its
priority node (“true priority node”), and each candidate cell type was similarly mapped to
its priority node (“candidate priority node”). A cell type annotation was considered correct
if the true priority node was the same as the candidate priority node, and we determined
the success (or failure) of labeling the given cluster by identifying the minimum (best) rank
at which this was the case.

We first applied scALE to a set of 13 dedicated tuning studies (containing a total of
185 clusters from 7 human tissues) to optimize the algorithm settings. The tuning studies
are provided in Table 1 [26–30,33,35–41]. For each mode, we first determined the fraction
of clusters (out of 185) for which the correct cell type annotation was present in the top
K predictions, where K ranges from 1 to 104 (the total number of cell type priority nodes,
as defined previously). For real-world application by investigators, we reasoned that an
annotation would be most useful if the correct cell type was given with the top prediction,
and that an annotation could also be considered useful if the correct cell type was present
among the top five predicted cell types.

To account for this definition of performance, we generated a subset of the cumulative
distribution plot for each parameter combination, illustrating the fraction of clusters an-
notated correctly within a given rank (ranging from rank 1 to rank 5). We then estimated
the area under this curve (denoted as AUCRanks 1–5) by calculating the average fraction
of correct cluster annotations within the top 1, 2, 3, 4, and 5 ranks. Parameter combina-
tions which yielded the highest fraction of correctly annotated clusters and the highest
AUCRanks 1–5 were taken as the optimal algorithm settings.

To validate the algorithm, we then applied scALE to a set of nine dedicated testing
studies (containing a total of 133 clusters from eight human tissues), using the optimized
combination of hyperparameter settings from our tuning experiments: (1) use pan-study
reference, (2) consider top 20 CDGs, (3) weight GCAs by log2FC when computing L2 vector
norms, (4) use scaled GCAs when computing L2 vector norms, and (5) rank final outputs
by L2 norm. As above, we determined the fraction of correctly annotated clusters and the
AUCRanks 1–5, and we compared these values to those obtained when scALE was applied
to the tuning studies. The testing studies are provided in Table 2 [71–79].
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Table 1. List of studies that were used to tune the cluster annotation algorithm. The columns indicate (1) the tissue
from which cells were derived in the study, (2) the title of the published study or dataset, and (3) the reference for the
study [26–30,33,35–41]. The three pancreas datasets were integrated for one single analysis of cluster annotation.

Tissue Study Title Reference

Blood Immune Cell Atlas: Blood Mononuclear Cells (2 donors, 2 sites) Immune Cell Atlas

Blood A single-cell atlas of the peripheral immune response in patients with severe COVID-19 PMID 32514174

Kidney Spatiotemporal immune zonation of the human kidney PMID 31604275

Liver Resolving the fibrotic niche of human liver cirrhosis at single-cell level PMID 31597160

Liver A human liver cell atlas reveals heterogeneity and epithelial progenitors. PMID 31292543

Lung A cellular census of human lungs identifies novel cell states in health and in asthma PMID 31209336

Lung A single-cell atlas of the human healthy airways PMID 32726565

Pancreas De Novo Prediction of Stem Cell Identity using Single-Cell Transcriptome Data PMID 27345837

Pancreas Single-Cell Transcriptome Profiling of Human Pancreatic Islets in Health and Type 2 Diabetes PMID 27667667

Pancreas A Single-Cell Transcriptome Atlas of the Human Pancreas PMID 27693023

Placenta Single-cell reconstruction of the early maternal-fetal interface in humans PMID 30429548

Retina Single-cell transcriptomic atlas of the human retina identifies cell types associated with
age-related macular degeneration PMID 31653841

Retina Single-cell transcriptomics of the human retinal pigment epithelium and choroid in health
and macular degeneration. PMID 31712411

Table 2. List of human studies that were used to test the cluster annotation algorithm. The columns indicate (1) the tissue
from which cells were derived in the study, (2) the title of the published study or dataset, and (3) the reference for the
study [71–79].

Tissue Study Title Reference

Breast Single-Cell Map of Diverse Immune Phenotypes in the Breast Tumor Microenvironment PMID 29961579

Colon Intra- and Inter-cellular Rewiring of the Human Colon during Ulcerative Colitis PMID 31348891

Heart Single-cell reconstruction of the adult human heart during heart failure and recovery reveals
the cellular landscape underlying cardiac function PMID 31915373

Joint (Knee) Synovial cell cross-talk with cartilage plays a major role in the pathogenesis of osteoarthritis PMID 32616761

Ovary Single-cell reconstruction of follicular remodeling in the human adult ovary PMID 31320652

Prostate A Cellular Anatomy of the Normal Adult Human Prostate and Prostatic Urethra PMID 30566875

Skin Transcriptional Programming of Normal and Inflamed Human Epidermis at Single-Cell
Resolution PMID 30355494

Skin Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq PMID 27124452

Small
Intestine
(Ileum)

Single-Cell Analysis of Crohn’s Disease Lesions Identifies a Pathogenic Cellular Module
Associated with Resistance to Anti-TNF Therapy PMID 31474370

2.9. Application of scALE to Annotate to Murine scRNA-seq Data

To determine whether scALE can be applied to murine scRNA-seq data, we attempted
to annotate 143 clusters identified across 18 tissues in the Tabula Muris dataset [80]. As
above, we used the optimized combination of hyperparameter settings without any species-
specific adjustments to the algorithm. Murine datasets contributing to the pan-study
reference are provided in File S8 [19,81–85].
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2.10. Comparison of Cell Type Annotations from scALE versus SingleR

To benchmark the performance of scALE against existing automated annotation
methods, we used SingleR [6] to annotate 142 clusters in ten human datasets which were
labeled by scALE as part of our initial set of tuning studies [26–28,35–41]. We ran SingleR
using the Blueprint Encode reference data from the celldex package in R [6,86], with the
method set to “cluster”, fine.tune set to “TRUE”, and sd.thresh set to 1. The “pruned.labels”
output was taken as the final annotation; if no pruned label was supplied, then the cluster
was deemed to have not been annotated correctly as this indicates that the initial label was
not considered robust after further pruning.

To compare the outputs from scALE and SingleR, we manually reviewed the labels to
determine whether each cluster was annotated accurately by the top-ranked prediction
from each method. Because the reference dataset used for SingleR inherently limits the
granularity of certain annotation categories (e.g., not all epithelial or neuronal cell types are
represented), we did consider these higher-level classifications as correct when appropriate.
That said, we also manually reviewed each pair of labels to identify cases in which the
scALE output provided helpful context to a less granular output from SingleR. For example,
if SingleR labeled a cluster of hepatocytes as “epithelial cells” while scALE labeled the
same cluster as “hepatocytes”, we concluded that SingleR had correctly annotated the
cluster but that scALE provided additional important context to the annotation. We
ultimately compared the performance by calculating the percentage of clusters which
were annotated correctly by each method. We assessed the potential utility of using both
methods together by calculating the percentage of correct SingleR annotations which could
have been improved (e.g., made more granular) by scALE, and by identifying clusters
which were annotated correctly by scALE but not SingleR, or vice versa.

2.11. Identification of Poorly Characterized Cell Type Markers

To identify potential novel or poorly characterized markers of well-studied cell types,
we compared the mean expression (CP10K) of all genes in the defined cell type of interest to
their mean expression in all other cells from our reference dataset (see File S8). The cell types
considered here included retinal pigment epithelial cells derived from two independent
human studies [30,68] and endothelial cells derived from 31 human studies [26–28,30,33,35–
40,42,43,46–53,55,56,62,64,67,72–76,78,79]. Specifically, we calculated the FC value for each
gene as described above in the “pan-study” method for CDG identification during the cell
type annotation algorithm. We also computed the cohen’s D (d) as a measure of effect size
which considers the variation in the two compared groups. Specifically, this was calculated
as d = (Mean CP10KA − Mean CP10KB)/SDpooled. The pooled standard deviation was
calculated as SDpooled = sqrt([(NA − 1) × SDA

2 + (NB − 1) × SDB
2]/[NA + NB − 2]), where

SDA and SDB are the standard deviations of each individual group, and NA and NB are the
number of single cells in each group. Group A corresponds to the cell type of interest, and
Group B corresponds to all other cells contained in the reference dataset. Among genes
with d > 0.5, we considered the top 50 genes (ranked by fold change) as cell type markers.

After identifying the cell type markers based on transcriptional data, we assessed the
literature evidence relating each marker (gene) to the cell type of interest by extracting
the corresponding GCAs (local scores) from File S5. Genes were classified as having
Strong (local score ≥ 3.0), Intermediate (local score ≥ 1 and <3), or Weak (local score < 1)
association to the cell type of interest.

2.12. Computation of Endothelial Gene Signatures

After identifying potential markers of endothelial cells that have not been well char-
acterized, we evaluated their expression levels in several datasets. To verify the given
annotation of one or more clusters in each dataset as endothelial cells, we computed an
endothelial signature score for each individual cell, defined as the geometric mean of
CP10K values for a selected set of canonical endothelial markers; that is, Endothelial Signa-
ture = (CP10KGene 1 × CP10KGene 2 × . . . CP10KGene N)1/N. The five endothelial markers
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considered were CD31 (PECAM1), AQP1, VWF, PLVAP, and ESAM. For liver sinusoidal
endothelial cells, which are known to display a distinct expression profile compared to
other endothelial cells, we considered CLEC4G and CLEC4M as markers rather than the
previously listed set.

2.13. Statistical Analysis

Statistical analyses were performed in R (version 4.0.3, R Core Team, Vienna, Aus-
tria) [87]. To compare local scores (GCAs) between matched and mismatched gene-cell type
pairs, we computed a p-value and effect size using the two-sample Mann Whitney U Test.
p-values were calculated using the “wilcox.test” function from the “stats” package (version
4.0.3), and effect sizes were calculated using the “wilcoxonR” function from the “rcompan-
ion” package (version 2.3.27). This nonparametric test was applied because the mismatched
GCAs did not show a normal distribution (Figure S2A,B). We also computed cohen’s D
as a measure of effect size between these groups using the “cohens_d” function from the
“effectsize” package (version 0.4.3) in R. Finally, ROC curves were generated (and corre-
sponding AUC values calculated) to assess the ability of local scores to classify matched
and mismatched GCAs as described above using the “pROC” package (version 1.17.0.1).

3. Results
3.1. A Literature Derived Knowledge Graph Recapitulates Canonical Gene-Cell Type Associations

We have previously described the application of a knowledge graph trained on over
100 million biomedical documents to contextualize the scRNA-seq expression profile of
ACE2, the entry receptor for SARS-CoV-2 [25]. Here we leverage this knowledge graph to
comprehensively quantify gene-cell type associations (GCAs) across scientific publications.
Specifically, we quantified each GCA as the local score between a single gene G and a single
cell type C, which captures the likelihood of the observed co-occurrence frequency of G
and C across these documents (see Section 2.3 and Figure 1A) [88]. Local scores for all such
pairs are provided in File S5. Of note, this metric does not account for sentiment and so
will capture co-occurrences regardless of whether they denote, explicitly or implicitly, the
expression of a gene in a given cell type (Figure 1A). Despite this potential shortcoming,
we hypothesized that local scores would generally be higher for matched gene-cell type
pairs (pairs of genes and cell types in which the gene is a canonical marker for the given
cell type) than for mismatched pairs (pairs of genes and cell types in which the gene is not
a canonical marker for the given cell type).

To test this hypothesis, we curated matched and mismatched pairs by extracting the
author-provided cluster defining genes (CDGs) that were used to classify cell types in
seven manually annotated scRNA-seq studies [26–33]. This yielded 174 matched gene-cell
type pairs (comprising 133 unique genes and 44 unique cell types) from tissues including
blood, pancreas, lung, liver, placenta, and retina (Table S1). We found that indeed all cell
types surveyed had a strong local association with at least one of their canonical marker
genes (Figure 1B). For example, T cells, B cells, pancreatic β cells, hepatocytes, and tro-
phoblasts are strongly associated with genes including CD3E, CD20, insulin, albumin, and
HLA-G, respectively (Figure 1B). Local scores between matched pairs were indeed signifi-
cantly higher than local scores between mismatched pairs (Mann Whitney p = 6.15 × 10−76,
r = 0.24; cohen’s D = 2.6; Figure 1C). Further, among the considered set of gene-cell type
pairs, local scores were strongly predictive of whether a gene should be considered a
canonical marker for a given cell type (AUC = 0.903; Figure 1D). We confirmed that local
scores showed no predictive power when the matched and mismatched assignments were
randomly shuffled (Figure S3).

To confirm that these observations extend beyond the cell types and tissues captured
in the studies that we curated, we performed a similar analysis to compare local scores
between matched and mismatched gene-cell type pairs from the Panglao database of cell
type markers [34]. From this database, we extracted 2291 matched gene-cell type pairs
(comprising 94 unique cell types and 1666 unique genes) and 154,313 mismatched gene-cell
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type pairs (File S7). Local scores for matched pairs were indeed significantly higher than
those for mismatched pairs (Mann Whitney p < 1 × 10−323, r = 0.17; cohen’s D = 2.79; Figure
S4A), and local scores robustly distinguished matched from mismatched pairs (AUC = 0.88;
Figure S4B). We again confirmed that local scores showed no predictive power when the
matched and mismatched assignments were randomly shuffled (Figure S4C).
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Figure 1. Literature-derived gene-cell type associations (GCAs) capture manually curated markers of a variety of hematopoi-
etic, epithelial, and mesenchymal cells. (A) Schematic description of the computation of local scores to quantify associations
between genes and cell types across biomedical literature. The local score is a proximity metric which quantifies the
likelihood of the observed co-occurrence frequency of two terms within 50 words of each other. In the context of genes and
cell types, some sentences with co-occurrences state or imply that a gene is expressed in a particular cell type (denoted
by green check mark), while other such sentences do not (denoted by red “X”). (B) Heatmap depicting the pairwise local
scores between cell types and corresponding cell type-defining genes. These genes and cell types were extracted from a
set of scRNA-seq datasets which were previously published and manually annotated [26–33]. A “+” indicates a matched
gene-cell type pair (i.e., genes which have been used to define the corresponding cell type in prior scRNA-seq datasets).
For each cell type, one gene with a local score ≥ 3 was selected for display to illustrate that each cell type has at least one
strongly associated marker gene and that a gene which is strongly associated with one cell type is generally not strongly
associated with most others. (C) Boxplot showing the distribution of local scores (GCAs) between matched (n = 174) and
mismatched (n = 5678) gene-cell type pairs. The difference between these groups was assessed by calculating the Mann
Whitney test p-value and effect size (r), along with the cohen’s D effect size. (D) Receiver operating characteristic (ROC)
analysis demonstrating the ability of literature based GCAs to classify these manually curated matched versus mismatched
gene-cell type pairs. The AUC was calculated as 0.903, and the sensitivity and specificity using a local score threshold of 3
are indicated in red.
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3.2. Literature Associations Facilitate Augmented Annotation of Single Cell RNA-seq Datasets

Having demonstrated its ability to capture canonical cell type defining genes, we
hypothesized that our knowledge graph can be applied in scRNA-seq analyses to assist in
automated and unbiased cluster annotation. We thus developed an algorithm (single-cell
Annotation via Literature Encoding, or scALE) to annotate scRNA-seq datasets which
have been clustered using any method of choice (see Section 2.7 and Figure 2). We first
performed a systematic tuning analysis of scALE (see Section 2.8 and Figure 3), evaluating
the impact of all 195 hyperparameter setting combinations on classification accuracy for
185 clusters from 13 previously annotated scRNA-seq datasets from seven human tissues:
pancreas, retina, blood, lung, liver, kidney, and placenta [26–30,33,35–41].Genes 2021, 12, x FOR PEER REVIEW 12 of 28 
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of CDGs is selected as the most likely annotation for cluster CA. Note that only three candidate cell types are shown here 
for simplicity, but there were actually over 500 cell types considered (which mapped to 104 cell type priority nodes). 

Figure 2. Schematic summary of the approach to leverage the literature knowledge graph to augment the annotation of
cell type clusters in scRNA-seq datasets. This illustration presents the example of predicting the annotation of one cluster
(B cells) from a previously published scRNA-seq dataset of the human kidney [40]. After clustering a new scRNA-seq
dataset (step 0), we compute the top N cluster defining genes for a given cluster CA relative to a defined set of reference
cells (steps 1–2). The GCAs between each of these top N genes and all candidate cell types are computed (step 3), and the L0
and L2 norms are computed to summarize the level of literature evidence connecting these CDGs to each cell type (step 4).
Candidate cell types are ranked by these norms (step 5), and the cell type showing the strongest association to the set of
CDGs is selected as the most likely annotation for cluster CA. Note that only three candidate cell types are shown here for
simplicity, but there were actually over 500 cell types considered (which mapped to 104 cell type priority nodes).
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Figure 3. Hyperparameters tested for cluster annotation and schematic of algorithm performance evaluation. (A) Hyperpa-
rameters tested for each step of the cluster annotation algorithm, as described in Figure 2. The parameters that yielded
optimal annotation performance are highlighted in orange. To compute CDGs, we compared the mean expression of all
genes in the cluster of interest to their mean expression in a set of reference cells. Reference cells were taken as all other cells
from the corresponding study (“within study”), all other cells from the corresponding tissue (“within tissue”), or all other
cells from all processed studies (“pan-study”). After computing fold change values for each gene, we tested the selection of
1, 3, 5, 10, or 20 genes for the downstream annotation steps. We tested the use of absolute and scaled versions of GCAs
(local scores between genes and cell types). To compute L2 norms, we tested the weighting of each GCA term with the
corresponding fold change and log2FC values to increase the contribution of the strongest CDGs to the cell type prediction.
To rank all candidate cell types, we considered a modified L0 norm (number of genes with GCA > 3 to the given cell type),
an L2 norm, and a composite metric that considers both the modified L0 and L2 norms. (B) For each parameter combination
(n = 195), a cumulative distribution plot was generated to illustrate the fraction of clusters which were correctly predicted
within a given rank, ranging from rank 1 to rank 5. To summarize the performance, we considered the number of clusters
which were annotated correctly (corresponding to the red bar at Rank Threshold = 1), and we estimated the area under this
curve (denoted as AUCRanks 1–5) as the average fraction of clusters for which the correct annotation was present among the
top 1, 2, 3, 4, and 5 predictions.

This tuning analysis showed that scALE performed optimally with the following
settings: (1) use the pan-study reference to identify CDGs, (2) consider the top 20 CDGs, (3)
use scaled local scores to compute L2 norms, (4) weight local scores by log2FC to compute
L2 norms, and (5) use the L2 norm alone when ranking cell type predictions (Figure 4A,B;
Table S2). With these parameters, we were able to accurately categorize 123 of 185 (66%)
cell types, and the correct annotation was among the top three or five predictions for 156
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(84%) and 173 (94%) of 185 cell types, respectively (AUCRanks1–5 = 0.83; Figure 4C; Table S2).
Generally, using fewer than five cluster defining genes or ranking cell type predictions
by the modified L0 norm were most detrimental to algorithm performance, while the
reference cells used to compute CDGs, the scaling of GCAs, and the weighting of GCAs
when calculating L2 norms had less impact (Figure 4A,B and Figure 5). The predicted
annotations for all clusters from these tuning studies using our optimized algorithm
parameters are shown in Figures S5–S9 and reviewed in the Supplemental Results.Genes 2021, 12, x FOR PEER REVIEW 15 of 28 
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norms of GCAs (also encoded by color); and (5) the metric by which candidate cell types were ranked to predict cluster 
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Figure 4. Performance evaluation of 195 parameter combinations for literature based augmented cell type annotation.
(A) Each curve corresponds to one combination of parameters, where the parameters include: (1) cells used as reference
to compute CDGs (encoded by line type and dot shape), (2) number of CDGs considered (encoded by the vertical facet
variable), (3) the GCA version used (absolute or scaled; encoded by color), (4) the weighting method used in computing L2
norms of GCAs (also encoded by color); and (5) the metric by which candidate cell types were ranked to predict cluster
identify (encoded by the horizontal facet variable). Each curve is generated from five points, specifically the percentage of
clusters for which the correct annotation was present among the top 1, 2, 3, 4, or 5 predictions. (B) Performance summary
of all 195 tested parameter combinations, considering the fraction of clusters which were annotated correctly (i.e., the
top-ranked prediction which corresponded to the true cluster label) versus the AUCRanks 1–5 metric. The metrics are highly,
although not perfectly, correlated. The parameter combination which showed the highest fraction of correct annotations
and the highest AUCRanks 1–5 was taken as the optimal approach; these optimized parameters are shown in the purple inset.
(C) Summary of algorithm performance with the optimized parameters as described in (B). The plot illustrates the fraction
of clusters which were annotated correctly within the top 1, 2, 3, 4, or 5 ranks. The AUCRanks 1–5 metric was estimated as the
average of these five values.
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Figure 5. Effects of altering individual parameters on cluster annotation algorithm. Plots shown are the cumulative
distribution functions of the AUCRanks 1–5 metric. Each panel illustrates the effect of modifying a single parameter on the
algorithm performance. (A) Modifying the source of reference cells used to compute CDGs for downstream analysis has
a limited impact on performance, with the pan-study and within study options slightly outperforming the within tissue
option. (B) Modifying the number of CDGs considered has a strong impact on performance, with fewer genes (e.g., 1,
3, or 5) showing considerably worse performance. (C) Modifying the local score version used (absolute or scaled) has a
mixed effect, with scaled GCAs contributing more of the worst-performing (left tail) and best-performing (right tailed)
parameter combinations. Note that only the parameter combinations which used an L2 norm-based rank or the composite
rank were included in this analysis, as only absolute GCAs were considered for the modified L0 norm-based ranking. (D)
Modifying the weighting method for calculating the L2 norm has minimal impact on performance, with weighting by either
fold change (FC) or log2FC slightly outperforming the unweighted method. (E) Modifying the final ranking method has a
strong impact on performance, with the modified L0 rank and L2-based rank showing the worst and best performances,
respectively.
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We then applied scALE to a set of 9 dedicated testing studies from eight tissues
(Table 2) [71–79]. Using the optimized set of parameters, we accurately categorized 78 of
133 (59%) clusters, with the correct annotation among the top three or five predictions for
110 (83%) and 121 (91%) clusters, respectively (AUCRanks1–5 = 0.79) (Figure 6A). We further
confirmed that an unmodified version of scALE performed with similar accuracy in the
annotation of murine data, as 81 of 143 (57%) clusters from the Tabula Muris dataset were
annotated correctly and the correct annotation was present among the top five predictions
for 128 (90%) clusters (AUCRanks1–5 = 0.77) (Figure 6B).
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Figure 6. Application of scALE to testing datasets and comparison of performance with SingleR. (A) Using the previously
optimized settings, scALE was applied to annotate 133 clusters from 9 “test” (i.e., previously unseen) studies [71–79]. (B)
scALE was also applied to annotate 143 clusters from the murine scRNA-seq tissue atlas dataset, Tabula Muris [80]. (C) As a
benchmark, we compared the accuracy of annotations from scALE to those obtained from SingleR [6] for 142 clusters from
ten human studies [25–27,34–40]. scALE was implemented with the previously optimized parameters, and SingleR was
implemented using the listed parameters. Manual review was performed to determine whether each cluster was labeled
correctly by scALE only (n = 30), SingleR only (n = 17), both scALE and SingleR (n = 85), or neither (n = 10).
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Various tools already exist to automate the cluster annotation process, so it is im-
portant to benchmark the performance of scALE against such methods. We compared
the cluster labels predicted by scALE to those predicted by SingleR [6] for ten human
studies [26–28,35–41]. scALE accurately categorized 115 of 142 clusters (81%), while Sin-
gleR did so for only 102 clusters (72%) (Figure 6C). The accuracy of scALE reported here is
slightly higher than that observed during the previous tuning and testing because there
was some additional leniency in classifications afforded due to a lack of granular epithelial
cell data in the reference set used for SingleR. Thus, for this comparison, a label of “ep-
ithelial cells” could be considered correct, whereas during the tuning and testing, a more
specific label (e.g., proximal tubule cell) would have been required. Importantly, we found
that scALE provided context that could be used to improve (i.e., increase the granularity
of) 16 of the 102 (16%) correct cluster annotations from SingleR (File S9). For example,
while SingleR labeled loop of henle cells, hepatocytes, and pancreatic acinar cells simply
as “epithelial cells”, scALE provided the correct granular annotation for each one. Taken
together, this indicates that scALE performs at least as well as SingleR and could even be
integrated with it to improve the current output.

3.3. The Literature Knowledge Graph Highlights Uncharacterized Markers of Established Cell
Types

The GCAs derived from our knowledge graph can also be leveraged to rapidly and
objectively assess the literature support for genes that appear to be cell type markers
from any given dataset. For example, we assessed the literature evidence for the top 50
genes overexpressed in retinal pigment epithelial (RPE) cells relative to all other cells in
our reference dataset (Figure 7A). Several of these genes were established RPE markers
such as RPE65 and BEST1, mutations in both of which can cause retinitis pigmentosa
and other retinopathies [89,90]. Other markers showing moderate to strong literature
associations with the RPE included genes involved in vitamin A metabolism (e.g., TTR,
RLBP1, RBP1, LRAT). However, we also identified several CDGs with little or no literature
association to RPE cells, including genes encoding ion transporters (SLC6A13, CLIC6) and
proteins that modulate Wnt signaling (FRZB, SFRP5). While these Wnt modulators have
been infrequently referenced as RPE markers [91,92], and CLIC6 has been detected by
proteomics in RPE tissue and cells [93,94], the contribution of these genes to RPE function
has never been explored. We confirmed that these markers were also upregulated in RPE
cells relative to other retinal cells using the more traditional within-study comparison as
well (Figure S10).

Similarly, we assessed the existing literature evidence for genes overexpressed in
endothelial cells (ECs). While 24 of the top 50 genes were strongly associated with ECs
(e.g., PECAM1, VWF, ICAM1), several other genes were poorly characterized or previously
uncharacterized endothelial markers (Figure 7B). For example, DNASE1L3 was identified
as an EC marker whereas it is canonically reported to be expressed by macrophages and
dendritic cells [95–97]. While its expression in liver sinusoidal ECs, non-sinusoidal hepatic
ECs, and renal ECs of the ascending vasa recta has been recently reported [55,98–100],
we not only confirmed expression in these populations (Figure S11) but also identified
several other tissues in which ECs were the predominant DNASE1L3-expressing cell type,
including the adrenal gland, lung, and nasal cavity (Figure S12). Further, the functional
significance of DNASE1L3 expression in ECs has not been explored, but it may indeed
be very relevant given the strong genetic associations connecting DNASE1L3 to the de-
velopment of anti-dsDNA antibodies and various autoimmune phenotypes including
lupus [96,97,101], systemic sclerosis [102], scleroderma [96,101], and hypocomplementemic
urticarial vasculitis syndrome [103].
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Figure 7. Literature-derived GCAs contextualize differentially expressed genes, highlighting poorly characterized markers
of established cell types. (A) Transcriptional markers of retinal pigment epithelial (RPE) cells were identified by comparing
the mean expression of all genes in RPE cells from two scRNA-seq studies [30,68] to their expression in all other cells from
our reference datasets (see Supplemental File S8). The top 50 markers (ranked by fold change) were classified for their level
of literature association to retinal pigment epithelial cells as follows: strong: Local Score ≥ 3; intermediate: Local Score ≥ 1
and <3; weak: Local Score < 1. All genes with strong or intermediate evidence are highlighted by name, as are a subset of
the genes with weak evidence that may warrant further evaluation. (B) The same process was applied as in (A), but for
endothelial cells from 31 studies [26–28,30,33,35–40,42,43,46–53,55,56,62,64,67,72–76,78,79] rather than for RPE cells. Here,
all genes with strong or weak evidence are highlighted by name.
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4. Discussion

scRNA-seq has enabled the characterization of cellular heterogeneity at unprece-
dented levels. Initial uptake was relatively slow due to the costs associated with these
experiments, but rapid technological advances have drastically improved the accessibility
of this technique [104]. As a result, the amount of scRNA-seq data which is being generated
and deposited into public databases is likely to continue increasingly rapidly for years to
come. It is imperative that investigators are equipped to efficiently annotate and analyze
these datasets such that the insights embedded within them are not left untapped.

The cell type annotation tools developed in recent years provide excellent resources
that will assist in efforts to analyze individual datasets and to synthesize the exponentially
increasing quantity of publicly available data [6–13]. However, these methods do have
intrinsic shortcomings, such as the requirement for the existence or generation of high
quality reference transcriptomic datasets for all cell types that may be recovered in a given
scRNA-seq experiment. By considering all cell types that have been described in the
literature, our method circumvents this need for data curation. Further, even as these tools
are increasingly applied to automate data processing pipelines, it remains preferable to
perform some degree of manual review to ensure the validity of the resultant annotations.
Specifically, the quality of annotations should minimally be assessed by determining
whether a set of CDGs is biologically consistent, per canonical knowledge, with the given
cell type label. Our method is specialized to perform this exact task.

Standard manual annotation is flawed due its inherent subjectivity and reliance on the
existing knowledge of a single investigator. These flaws can be mitigated to some degree
by “assisted” manual annotation that leverages search engines (e.g., Google, PubMed) to
identify cell types which have been reported to express the genes under consideration.
However, this process only leverages a sliver of the information contained within the
biomedical literature and would be prohibitively time consuming if scaled to the analysis of
large numbers of datasets. On the other hand, the deployment of NLP algorithms to mimic
manual annotation provides a superior alternative, enabling “augmented annotation”
workflows that objectively harness the entire knowledge graph of GCAs contained in the
literature to suggest which cell types are most strongly associated with a given set of CDGs.
By integrating this approach with already existing annotation workflows, one can rapidly
assess the veracity of predicted cell type annotations and highlight those which warrant
further review by an expert.

The utility of this literature knowledge graph also extends beyond the annotation of
cell types, unlocking a new analytic workflow in the interpretation of scRNA-seq data.
By its very nature, scRNA-seq provides investigators with data at the level of gene-cell
type pairs, i.e., Gene X is expressed in Cell Type Y at Level Z. However, to date there has
been no systematic and objective method to comprehensively contextualize this data with
respect to the world’s knowledge of those same gene-cell type pairs at that point in time. To
address this unmet need, we demonstrated that our database of literature-derived GCAs
can be used to assess the degree of literature evidence connecting any gene to any cell
type in which its expression has been observed by scRNA-seq. This workflow will provide
investigators with the opportunity to rapidly identify gene expression patterns which were
previously unknown or poorly characterized, and thereby prioritize candidates for directed
follow-up functional studies.

For example, we found CLIC6 and DNASE1L3 as uncharacterized markers of RPE cells
and endothelial cells, respectively. Although CLIC6 was identified almost two decades
ago as a member of the chloride intracellular channel (CLIC) gene family, its function
remains essentially unknown [105,106]. Biochemical studies have demonstrated that
CLIC6 interacts with dopamine D2 receptors in the brain, but it is still unclear whether
CLIC6 modulates dopamine receptor mediated signaling or even serves as a functional
chloride channel [105,107]. It is intriguing that CLIC4, another member of the CLIC
family, functions in RPE cells to promote their epithelial morphology, maintain their
attachment to the photoreceptor layer of the retina, and regulate extracellular matrix
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degradation at focal adhesions [108,109]. CLIC6, on the other hand, has never been
functionally characterized in these cells despite having been detected in them by proteomics
and immunohistochemistry [93,94]. Given recent evidence for structural conservation
between CLIC6 and other CLIC family proteins [110], we suggest that directed studies to
analyze CLIC6 function in RPE cells are warranted.

DNASE1L3 is an extracellular DNase which is historically reported to be released
specifically by macrophages and dendritic cells [95,96,101]. Our analysis challenges this
canon, instead highlighting this gene as an uncharacterized marker of endothelial cells
(in addition to myeloid cells) in tissues including liver, kidney, lung, nasal cavity, thyroid,
and adrenal cortex. Interestingly, DNASE1L3 is genetically associated with multiple au-
toimmune phenotypes including systemic lupus erythematosus (SLE) [96,101], systemic
sclerosis [102], and scleroderma [96,101]. Loss of function mutations in DNASE1L3 are re-
sponsible for a familial form of SLE which is characterized by the presence of anti-dsDNA
antibodies and lupus nephritis [97], and mechanistic studies have directly implicated
DNASE1L3 deficiency as a cause of anti-dsDNA antibody development [96]. Further,
DNASE1L3 mutations have been reported to cause hypocomplementemic urticarial vas-
culitis syndrome, an inflammatory disease of the vascular system which often progresses
to SLE [103]. Given these genetic associations, we hypothesize that the production of
DNASE1L3 by ECs may protect against the development of autoantibodies and outright au-
toimmune disease. While CD11c+ cells are responsible for about 80% of serum DNASE1L3
activity in mice [96], it is plausible that ECs contribute significantly to the remaining 20%,
that this fractional contribution is significantly skewed toward ECs in humans, or that EC-
derived DNASE1L3 acts in a more localized fashion. Indeed, the localized activity of other
EC products, such as tissue-type plasminogen activator (t-PA) and von Willebrand factor
(VWF), are known to regulate clot formation specifically at sites of damaged endothelium.
Perhaps the activity of DNASE1L3 in the close vicinity of renal, hepatic, and pulmonary
endothelial cells protects against the development of nephritis and other forms of vasculitis
at these sites.

There are several limitations of this study and the associated method (scALE). First, the
GCAs which are used to perform cluster annotation simply measure literature proximity of
a gene and a cell type without accounting for the sentiment surrounding this co-occurrence.
scALE would be improved by training NLP models which can distinguish between co-
occurrences that denote a gene expression relationship versus those that are ambiguous,
spurious, or explicitly deny a gene expression relationship. Second, annotation using
literature-derived associations inherently has limited utility in the recognition of novel cell
types and cell types which are infrequently discussed in literature. Third, it is possible
that more granular annotations can be provided by other existing pipelines (e.g., SingleR)
which use reference transcriptomes of defined cellular subsets to automate the annotation
process. That said, such granularity is entirely reliant on the existence and processing of
high quality reference transcriptomic datasets for each subset of interest. When running
SingleR with the commonly used Blueprint ENCODE reference dataset, we actually found
that scALE can provide more granular annotations for epithelial and neuronal cell types.
Finally, while we did demonstrate that scALE can be applied to annotate murine datasets,
its performance may be improved by incorporating more species-specific considerations in
future versions.

With these shortcomings in mind, we highlight that this should be viewed as a tool for
augmenting current annotation workflows rather than as a standalone automated pipeline
to replace other methods. Indeed, our comparison of scALE to SingleR indicated that while
most clusters were correctly annotated by both methods, there were some clusters which
were only classified correctly by scALE or SingleR. This suggests that formal integration
of our literature-based method with data-driven annotation tools can likely increase the
accuracy of annotation workflows while reducing the time and effort required for manual
review.
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Taken together, we have presented a new framework for the processing and inter-
pretation of scRNA-seq datasets. Using a literature-derived knowledge graph, we com-
prehensively quantified the strength of associations between human genes and cell types.
These associations robustly capture relationships between many cell types and their canon-
ical gene markers, and accordingly they can be used to annotate clusters of distinct cell
types identified by scRNA-seq. Finally, these associations facilitate rapid, systematic,
and unbiased contextualization of lists of CDGs and differentially expressed genes, en-
abling investigators to identify and prioritize uncharacterized cell type markers for further
exploration.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/genes12060898/s1, Figure S1: Distribution of maximum GCAs for all 556 candidate cell types,
Figure S2: Distribution of gene-cell type local scores (GCAs) between matched and mismatched pairs,
Figure S3: Distribution of AUC values from ROC analysis of GCA-based classification of manually
curated gene-cell type pairs with randomly shuffled matched and mismatched assignments, Figure
S4: Literature based GCAs distinguish matched from mismatched gene-cell type pairs derived from
the Panglao database of cell type markers, Figure S5: Comparison of true and predicted annotations
for all cell types in three selected studies from retina, blood, and pancreas, Figure S6: Comparison
of true and predicted annotations for all cell types from two scRNA-seq studies of the respiratory
tract (lung and nasal cavity), Figure S7: Comparison of true and predicted annotations for all cell
types from scRNA-seq studies of the placenta and peripheral blood, Figure S8: Comparison of true
and predicted annotations for all cell types from two scRNA-seq studies of the human liver, Figure
S9: Comparison of true and predicted annotations for all cell types from scRNA-seq studies of the
kidney and retina, Figure S10: Confirmation of RPE marker genes using the “within-study” method
of differential expression, Figure S11: Expression of DNASE1L3 in endothelial cell populations from
the kidney and liver, Figure S12: Expression of DNASE1L3 in endothelial cells from adrenal gland,
lung, and nasal cavity, Table S1: Manually curated cell type defining genes, Table S2: Summary of
annotation algorithm performance among tuning studies for all tested parameter combinations, File
S1: Complete cell graph used for mapping candidate cell types to priority nodes, File S2: Mapping of
candidate cell types to priority nodes, indexed by candidate cell type, File S3: Mapping of candidate
cell types to priority nodes, indexed by priority node, File S4: Complete gene vocabulary considered
for calculation of local scores, File S5: Matrix of raw gene-cell type associations (GCAs), File S6:
Matrix of scaled gene-cell type associations (GCAs), File S7: List of cell type markers extracted from
Panglao database for validation of GCAs, File S8: List of all scRNA-seq studies contributing to tuning,
testing, or reference datasets, File S9: Comparison of cluster annotations from scALE versus SingleR.

Author Contributions: Conceptualization, P.J.L., T.K.H., D.Z., E.G.-R. and V.S.; methodology, D.D.,
P.J.L., T.K.H., D.Z., E.G.-R. and V.S.; software, R.C., A.K. (Apoorv Khare), A.K. (Akhil Kasaraneni),
A.G. and A.A.; validation, D.D., P.J.L. and V.S.; formal analysis, D.D., P.J.L., T.K.H. and D.Z.; investi-
gation, D.D., P.J.L., T.K.H., D.Z. and V.S.; resources, R.B., V.T. and V.S.; data curation, D.D., T.K.H.
and D.Z.; writing—original draft preparation, D.D. and P.J.L.; writing—review and editing, D.D.,
P.J.L., T.K.H., D.Z., E.G.-R., A.J.V. and V.S.; visualization, D.D. and P.J.L.; supervision, P.J.L., R.B., V.T.
and V.S.; project administration, R.B., V.T. and V.S.; funding acquisition, V.S. All authors have read
and agreed to the published version of the manuscript.

Funding: This study was funded by nference.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets used to test the methods presented were accessed from
the NCBI Gene Expression Omnibus (GEO) or another public data repository (see Tables 1 and 2, and
Supplemental File S8). These datasets, in the processed and annotated form as used in our analyses,
can be accessed and downloaded by academic researchers from academia.nferx.com and will be made
accessible to non-academic researchers upon reasonable request. All newly generated data used in
the cluster annotation workflow (e.g., cell graph, cell type mapping to priority nodes, raw and scaled
GCA matrices) are available in Supplemental Files S1–S6. The described annotation workflow has
been wrapped into the python package scALE. Package documentation and associated files can be

https://www.mdpi.com/article/10.3390/genes12060898/s1
https://www.mdpi.com/article/10.3390/genes12060898/s1
academia.nferx.com


Genes 2021, 12, 898 20 of 24

accessed in this publicly accessible Google Drive folder: https://drive.google.com/drive/folders/1_
ApNN6hoekmhVCSbbcQg095_O3Mhje-f?usp=sharing. This includes a README file and a Jupyter
notebook that illustrates the use of scALE, including an example of how the annotation predictions
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account at academia.nferx.com in order to obtain a user name and password; the API key, which is
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when the package is installed via pip. scALE can also be implemented through a user interface in
the Single Cell section of academia.nferx.com (https://academia.nferx.com/dv/202007/singlecell/
?view=scale) by uploading data in one of the following formats: (i) a gene expression matrix along
with a metadata file containing cluster assignments, (ii) a table of average gene expression values in
each cluster, or (iii) a table of pre-computed CDGs. The required formats for file uploads are explained
on the website, and example files for each mode (matrix with metadata, table of average expression
values, or table of CDGs) can be downloaded from the website or from this Google Drive folder:
https://drive.google.com/drive/folders/12V5YY4rruBBFp7tixJxfqcYOdDTAd3mI?usp=sharing.
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