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Abstract

Understanding seabird habitat preferences is critical to future wildlife conservation and threat mitigation in California. The
objective of this study was to investigate drivers of seabird habitat selection within the Gulf of the Farallones and Cordell
Bank National Marine Sanctuaries to identify areas for targeted conservation planning. We used seabird abundance data
collected by the Applied California Current Ecosystem Studies Program (ACCESS) from 2004–2011. We used zero-inflated
negative binomial regression to model species abundance and distribution as a function of near surface ocean water
properties, distances to geographic features and oceanographic climate indices to identify patterns in foraging habitat
selection. We evaluated seasonal, inter-annual and species-specific variability of at-sea distributions for the five most
abundant seabirds nesting on the Farallon Islands: western gull (Larus occidentalis), common murre (Uria aalge), Cassin’s
auklet (Ptychorampus aleuticus), rhinoceros auklet (Cerorhinca monocerata) and Brandt’s cormorant (Phalacrocorax
penicillatus). The waters in the vicinity of Cordell Bank and the continental shelf east of the Farallon Islands emerged as
persistent and highly selected foraging areas across all species. Further, we conducted a spatial prioritization exercise to
optimize seabird conservation areas with and without considering impacts of current human activities. We explored three
conservation scenarios where 10, 30 and 50 percent of highly selected, species-specific foraging areas would be conserved.
We compared and contrasted results in relation to existing marine protected areas (MPAs) and the future alternative energy
footprint identified by the California Ocean Uses Atlas. Our results show that the majority of highly selected seabird habitat
lies outside of state MPAs where threats from shipping, oil spills, and offshore energy development remain. This analysis
accentuates the need for innovative marine spatial planning efforts and provides a foundation on which to build more
comprehensive zoning and management in California’s National Marine Sanctuaries.
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Introduction

The past decade has seen substantial growth in policy and

framework development on how to better manage oceans through

marine spatial planning; an approach that integrates ecosystem

science, human activities, stakeholder consensus and conservation

objectives to improve ocean governance [1]. There is a growing

foundation of work on ecosystem-based management [2], tools for

planners with decision-making power [3,4] and strategies that

quantify the impacts of human activities on marine and coastal

resources [5,6,7]. Several states in the United States (U.S.), such as

California, Oregon and Massachusetts among others, continue to

coordinate with policymakers, scientists and stakeholders to

incorporate marine spatial planning into the development and

management of comprehensive zoning plans in their jurisdictional

waters [7,8]. In 2010, President Obama issued Executive Order

13547 and formally brought marine spatial planning into the

nation’s coastal and marine resource management program [9].

While this process is underway, comprehensive zoning does not

exist for Federal waters, which include National Marine Sanctu-

aries.

Sanctuaries are distinguished areas of ecological or cultural

importance with well-defined boundaries, making them ideal

spatial units for zoning and prioritization exercises. As with most

marine environments, Sanctuaries face persistent pressure from

commercially and recreationally valued human activities (indus-

trial shipping, commercial fishing, recreational and military

activities, etc) that impact biodiversity in different ways [10].

Managers adaptively regulate these activities and re-evaluate

management plans approximately every five years to ensure the
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coordinated preservation of Sanctuary resources [11]. Studies that

can assist Sanctuary scientists and managers in making informed

decisions regarding threat mitigation and implementation of

ecosystem-level management are considered a top priority [10].

West coast Sanctuary managers oversee offshore areas situated

in the productive California Current System (CCS). This eastern

boundary current spans the western edge of North America from

British Colombia to Baja, California [12]. Strong upwelling in this

system results in increased productivity that enhances foraging

opportunities for vast numbers of marine mammals, seabirds, and

commercial fish throughout the year [13,14,15]. The Gulf of the

Farallones (GFNMS, est. 1981) and Cordell Bank (CBNMS, est.

1989) National Marine Sanctuaries provide habitat and breeding

ground for over a half a million seabirds including several

endangered species such as the Ashy-storm petrel [16]. The

Farallon Islands, located 45-km west of San Francisco Bay, are

comprised of a cluster of granite outcroppings that support the

largest breeding seabird colonies in the continental U.S. [16].

Cordell Bank, a 7.2-km by 15.2-km underwater seamount at the

edge of the continental shelf, supplies a biodiverse benthic

ecosystem with nutrient-rich offshore waters [10]. Gaining

biophysical and spatial understanding of species’ distributions

and habitat use within Sanctuary waters will facilitate the

prioritization of current and future conservation efforts [10].

Here, we propose using modeled seabird habitat to inform

spatial planning at the Sanctuary level. Seabirds are particularly

sensitive to changes in food supply driven by shifts in ocean climate

regimes [17,18,19]. This supports their use as bio-monitors or

indicator species of marine food web dynamics and ocean health

[20,21,22]. Their conspicuousness and colonial nature makes the

acquisition of large amounts of data possible at or near predictable

breeding site locations. This is advantageous to conservation

managers, in that, at-sea distributions of seabirds can be used to

identify important areas for more elusive or data-deficient marine

species [23,24]. Investigating seabird distributions within larger

systems is a growing focus of research that has the potential to

inform marine protected area planning, locate important areas for

migratory species, and contribute to a better understanding of

localized ecosystem structuring [22,25,26,27,28].

The factors driving at-sea habitat selection often remain poorly

understood due to marine species exploiting dynamic oceanic

phenomenon that drive prey availability [29,30,31] and that

change in space and time [32]. Within the CCS, distributions have

been delineated through modeling associations between seabirds

and bathymetric and oceanographic features [13,14,15] surface

nekton [33] and krill [34]. Nur et al. [24] modeled the predictive

abundance of 16 individual species and aggregated them to

identify persistently used foraging habitat at the system-wide scale

of the CCS. Highly variable species responses to ecological

phenomenon in the CCS mean multi-species and multi-scalar

studies are required to enhance our understanding of at-sea

distributions for management purposes [22]. Our study contrib-

utes to this body of knowledge by modeling the finer-scale (#3-km)

habitat associations of individual seabird species within Sanctuary

boundaries to identify high use foraging areas, as these areas are

locally significant and should be supported by Sanctuary-level

conservation efforts [24,28].

There are many tools available to help facilitate spatial

prioritization of ocean waters by identifying spaces for conserva-

tion, recreation, and human uses within planning networks. Site

selection algorithms, such as Marxan (The University of Queens-

land website, Available: http://www.uq.edu.au/marxan/marxan-

software. Accessed 2013 Jul 13) quantitatively address user-defined

spatial questions, and have already been used in several studies to

aid marine spatial planning in California [35,36,37]. In this study,

we use Marxan to inform future ocean zoning and improve

marine conservation within Sanctuary boundaries. Our objectives

are to: 1) identify the primary drivers of localized foraging habitat

selection for the resident breeding seabird species of the Farallon

Islands based on near surface water properties, bathymetric

features, and oceanographic climate regimes; 2) predict seabird

abundance and distribution patterns per and across species to

determine highly selected foraging areas within the Sanctuaries;

and 3) conduct a spatial prioritization exercise using Marxan to

examine potential seabird conservation areas where human-

wildlife conflicts would be minimized. This paper serves as a

pragmatic example of how species distribution modeling and

innovative conservation planning tools can be used to develop

comprehensive zoning at scales useful for local management.

Materials and Methods

Study Area and Survey Design
We used survey data collected over 8 years by the Applied

California Current Ecosystem Studies (ACCESS) program,

conducted by Point Blue Conservation Science (formerly Point

Reyes Bird Observatory), Gulf of the Farallones NMS and Cordell

Bank NMS (ACCESS website. Available:www.accessoceans.org.

Accessed 2013 Jun 7). The Sanctuaries are located in north central

California and span 851 km2 and 2063 km2, respectively.

ACCESS implements a yearly sampling scheme designed to

monitor marine birds and mammals, surface and water column

properties and zooplankton abundance within the Sanctuaries.

The 27 data cruises included in this study span from April through

September from 2004 through 2011. ACCESS transects ran east-

west and spanned the continental shelf and slope defined by the

50-m to the 1000-m isobaths to cover the offshore area between

southern Bodega Bay (38u 89 N) and San Pedro Rock (37u 219 N:

Fig. 1).

The number of transects covered during each cruise varied as a

function of time and weather conditions. Figure 1 shows the

primary transects used in this analysis (1–7), as these are the most

frequently surveyed and encompass the spatial extent of ocean-

ographic and water-column sampling stations. Previous studies

investigating spatial autocorrelation for this dataset concluded 3-

km line segments, referred to as bins, to be an appropriate size

[14,24]. We followed these methods and binned seabird data

along transect lines, represented by a single midpoint (Fig. 1). For

every data bin, we integrated corresponding information on

transect specifications and survey environment (Table 1). Smaller

bin sizes occasionally arose at the end segments of transect lines;

bin sizes ,1-km were discarded from the analysis.

Species Data
Seabird surveys were conducted from the flying bridge of three

research vessels (R/V) of varying size: the smallest R/V John

Martin, medium R/V National Oceanic and Atmospheric

Administration (NOAA) Fulmar, and largest R/V McArthur II.

Surveys used standardized strip-survey methods [38] to continu-

ously count birds off the side of the vessel with the best visibility

(lowest glare) and during daylight hours while the vessel was

underway at 10 knots [18]. Seabirds encountered within a 90uarc
from the bow to the survey side of the vessel, and within a range of

50–300-m, were counted by a single observer (see Jahncke et al.

2008 for further details) [18]. Variable strip width was dependent

on the vessel used: Martin (,100-m), Fulmar (,200-m) and

McArthur II (,300-m). Strip-widths of ,100-m reflect field

survey adjustments for situations when poor visibility limited the

Seabird Habitat Modeling to Inform Conservation
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Figure 1. Location of the study area in California and primary ACCESS program transects with designated CTD sampling stations
(Jahncke et al. 2008).
doi:10.1371/journal.pone.0071406.g001

Table 1. Description and ranges of habitat-specific variables used to model seabird abundance at 3-km bins.

Variable Description Mean6SD min-max values CV

Oceanographic

SST (uC) Average surface temperature for 3-km bin 12.661.62 8.9–16 0.13

SSS (psu) Average surface salinity for 3-km bin 33.360.48 29.7–34 0.02

SSF (mg/m3 ) Average surface fluorescence for 3-km bin 1.0862.23 0–14.9 2.06

Bathymetric

Dist_Land (m) Distance from bin midpoint to mainland 2701669396 1210–47790 0.34

Dist_200 (m) Distance from bin midpoint to 200m-isobath 1075969315 23–47260 0.86

Dist_SEFI (m) Distance from bin midpoint to South East Farallon Island 29062617211 1273–65366 0.59

Climate Indices

NPGO Monthly North Pacific Gyre Oscillation value 0.5160.94 21.4–1.9

PDO Monthly Pacific Decadal Oscillation value 20.161.01 21.8–1.86

SOI Monthly Southern Oscillation Index value 0.4161.76 22.7–4.3

UI value Ten-day average to last day on monthly cruise 93.0640.2 6.4–171.5 0.43

Detection Biases

Strip width (m) Observer field of vision per 3-km bin 167.8679.2 50–300 0.47

Sea State Observed Beaufort scale conditions 2.5661.28 0–6 0.50

Swell Height (m) Observed swell height per 3-kmbin 1.9865.07 0–8 5.91

Visibility Observer visibility per 3-km bin 5.5162.04 0–9 0.38

Time of Day Hour:Min of survey bin completion 121760304 0608–2005 0.24

Cloud Cover Observed values recorded per 3-km bin 5.2163.37 0–9 0.65

doi:10.1371/journal.pone.0071406.t001
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surveyor’s range of vision. Seabird behaviors were recorded (flying

or commuting, foraging, ship attract, and sitting on the surface of

the water) and only records of birds foraging, feeding or sitting on

the sea surface were used in the analysis and assumed to be either

actively foraging or resting post prey consumption [39].

Surveys encompassed the seabird breeding season when adult

movement between the main colony on Southeast Farallon Island

and foraging areas is limited by energy demands [40], as well as

pre- and post- breeding months. While there are 13 seabird species

breeding on the Farallon Islands, this study focuses only on the

most abundant species recorded throughout the temporal span of

surveys (.100 survey-bins with observations; Table 2). The five

focal species are: western gull (Larus occidentalis), common murre

(Uria aalge), Cassin’s auklet (Ptychorampus aleuticus), rhinoceros auklet

(Cerorhinca monocerata), and Brandt’s cormorant (Phalacrocorax

penicillatus). The total number of seabirds counted along transect

lines were totaled by species at each 3-km bin and recorded to the

corresponding midpoint.

Environmental Variables
Oceanographic Data. Sea surface characteristics were recorded

in situ by a thermosalinograph installed in the sea chest of each

ship. Sea surface temperature (SST), salinity (SSS) and fluores-

cence (SSF) values were processed and averaged to the

corresponding transect bins matching seabird observations. On

11 cruises within the dataset, the vessels were not equipped with a

thermosalinograph in the hull and did not continuously collect

SSF data. However, all cruises, regardless of vessel, recorded

fluorescence using a Sea-Bird Electronics SBE 19Plus SEACAT

Conductivity-Temperature-Depth (CTD) Profiler equipped with a

WetStar Fluorometer at 15–18 designated CTD sampling stations

designed to continuously sample oceanographic water-column

properties from the surface to the seafloor (Figure 1). We averaged

CTD fluorescence values collected within the 1-6-m depth range

at these stations to assign surface values at each station per cruise

for a total of 740 records. We then linearly regressed these values,

along with year and SST to predict missing SSF records at the 3-

km bin locations for the 11 cruises. Any records missing SST or

SSS values were not included in the analysis.

Distance Measurements. We calculated distances in ArcGIS

(10.0, ESRI Redlands, CA) from bin midpoints to the nearest

oceanic shelf break at the 200-m isobath, derived from the

California Department of Fish and Wildlife 200-m EEZ bathy-

topo grid (DFG website. Available: http://www.dfg.ca.gov/

marine/gis/downloads.asp. Accessed 2013 Jul 13). Sanctuary

and California boundary shapefiles were accessed online through

the National Marine Sanctuary Geographic Information System

Dataset (NOAA website. Available: http://www.sanctuaries.noaa.

gov-/library/imast_gis.html. Accessed 2013 Jun 6). We also used

these shapefiles to calculate midpoint distances to nearest coastal

land and to the Southeast Farallon Island as it supports the largest

breeding colonies of each species in the Sanctuaries.

Climate Indices. Seasonal and inter-annual variability in

oceanographic trends directly influence the amount of upwelling

that occurs in the CCS [12,18]. We included several ocean climate

indices known to drive variability in the CCS [24;41]: 1) the North

Pacific Gyre Oscillation (NPGO) exhibits correlations with salinity

and productivity as depicted by chlorophyll-a (chl-a) along the

western coast of North America [42]; 2) the Pacific Decadal

Oscillation (PDO) is the primary driver of North Pacific SST

poleward of 20uN [43]; and 3) the Southern Oscillation Index

(SOI) records the warming and cooling trends of the tropical

Pacific ocean in relation to El Niño and La Niña events [44].

Monthly values for each oceanic climate index were assigned to

each bin midpoint based on cruise year and month, as were daily

upwelling values collated by the Pacific Fisheries Environmental

Laboratory (PFEL website. Available:http://www.pfeg.noaa.gov/

products/PFEL/modeled/indices/PFELindices.html. Accessed

2013 Jul 13) to account for local upwelling conditions prior to

each cruise (10-day average leading up to the last day of the cruise)

[45].

Human Uses for Spatial Prioritization
Human use layers were created by a partnership between

NOAA’s Marine Protected Areas Center and the Marine

Conservation Institute through a series of statewide participatory

workshops, and released to the public as the California Ocean

Uses Atlas (NOAA website. Available: http://www.mpa.gov/

dataanalysis/atlas_ca/. Accessed 2013 Jul 13). These maps

document 30 human activities occurring within California’s

exclusive economic zone. Data came in the form of polygons

created in a GIS that outline the spatial extent of each activity in

coastal waters as delimited by stakeholder knowledge within

distinct regions. Each activity contained multiple sets of polygons

describing regional stakeholder use under general (used with some

regularity), dominant (targeted by most users), and future

(expansion/intensifying of use) footprints of activities at the time

of issue in 2010.

Data Analysis and Model Fitting
Species distribution modeling is a growing discipline in both

theory [46,47,48] and application [49,50,51,52]. Methods require

the extrapolation of a fitted model in a GIS to produce a series of

predictive surfaces within a spatially explicit framework [53].

There are substantial reviews of distribution modeling methods,

accompanying uncertainties and recommendations for ecological

modeling improvements [48,54,55,56,57,58]. While species distri-

bution models, like any abstracted modeling approach, are limited

by their tendencies towards over-simplification of complex

Table 2. Sample sizes for focal species noting the number of zero and non-zero bins and the maximum individuals sighted within
a bin (n = 2336).

Acronym Species common name Zero-count bins Non-zero counts bins Count maximum

WEGU Western gull 1918 418 68

COMU Common murre 1172 1164 1216

CAAU Cassin’s auklet 1809 527 789

RHAU Rhinoceros auklet 1995 341 45

BRAC Brandt’s cormorant 2158 178 300

doi:10.1371/journal.pone.0071406.t002
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biophysical and ecological interactions, they provide helpful

insight and perform well as predictive tools when modeling

species distributions within the range used in this analysis [58]. Of

available modeling tools, Generalized Linear Models (GLMs)

prove to be a statistically strong approach used in conservation

and biodiversity studies.

Our methodological design drew from Franklin [50] in order to

encompass both ecological reasoning and predictive spatial tools

when modeling for management purposes. A conceptualized

model of our process is provided in Figure 2. Treating seabird

counts as our dependent variables, we first used negative binomial

regression to test all covariates for linear or quadratic relationships

while controlling for month and year in Stata 10 (StataCorps,

2007, Stata Statistical Software, College Station, TX: StataCorp

LP). After testing for multicollinearity between variables and

finding no high correlations (VIF ,10) [59], all potential

covariates were added to a preliminary negative binomial model

and eliminated using manual backward stepwise negative binomial

regression for model simplification at the 0.05 significance level.

Because we were modeling counts and not densities, we used an

exposure coefficient in all models to account for varying bin sizes

and strip widths (area range: 0.05–0.9). For the exposure

coefficient we used the log of the binned areas to incorporate

differences in rates of detection across surveyed bins.

Since our 2,336 observation dataset contained large numbers of

zeros (Table 2), we used a zero-inflated methodology to model

abundance. Zero-inflation is a distinct characteristic of field-

collected count data, in that, excess zeros arise from observer

detection biases that may fail to reflect suitable habitat in the

absence of a species. Ignoring excess zeros may result in models

with problematic inferences and incorrect assumptions of ecolog-

ical linkages between species and environment [60]. Zero-inflated

models can provide better fits when dealing with excess zeros as

they account for both true (unsuitable habitat) and false zero

observations [61]. Although survey-strip transect methods tradi-

tionally assume perfect detectability within a given strip width

[38], false zero records can occur in the marine environment from

a variety of ecological and environmental circumstances. We refer

to factors influencing zero-inflation as detection bias variables. For

example, a species may not be observed because sea conditions

obscure visibility at the time a survey passes [62]. In recent years,

there has been considerable interest directed at modeling excess

zeros for ecological applications and predictive mapping that

informs policy and management decisions (see Zuur et al. 2009 for

more for details) [61,63,64,65].

All significant variables retained from the preliminary model

were added to a zero-inflated negative binomial model that also

included detection bias variables. The bias variables used in this

study came from assessments of environmental conditions

recorded by scientific observers during the surveys, and time,

which was analyzed as a six-digit numeric value, hhmmss (Table 1).

If detection bias variables maintained a significance level of 0.05

they were included in the model. For all parameters, we then used

a manual backward stepwise procedure for overall model

simplification to allow for biological interpretation instead of

automated model reduction [46,66]. We used two test statistics:

the log-likelihood of alpha to determine the level of significance for

models using negative binomial over Poisson regression, and the

Vuong test statistic to determine model preference for zero-

inflated negative binomial regression over standard negative

binomial regression [67]. Because some of the years in our study

period included anomalous ocean conditions, we tested for

Figure 2. Flow chart of methodology adapted from Franklin (2009).
doi:10.1371/journal.pone.0071406.g002
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interactions between year (as a categorical variable) and significant

oceanographic variables (SST, SSS). Using log-likelihood ratio

statistics, we compared nested models to identify the best-fit

interaction. If models had more than one significant oceano-

graphic variable and both interactions were significant, we selected

the model with the strongest interaction. We used n-fold cross-

validation to assess model fit by randomly splitting binned

observations into mutually exclusive subsets [68]. We created

multiple models (n = 10) for each species and cross-validated

leaving one subset out each time.

Predicting Species Distributions
To apply our findings to the larger Sanctuary area, we created

surface water maps based on binned midpoint values of SST, SSS,

and SSF using ordinary kriging as an interpolation method

[33,69]. Our interpolated values were predictions of oceano-

graphic characteristics at unsampled locations, and in this study

these values extended up to 25-km beyond survey coverage (Fig. 2).

We interpolated surface profiles for each oceanographic variable

per cruise using kriging because it allows for irregularities in non-

parametric surfaces by quantifying their spatial structure and is

flexible as both a local and global interpolator [69]. Since we were

working within an eight-year temporal frame, and modeling three

oceanographic surface profiles (SST, SSS, SSF), we were

interested in capturing general trends across each of the 81

surfaces (3 variables627 cruises). To accomplish this we employed

parameter optimization for each variable on a cruise-by-cruise

basis to automate the interpolation process. Optimization mini-

mizes the mean square error for predictions by assuming data are

isotropic or have no directional influences, and applies a default

search radius to weight measured locations [69]. We plotted each

variable based on their overall mean square error of predictions to

identify outlying cruises, which we then further investigated for

trends in the semivariogram and detrended when necessary to

minimize errors across all months used in the analysis (Root Mean

Squared Errors (mean 6 SD): SST=0.2260.03;

SSS=0.0760.05; SSF= 0.2160.15). We kept high variability

from anomalous weather events in the analysis as these occur

naturally and are important to consider when modeling yearly

interactions of species reactions to environmental changes [18,41].

We then created a 1-km2 prediction cell data matrix set to the

extent of the Sanctuaries with an additional 5-km buffer beyond

Sanctuary boundaries to incorporate waters bordering our study

area (Figure 2). We sampled the kriged surfaces on a cruise-by-

cruise basis to extract SST, SSS, SSF information; calculated

distances to cell centroids; and assigned the same monthly climate

index values used in the model fitting. To complete the prediction

data matrix we calculated the most frequently recorded values of

detection bias variables to assign environmental classifications. We

then modeled predicted abundances for each species per cruise at

the scale of a single grid cell.

We followed the methodology used in Nur et al. [24] to identify

highly used habitat on the basis of modeled abundance values

derived from count data. We standardized abundance first across

months and then across months and years based on the prediction

cell average (1-km2) for each species. These values identified high-

use habitat throughout the breeding season for both individual

species and multi-species distribution maps. For individual species,

we focused on the most consistent ACCESS cruise months: May,

July and September. For multi-species models, standardization

was completed prior to combining species to ensure equal

contributions from each. Not addressing this would have biased

habitat selection map results towards species with higher mean

abundances. We repeated the standardization of species-specific

abundances across months and years to produce a single, multi-

species abundance value for each prediction cell to identify highly

selected foraging areas within the Sanctuaries. For visualization

purposes, we then ordered both single species and multi-species

standardized abundances using percent ranking with the objective

of mapping the level of habitat use in a particular cell [24].

Spatial Prioritization
We consulted with Sanctuary scientists and managers to

consolidate California Ocean Uses Atlas layers into those activities

occurring inside Sanctuary boundaries that also demonstrated a

varying degree of spatial coverage. We used polygon layers

categorizing the dominant spatial coverage of each activity to

highlight core areas within the Sanctuaries used for recreational,

military, or socio-economic purposes. We did not include routine

activities within Sanctuary waters for which we did not have

spatially explicit information due to their ubiquity at the resolution

of the data, i.e: recreational and pelagic commercial fishing.

Four regional experts (Sanctuary staff and scientists) discussed

and scored the remaining activities from 1 (low) to 5 (high)

using knowledge on the frequency of the activities, their passive

disturbance to seabirds and potential for direct endangerment

(i.e. the potential for an oil spill). The activities, scores and

rationale are as follows: Military uses (disturbance:low; endan-

germent:very low) = 1; wildlife viewing (disturbance:low; endan-

germent:low) = 2; commercial benthic fishing with mobile gear

(disturbance:low; endangerment:low) = 2; commercial benthic

fishing with fixed gear (disturbace:low; endangerment:me-

dium) = 3, industrial shipping(disturbance:medium; endanger-

ment:high) = 4; and oil/gas shipping (disturbance: medium;

endangerment: very high) = 5. Final scores were determined by

group consensus for each activity and then applied to grid cells

overlapping the spatial extent of the activity’s footprint. The

sum of activities occurring in each grid cell then generated a

general human use layer for incorporation into the spatial

prioritization exercise (maximum value = 17).

Our strategy used the spatial prioritization tool Marxan to

meet seabird conservation targets under different sets of

constraints [70]. Marxan operates on the minimum-set problem,

which can be described as the algorithm’s objective to satisfy

the minimum target amount of an identified conservation

feature for the lowest cost [71,72]. Here, we used two scenarios

to examine varying spatial solutions that met targets of 10%,

30% and 50% seabird habitat conservation with all other

parameters held constant for both analyses. We designed

scenario 1 to identify preferred areas for conservation from

the perspective of the resource (seabird habitat) alone. To do so

we used the species-specific modeled abundances (across months

and years) as our conservation features and minimized area as a

means to minimize cost. Scenario 2 identified preferred areas

for conservation while simultaneously considering disturbance-

causing activities from the general human use layer. We used

the species penalty factor, a Marxan parameter that individually

scales conservation features based on the importance of meeting

their targets in solution outputs. This helped us incentivize

meeting the targets of less abundant species such as Brandt’s

cormorants and rhinoceros auklets, without compromising the

more abundant ones (see Table 1). The targets reflect a

spectrum of low to high-hypothesized conservation goals used in

previous studies [35,73]. Each scenario’s solutions were obtained

from 100 iterations for each conservation target.
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Results

We used zero-inflated negative binomial regression to signifi-

cantly model all species (Table 1), excluding common murres

where the preferred model was standard negative binomial

regression due to generally higher abundances and fewer zero

counts (Table 1). Cassin’s auklets had the least significant of zero-

inflated models with p= 0.06; however, controlling for potential

bias was critically important for this small, hard to detect seabird.

From all detection bias variables tested, only cloud cover, sea state

and time significantly contributed to zero-inflation. Cloud cover

influenced the detection of both auklet species. Sea state

influenced the detection of rhinoceros auklets and western gulls.

Time of surveys influenced detections of Cassin’s auklets and

Brandt’s cormorants. Cross-validation results showed all models

significantly predicted species abundance at a 0.05 level (Table 3).

Habitat Associations
We summarize seabird habitat associations as follows (Table 3):

SSS and SSF significantly influenced distributions of two alcid

species: Cassin’s auklets and rhinoceros auklets, yet showed no

statistically significant relationship to the distribution of western

gulls, common murres, or Brandt’s cormorants. SST was a

significant habitat driver for common murres and Brandt’s

cormorants. In addition, the influence of oceanography on the

number of individuals observed varied among years as evidenced

by the inclusion of significant year-interaction terms for three

species: common murres, Cassin’s auklets, and Brandt’s cormo-

rants. Oceanographic variables did not contribute to the western

gull distribution model. Bathymetric features, namely distance to

SEFI and the shelf break were significant predictive variables for

all species models. Climate indices significantly influenced the

alcid species with NPGO and PDO contributing to common

murre distributions, SOI contributing to both auklet distributions

and PDO influencing rhinoceros auklets. Western gulls showed no

relationship to these Pacific-basin scale indices, but instead

exhibited significant correlations to coastal upwelling.

Predicted Distributions
Differences in habitat selection varied slightly across months for

species whose distributions were driven by oceanographic

variables (Figure 3). Distance to static bathymetric features were

the most significant driver of western gull distributions and

therefore no spatial variation across months can be seen. Figure 4

captures distinct distributions generated from standardized mod-

eled abundances, across all months and years, to reflect species-

specific habitat use throughout the eight-year data range. Here,

transects delimit the spatial coverage of survey lines to highlight

areas where prediction artifacts are likely present (see Discussion).

The composite multi-species map highlights two areas used by all

species: the waters northwest of Cordell Bank, and the waters

surrounding the Farallon Islands with eastward, asymmetric

directionality moving along the shelf towards the mainland

(Figure 5).

Spatial Prioritization
The general human use layer illustrates that the majority of

activities occur along the continental shelf east of the 200-m

isobath, with higher impacts to seabirds in and adjacent to the

Table 3. Species model results showing the best transformation (L = linear; Q = quadratic) and the sign of the coefficient for
significant habitat variables, bolded oceanographic variables included interactions with year (n = 2336).

Variable western gull common murre Cassin’s auklet Rhinoceros auklet Brandt’s cormorant

Model Fitting

SST Q (2)** Q(2)*

SSS L (+)*** L (+)*

SSF Q (+)** Q (+)* L (2)**

Dist_land Q (2)***

Dist_200m Q(2)*** L (+)*** Q (2)*** L (2)*** L (+)***

Dist_SEFI L (2)** Q (+)*** Q(+)*** L (+)* L (2)***

NPGO Q (+)*** L (2)***

PDO Q (+)***

SOI Q (+)*** L (+)***

UI_value L (2)*

Cloud L (2)* L (2)**

Sea state L (+)** L (+)**

Time of day L (+)* L (2)**

Model X2 (df) 70.7 (13) 1017.4(29) 397.8 (25) 311.5 (15) 336.9(20)

Model P ,0.0001 ,0.0001 ,0.0001 ,0.0001 ,0.0001

Vuong test for zero inflation 0.02 0.06 0.00 0.04

Model Validation

Model F (1, 2334) 5.52 20.18 35.37 107.22 4.52

Model P 0.0189 ,0.0001 ,0.0001 ,0.0001 ,0.0336

* =p-value ,0.05
** = p-value ,0.01
*** = p-value ,0.0001.
doi:10.1371/journal.pone.0071406.t003
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Figure 3. Species-specific variations in modeled habitat use for May, July, and September months (2004–2011); each gradient
represents a 10% difference in habitat selection.
doi:10.1371/journal.pone.0071406.g003
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Figure 4. Species-specific habitat use across months and years (2004–2011); each gradient represents a 10% difference in modeled
habitat selection.
doi:10.1371/journal.pone.0071406.g004
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shipping lanes (Figure 6). Both scenarios’ solutions satisfied

conservation targets by capturing the areas northwest of Cordell

Bank, the Farallon Islands, the shelf break, and the nearshore

coastline (Figure 7). Differences arose in both the configuration

and number of cells required to achieve conservation targets.

Scenario 1 selected the areas northwest of Cordell Bank and the

waters surrounding the Farallon Islands which our models show to

be important multi-species foraging habitat (Figure 5). Scenario 2

also selected these areas, but the inclusion of human uses moved

the highest concentrations of selected cells to the low-cost region

west of the shelf break and expanded the solutions to include the

coastal areas north and south of Point Reyes. In all instances, the

best solutions derived from the 100 runs showed that scenario 1

achieved seabird conservation targets using less area than scenario

2 (approximately 50, 75, and 95 km2 respectively for the 10, 30

and 50% targets). Visualizing the selection frequency of each cell is

a helpful tool Marxan provides to compare the relative importance

of certain units over others in finding efficient solutions. We

mapped the upper 50% of frequently selected outputs for each

scenario’s summed solutions (Figure 7).

Discussion

For the scale of this study, using shipboard estimates of

oceanographic surface data collected simultaneously with species

counts likely produced more accurate predictive models than

would be possible using only remotely-sensed data. For example,

three out of the four species also modeled by Nur et al. [24] were

not shown to display significant associations with oceanographic

variables at the scale of the CCS. It is not uncommon for large-

scale studies to identify relationships with static bathymetric

features and basin-wide climate indices when explaining seabird

distributions [19,24]. Such studies show that emergent seabird

distribution patterns are scale-dependent and emphasize the

critical consideration of scale when approaching management

strategies. Our findings fall in line with previous studies but also

show that surface oceanography influences habitat selection at

local scales. In situ data collection captures small variations in

surface waters which were important for four out of five of our

focal species.

Observed SST and SSS exhibited consistently small ranges of

variability when compared to observed SSF. This occurs naturally

as phytoplankton bearing chl-a bloom after periods of strong

upwelling, resulting in a heterogeneous SSF distribution influ-

enced by water mass type, stratification and the presence of fronts

[74]. Using linear regression to fill gaps on cruises lacking SSF

data contributed to a smaller predictive variance than may have

been otherwise observed if data records were available for all

cruises. Even so, SSF data, acting as a proxy for primary

productivity, was deemed the best in situ data available to include

in the modeling exercise to help differentiate productive from non-

productive waters. Geostatistical interpolation allowed for rapid

and efficient creation of many oceanographic surface layers. While

we did not account for the directional influence of currents and

water densities on surface property distributions, the overall

performance of interpolated surfaces reflected observed patterns

and general trends in the surface oceanography of the study

region.

Figure 5. Multi-species high-use foraging areas across months and years (2004–2011); each gradient represents a 10% difference in
modeled habitat selection.
doi:10.1371/journal.pone.0071406.g005
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Our individual species models helped us identify important

foraging habitats utilized by focal species of the Farallon Islands

throughout the breeding season. Our five species included two

omnivorous, two piscivorous and one zooplanktivorous seabird

with differing foraging ecologies. The omnivorous western gulls

and common murres foraged closer to the Farallon Islands and

over the continental shelf. Western gulls are generalist foragers and

their distribution models demonstrated less sensitivity to ocean

variability than the other focal species. The importance of

nearshore foraging habitats for common murres was evidenced

by the necessity to include distance to the mainland for this species

alone as a covariate in the model which resulted in improved

distribution maps that better reflected observed patterns in habitat

use. The piscivores differed by their habitat choices with Brandt’s

cormorants traveling to shallower nearshore waters to obtain prey

in or near the benthos, and rhinoceros auklets foraging along the

200-m isobath and over Cordell Bank. The zooplanktivorous

Cassin’s auklet foraged in the vicinity of Cordell Bank and the

Farallon Islands where bathymetric features gather krill [34].

Overall, this component of the analysis offers an understanding of

foraging distribution patterns at a scale useful for Sanctuary level

management.

Cross-validation results showed that models captured spatial

trends and identified high-use areas within the survey region. The

maximum distance to the colony on SEFI modeled in the

prediction matrix was 90,124-m, almost 25,000-m beyond survey

coverage. Extrapolations of species distribution models outside of

the survey region are likely subject to increased uncertainty and

should be interpreted with caution [48,75]. For example, models

for western gulls and Brandt’s cormorants predicted mirrored

distributions west of the 200-m isobath where no transect data

exists. Models for Cassin’s auklets and Brandt’s cormorants

exaggerated trends in abundance to the edge of the Sanctuaries

when extrapolated beyond survey coverage. However, these

species-specific artifacts did not persist once incorporated into

the composite multi-species foraging habitat map.

Multi-species examinations of highly selected foraging areas are

an essential requirement for conservation planning to aid

managers in the delineation of candidate sites for marine

protection [76]. The core high-use areas identified around Cordell

Bank and near the Farallon Islands, as well as the shelf break

should be prioritized when considering conservation strategies for

seabird management in Sanctuary waters. It should be noted that

this study focused primarily on breeding season data, the time of

year when seabirds are most abundant and spatially constrained to

the colonies. This study also only considered five of forty-three

seabird species observed in Sanctuary waters on ACCESS cruises.

Studies that examine winter habitat use and include both resident

and migratory seabirds will complement these findings for year-

round management schemes.

A thorough spatial understanding of human activities and their

impacts is an important contributing factor to comprehensive

management. Of the activities included in this study, the highest

concentrations occurred in GFNMS along the continental shelf

due to shipping, fishing and wildlife viewing. Military activities and

shipping lanes made up the predominant human activities

occurring in CBNMS. We enhanced the implications of both

model results and human activity layers by moving them beyond

Figure 6. Human uses based on the sum of impact scores and the distribution of all activities occurring per 1 km2 cell; each
gradient represents a 20% increase in impact score.
doi:10.1371/journal.pone.0071406.g006

Seabird Habitat Modeling to Inform Conservation

PLOS ONE | www.plosone.org 11 August 2013 | Volume 8 | Issue 8 | e71406



Figure 7. Comparison of Marxan results prioritizing conservation of seabird habitat alone (scenario 1) and with the inclusion of
human activities (scenario 2), shown by the cell selection frequency for 10, 30, and 50% conservation targets.
doi:10.1371/journal.pone.0071406.g007
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basic visualization and integrating them into a spatial prioritization

exercise. While the general human use index generated in this

study is useful to demonstrate the utility of these types of exercises

for management decisions, more sophisticated human use layers

need to be developed for federal waters to improve the

performance of such applications. More specifically, data on the

frequency and timing of human activities, effort, and a finer

understanding of their offshore distributions will be critical to

marine spatial planning and zoning within the Sanctuaries.

We used Marxan to illustrate how improved knowledge of

species habitat use can be applied to conservation within the

Sanctuaries. Our scenarios reflected two approaches that met

different management objectives: seabird conservation alone

(scenario 1), and seabird conservation while considering the

impact of human activities (scenario 2). The latter approach has

been applied in state waters adjacent to the Sanctuaries and

encompasses the principles of marine spatial planning [36,77].

Incorporating human uses shifted cell selection towards the

offshore region west of the 200-m isobath. There are several

management implications we can glean from this analysis: 1)

incorporating human activity constrains the high-use foraging

areas near the Farallon Islands and Cordell Bank and shifts

priority conservation areas to the marginal seabird habitat

occurring further offshore, west of the 200-m isobath where

human activities occur less frequently. This is relevant to

conservation efforts, as seabirds will continue to forage in areas

with abundant prey regardless of human activities. Therefore

placing seabird conservation areas offshore to avoid conflict with

ocean users will be less effective than prioritizing areas identified as

high-use; 2) Should conservation areas be established outside of

highly-selected foraging habitat, more sub-optimal coastal foraging

areas would have to be protected to meet conservation targets.

This would be potentially more costly to manage and the ability of

these areas to meet the dietary needs and energetic demands of

breeding seabirds is unknown; 3) According to the parameters set

in this study, there is significant spatial overlap between scenario

results demonstrating there is compatibility between seabird

conservation areas and human activities currently allowed within

Sanctuary waters.

We present results in relation to the footprints of existing state

MPAs and potential future alternative energy sites identified by the

California Ocean Uses Atlas. As a basic overlay, current MPAs

near the Farallon Islands perform better than inshore MPAs at

capturing highly selected areas under both scenarios, particularly

for 30 and 50% targets. Expansion of these MPAs or protection of

contiguous areas could have significant conservation benefits for

seabirds. However, the novel contribution of this analysis is to

inform ongoing marine spatial planning efforts aimed to regulate

emerging ocean uses as well. Alternative offshore energy

development is the most notable new management concern for

the Sanctuaries. Past proposals and studies outlined areas to

deploy wind and wave farm structures on the shelf, east of the

Farallon Islands [78]. The effect of these technologies on natural

and living resources is unknown, yet actively researched [79]. Our

study shows there is considerable spatial overlap between potential

seabird conservation areas identified in both scenarios and the

proposed alternative energy development footprint (Figure 7).

Documented risks to seabirds from wind turbines include collision

mortality, habitat loss, displacement and disturbance [80],

suggesting this proposed siting area is incompatible with seabird

conservation efforts and further analysis should be conducted

following the results of this study.

Our ultimate goal was to offer a pragmatic example of how

long-term monitoring data can be applied to conservation

planning at a localized scale. Our approach investigated the

spatio-temporal relationships between wildlife and environmental

characteristics driving habitat use patterns. Using seabirds as an

example, we present a template on which to build further species-

specific models that in turn could be incorporated into an

ecosystem-level analysis including main forage species, marine

mammal and migratory seabirds. As knowledge improves regard-

ing the use of resources in Sanctuary waters by both wildlife and

humans, more sophisticated studies can supplement conservation

decisions and minimize threats to marine species and living

resources. This approach can be applied elsewhere to support

marine spatial planning efforts for current and future conservation

objectives.
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