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Abstract

Objective: Epstein–Barr virus (EBV) and Helicobacter pylori (HP) infections have been 
extensively recognised as gastric cancer (GC) triggers, and recent publications suggest 
they could behave as predictive markers for immune-modulating therapies. Tumour-
infiltrating lymphocytes (TILs) have also been identified as a predictive biomarker for 
immunotherapy in different malignancies. This study aimed to investigate the association 
between EBV and HP infection with TIL levels in GC.

Methods: TIL evaluation in haematoxylin-eosin was performed by a pathologist and den-
sity of CD3, CD8 and CD163 positive (immunohistochemistry staining) immune cells was 
calculated with the use of digital pathology software. EBV infection was detected by in 
situ hybridisation (ISH) and by quantitative polymerase chain reaction (qPCR). Methyla-
tion status of EBV-related genes was detected by PCR and a methylome analysis was 
performed by the Illumina Infinium MethylationEPIC BeadChip. HP status was detected 
by qPCR.
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Results: We included 98 resected GC Peruvian cases in our evaluation. Median TIL percentage was 30. The proportion of EBV+ detected 
by ISH was 24.1%, of EBV+ detected by qPCR was 41.8%, while 70% showed methylation of EBV-related genes, and 58.21% of cases were 
HP+. Younger age (p = 0.024), early stages (p = 0.001), HP+ (p = 0.036) and low CD8 density (p = 0.046) were associated with longer overall 
survival (OS). High TIL level was associated with intestinal subtype (p < 0.001), with grade 2 (p < 0.001), with EBV qPCR+ (p = 0.001), and 
with methylation of EBV-related genes (p = 0.007). Cases with high TIL level and cases that are EBV positive share eight genes with similarly 
methylated status in the metabolomic analysis. High CD8 density was associated with EBV PCR+ (p = 0.012) and HP− (0.005).

Conclusion: Lower CD8 density and HP+ predict longer OS. High TIL level is associated with EBV+ and methylation of EBV-related genes, 
while lower CD8 density is associated with HP+ GC.

Keywords: Epstein–Barr virus, Helicobacter pylori, lymphocytes, in situ hybridisation

Introduction

Gastric cancer (GC) represents the fourth most common type of cancer and the second leading cause of cancer death worldwide. The inci-
dence of GC varies up to 10-fold by geographic region, suggesting that genetic or environmental factors influence carcinogenesis and clini-
copathological features. In Peru, GC is the second in males and the third most frequent malignancy in women [1]. Epstein–Barr virus (EBV) 
is uniformly present in gastric adenocarcinoma subtype with extensive lymphocyte infiltration [2, 3] and is associated with cytosine-guanine 
(CpG) dinucleotide hypermethylated pattern and longer survival [4, 5]. Recent studies indicate that EBV presence could also predict efficacy 
of checkpoint immune inhibitors in GC [6].

Persistent infection with Helicobacter pylori (HP) induces chronic inflammation and gastric carcinogenesis. HP prevalence in adults living in 
developing Latin American countries is 70% to 80%, and its presence in GC has been suggested to be associated with a better prognosis and 
response to checkpoint immune inhibitors [7, 8].

Some reports have shown that a high level of tumour-infiltrating lymphocytes (TILs) is related to both longer survival in GC [9] and a higher 
response to checkpoint inhibitors. However, methodologies for evaluating TILs have been diverse, and only a few studies have evaluated the 
relationship between TIL levels and clinicopathological features [10–13]. Recently, the International Immuno-Oncology Biomarkers Working 
Group (IBWG) has proposed a standardised methodology to evaluate TIL in different malignancies including gastric carcinoma [14]. Further-
more, some recent reports have described that density of immune cell subpopulations belonging to TIL like CD3 positive (T-cell) lympho-
cytes, CD8 positive (cytotoxic T-cell) lymphocytes and CD163 positive (pro-tumour M2) macrophages could be responsive to the mentioned 
associations [13, 15].

We developed an exploratory study to evaluate the relation between the TIL level based on IBWG methodology [6, 14] and the infection of 
HP and EBV in a cohort of EBV enriched GC population. Additionally, density of CD3, CD8-and CD163positive immune cell subpopulations 
and their relationship with HP and EBV infections were calculated. Evaluation of EBV infection included the analysis of methylation status 
of EBV-related genes.

Materials and methods

Subjects

The study included histology confirmed gastric adenocarcinomas from patients who underwent surgery at the Instituto Nacional de Enfer-
medades Neoplasicas (Lima–Peru) from 2015 to 2018. All the patients were selected by convenience sampling. Cases were selected among 
those with the highest EBV gene counts by polymerase chain reaction (PCR) (previously selected [1] with counts that reached up to 166,210.5 
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copies/μL) in order to obtain a group with high rates of positive in situ hybridisation (ISH) evaluations for EBV. All included cases had ISH 
status for EBV and/ or methylation evaluation of EBV-related genes.

This single-centre retro-prospective cohort research was presented and approved by the Research and Ethics committee (Protocol Number 
#050-2015-CIE/INEN), and the patients were invited to read and sign the informed consent.

Tumour specimens

Every tumour sample was collected and stored at −80°C until use at the Institute Biobanking for quantitative PCR (qPCR) for EBV, as well 
as paired Formalin-Fixed Paraffin-Embedded (FFPE) samples saved at pathology archive. Tissue microarrays (TMAs) were constructed from 
tumour cores (6.0 mm diameter) through the invasive areas of each specimen from the selected FFPE blocks. Serial 4-μm sections were 
prepared and used for immunohistochemistry (IHC) staining [6].

Immunohistochemistry (IHC)

Sections from paraffin samples were rehydrated in phosphate-buffered saline (PBS), and antigen retrieval was performed by immersing in 
0.1% trypsin solution in PBS at 37°C for 5–10 minutes or by microwave heating for 5 minutes × 4 (total, 20 minutes) in buffer solution. The 
sections were treated for 45 minutes with 10% normal goat serum or normal horse serum in PBS. The primary antihuman antibodies used for 
IHC were CD3 (IS503, Dako, Glostrup, Denmark), CD8 (clone C8/144B, IS623, Dako, Glostrup, Denmark) and CD163 (clone EP324, Master 
Diagnostica, Granada, España). The sections were incubated further in alkaline phosphatase–streptavidin (Vector Laboratories, Burlingame, 
CA; 1:1,000 dilution) for 30 minutes at room temperature, reacted with Fast-Red Substrate System (Dakopatts) or with Dako® Fuchsin + 
Substrate-Chromogen. Background staining was performed with Mayer’s haematoxylin solution, and sections were then dehydrated through 
ascending alcohols to xylene and mounted on slides.

Measurement of TILs

FFPE tissue samples were retrieved and haematoxylin-eosin stained slides were obtained. The IBWG method for TIL assessment in the stro-
mal compartment was applied by one pathologist (J Sanchez) (Figure 1). The densities of T lymphocytes were assessed following our previ-
ous report [6]. Immunostained slides were digitally scanned using a BX63 Olympus scanner (Olympus, Tokyo, Japan) at 20× magnification. 
Digital images were viewed with Visiopharm Integrator System software version 6.6.1.2572 (Visiopharm, Hørsholm, Denmark). Density of 
CD3, CD8 and CD163-positive cells were calculated, in cases with enough stained tissue, by VisionPharm software by counting the number 
of positive cells for staining/total number of cells in five high power fields located in the stromal compartment (M Castillo and LA Bernabe) 
under supervision by a pathologist (J Sanchez) [6] (Figure 2).

EBV ISH

Chromogenic ISH for EBV-encoded RNA (EBER) was performed in FFPE tissue samples with fluorescein-labelled oligonucleotide probes 
(EBER probe, Ventana) with enzymatic digestion (ISH protease 3, Ventana) and an iViewBlue detection kit (Ventana) with use of the Bench-
Mark ULTRA staining system (K Tello).

Evaluation of the EBV gene and HP gene expression

The detection of EBV gene expression was performed in a region of BNRF1, and HP genes by the hspA and UreA genes in DNA from frozen 
samples as targets by qPCR in the LightCycler 96 Instrument Thermal Cycler (Roche, Mannheim, Germany) as described in our previous pub-
lication [1]. Values were considered as positive when ≥10 copies/μL was detected (N Suarez).
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Figure 1. HE staining of GC. Representative slides of stromal compartment with high (a, b) level of tumour infiltrating lymphocytes. (magnification: ×200).

Figure 2. Identification of CD8 in IHC staining images (a) by machine learning-based image processing (b) showing positive (green) and negative (blue) cells, 
(magnification: ×400).

Evaluation of methylation in genes related to EBV

Genomic DNA was isolated from GC frozen samples using the classical method of phenol/chloroform/isoamylalcohol and proteinase K. The 
bisulfite treatment was performed as previously described with the EpiTect Bisulfite (Qiagen, Germany) kit and the thermal cycler Master-
cycler nexus gradient (Eppendorf, Germany). The methylation status of six gene promoters (RASSF1, CDKN2A, MGMT, GSTP1, HOXA10 and 
TP73) were analysed in the LightCycler® 96 Instrument (ROCHE®) thermal cycler, and the results were interpreted regarding the threshold 
cycle presence in the software LightCycler® 96 System Version 2.0 [5]. Primer sequences were forward: 5′ TGGAGTTTTCGGTTGATTG-
GTT 3′ and reverse: 5′ AACAACGCCCGCACCTCCT 3′ for CDNK2A; forward: 5′ ATCGGAAGTGCGTTATTTCGTG 3′ and reverse: 5′ TTC-
CGTCTCTCGACTCGAAACT 3′ for HOXA10; forward: 5′ GGGTCGGGTAGTTCGTTTTG 3′ and reverse: 5′ CGATTTCGCTACGTCCCCT 3′ for 
TP73; forward: 5′ ATTGAGTTGCGGGAGTTGGT 3′ and reverse: 5′ ACACGCTCCAACCGAATACG 3′ for RASSF1A; forward: 5′ GTCGGCGTC-
GTGATTTAGTATTG 3′ and reverse: 5′ AAACTACGACGACGAAACTCCAA 3′ for GSTP1; forward: 5′ GCGTTTCGACGTTCGTAGGT 3′ and 
reverse: 5′ CACTCTTCCGAAAACGAAACG 3′ for MGMT.

DNA methylation profiling was performed using the Illumina Infinium MethylationEPIC BeadChip that features over 850,000 CpGs in 
enhancer regions, gene bodies, promoters, and CpG islands according to the manufacturer’s instructions, in FFPE tumour tissues of a subset 
of 24 GC cases in the Molecular Genomics Core lab, USC Norris Comprehensive Cancer Center (Los Angeles, CA). The methylation values 
for the individual CpG sites were obtained as β values. The β-value generated for each CpG locus reflected a measure of the percentage of 
the methylated (β = 1) and unmethylated probes (β = 0). The β-values of each probe are continuous variables that are calculated by dividing 
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the intensity of the methylated probe by the combined methylated and unmethylated probe intensities, and the resultant values range from 
0 to 1.

Statistical analysis

Comparisons of categorical variables were done by a Chi-square test or Fisher’s exact test as appropriate. Correlation between density of 
CD3, CD8 and CD163-positive cells were calculated by intraclass correlation coefficient (ICC). Overall survival (OS) was defined as the time 
from the date of surgery until death from any cause or last vital status obtained from patient file or from National Registry of Identification 
and Marital Status webpage (www.reniec.gob.pe). The follow-up for vital status was completed in September 2021. Survival rates were esti-
mated by the Kaplan–Meier method. All tests were two-sided, and differences were considered to be significant when p < 0.05. Statistical 
analyses were performed with IBM SPSS Statistics version 21 (IBM, Armonk, NY). Genome-wide DNA methylation was analysed, identifying 
differentially methylated regions (DMR) with respect to TIL level (with a cutoff of 30%) and ISH EBER status (positive or negative) through 
Illumina Infinium MethylationEPIC BeadChip. The raw intensity data were imported into R (3.6.0, https://cran.r-projecto.org/) and then 
analysed with the minfi package for data preprocessing normalisation and comparison between groups. Statistical analyses of the data were 
performed in RStudio (1.2.1335) (http://www.rstudio.com/) using an R environment (3.6.0) (https://www.R-project.org).

Results

Clinicopathological features

In the whole series of 98 cases, the median age was 68 years and 41.8% were women. Clinicopathological features are described in Table 
1. HP was detected in 56.1%. Median TIL percentage was 30 (interquartile range (IQR) = 10%–60%). Median densities of CD3 positive 
cells, CD8 (T lymphocytes) and CD163 positive cells were 21.07% (IQR = 10%–60%%), 10.48% (IQR = 5.77%–20.04%) and 11.17% (IQR = 
5.68%–17.29%), respectively. Density of CD3 positive cells had close correlation with CD8 (ICC = 0.834 (95% CI: 0.725 to 0.899, p < 0.001)). 
Density of CD3 positive cells (ICC = 0.241 (95% CI: −0.33 to 0.567, p = 0.167)) had poor and CD8 (ICC = 0.551 (95% CI: 0.183 to 0.753, p = 
0.005)) had a high direct correlation with CD163.

Median follow up was 21.7 months and 47 patients (48%) were alive at 3 years. Older age (p = 0.024), presence of lymphovascular invasion 
(p = 0.007), advanced pathological stage (p = 0.001), recurrence (p = 0.002), HP absence (p = 0.036) and high CD8 density (p = 0.046) were 
associated with shorter OS (Figure 3). The level of TIL (p = 0.594), CD3 density (p = 0.241) and CD163 density (p = 0.152) were not associ-
ated with survival (Table 1). 

Determination of EBV status through ISH, qPCR and methylation

Status for EBV was positive using EBER-ISH method in 19 of the 79 (24.1%) evaluated cases and was positive using qPCR method in 41 of 
98 (41.8%) cases. There was no significant relationship between EBER ISH and qPCR detection (kappa index = 0.012, p = 0.864). There was 
no significant association between OS and EBER ISH (p = 0.345) or qPCR (p = 0.809).

An upregulated methylation status in at least one gene was found in 55 of the 78 (70%) evaluated cases (Table 1). There was methylation of 
RASSF1, CDKN2A, MGMT, GSTP1, HOXA10 and TP73 in 37.2%, 48.7%, 34.6%, 11.5%, 15.4% and 10.3%, respectively. There was a significant 
association between methylation status and presence of EBV infection evaluated through qPCR (kappa index = 0.328, p = 0.003) or ISH 
(kappa index = 0.158, p = 0.025).

The methylome analysis using Infinium MethylationEPIC BeadChip in 24 tumour samples found that DMR cutoff >30% with <0.05 p-value 
regarding EBER ISH status identified 88 DMR-related genes (from 116 DMRs).
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Table 1. Clinicopathological features.

Features n % OS at 3 years (%) p value

Age (Median) (IQR = 17)   0.024*

 <68 46 46.9 60.9

 ≥68 52 53.1 44.2

Gender   0.788*

 Male 57 58.2 52.6

 Female 41 41.8 51.2

Lauren subtype   0.507*

 Intestinal 57 58.2 49.1

 Diffuse 28 28.6 53.6

 Mixed 13 13.3 61.5

Histological gradea   0.301*

 1 14 14.3 64.3

 2 33 33.7 45.5

 3-4 51 52.0 52.9

Lymphovascular invasion   0.007*

 No 34 34.7 67.6

 Yes 64 65.3 43.8

Perineural invasion   0.167*

 No 41 41.8 53.7

 Yes 57 58.2 50.9

Location   0.183*

 Antrum 54 55.1 55.6

 No-Antrum 44 44.9 47.7

Resection   0.032**

 Subtotal 57 58.2 56.1

 Total 41 41.8 36.6

Pathological stage   0.001*

 I 16 16.3 68.8

 II 22 22.4 77.3

 III 54 55.1 40.7

 IV 6 6.1 16.7

Recurrence (n = 98) 0.002**

 No 73 74.5 58.9

 Yes 25 25.5 16.0

HP 0.036*

https://doi.org/10.3332/ecancer.2022.1362
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Table 1. Clinicopathological features. (Continued)

 Negative 43 43.9 37.2

 Positive 55 56.1 56.4

TIL stromal (Median)   0.594**

 <30 48 49.0 52.1

 ≥30 50 51.0 52.0

CD3 density (Median) (n = 71)   0.241*

 <21.07 35 49.3 54.3

 ≥21.07 36 50.7 44.4

CD8 density (Median) (n = 64)   0.046*

 <10.48  32 50.0 59.4

 ≥10.48  32 50.0 37.5

CD8/CD3 ratio (n = 63) 0.361**

 Low 31 49.2 51.6

 High 32 50.8 43.8

CD163 density (Median) (n = 63)

 <11.17 32 49.2 56.3 0.152*

 ≥11.17 33 50.8 39.4

EBER-ISH (n = 79)   0.345*

 Negative 60 75.9 50.0

 Positive 19 24.1 42.1

EBV (qPCR) (n = 98)   0.809*

 Negative 57 58.2 54.4

 Positive 41 41.8 48.8

Methylated EBV-related genesb (n = 78) 0.494*

 No 23 29.5 47.8

 Yes 55 70.5 52.7

OS: Overall survival; TIL: Tumour-infiltrating lymphocytes; EBV: Epstein–Barr virus
a1: Well differentiated; 2: Moderately differentiated; 3–4: Poorly differentiated and undifferentiated
b At least one gene 
p value < 0.05. *Breslow; **Log Rank

Association between TILs and clinicopathological features in gastric tissues

High TIL level was associated with intestinal subtype (p < 0.001) and well/ moderately differentiated grade (p < 0.001). CD3 density was not 
associated with HP (p = 0.531) nor other variables (p > 0.01). High CD8 density was associated with absence of HP infection. High CD163 
density was associated with male gender (p = 0.02), diffuse subtype (0.040) and stage III (p = 0.02) (Table 2).
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Table 2. Evaluation of relationship among tumour-infiltrating-lymphocytes and clinicopathological features. 

Features TIL <30%  
(n = 48)

TIL ≥ 30%  
(n = 50) p CD8 

<10.48
CD8

≥10.48 p CD163 
<11.17

CD163
≥11.17 p

Age (Median)   0.070* 0.8* 0.256*

 <68 27 (58.7) 19 (41.3)  14 (51.9) 13 (48.1) 12 (41.4) 17 (58.6)

 ≥68 21 (40.4) 31 (59.6)  18 (48.6) 19 (51.4) 20 (55.6) 16 (44.4)

Gender   0.973* 0.313* 0.035*

 Male 28 (49.1) 29 (50.9)  16 (44.4) 20 (55.6) 19 (63.3) 11 (36.7)

 Female 20 (48.8) 21 (51.2)  16 (57.1) 12 (42.9) 13 (37.1) 22 (62.9)

Lauren subtype   <0.001* 0.955** 0.040*

 Intestinal 17 (29.8) 40 (70.2) 21 (51.2) 20 (48.8) 23 (60.5) 15 (39.5)

 Diffuse 24 (85.7) 4 (14.3)  7 (46.7) 8 (53.3) 4 (23.5) 13 (76.5)

 Mixed 7 (53.8) 6 (46.2)  4 (50.0) 4 (50.0) 5 (50.0) 5 (50.0)

Histological gradea   <0.001* 0.165* 0.081*

 1 8 (57.1) 6 (42.9) 8 (72.7) 3 (27.3) 9 (75.0) 3 (25.0)

 2 6 (18.2) 27 (81.8)  13 (52.0) 12 (48.0) 11 (52.4) 10 (47.6)

 3–4 34 (66.7) 17 (33.3)  11 (39.3) 17 (60.7) 12 (37.5) 20 (62.5)

Lymphovascular invasion   0.065* 0.171* 0.170*

 No 21 (61.8) 13 (38.2) 12 (63.2) 7 (36.8) 15 (60.0) 10 (40.0)

 Yes 27 (42.2) 37 (57.8)  20 (44.4) 25 (55.6) 17 (42.5) 23 (57.5)

Perineural invasion   0.658* 0.611* 0.531*

 No 19 (46.3) 22 (53.7) 14 (53.8) 12 (46.2) 14 (45.2) 17 (54.8)

 Yes 29 (50.9) 28 (49.1)  18 (47.4) 20 (52.6) 18 (52.9) 16 (47.1)

Location   0.149* 0.611* 0.105*

 Antrum 30 (55.6) 24 (44.4) 20 (52.6) 18 (47.4) 20 (58.8) 14 (41.2)

 No-antrum 18 (40.9) 26 (59.1)  12 (46.2) 14 (53.8) 12 (38.7) 19 (61.3)

Pathological stage   0.086* 0.095** 0.029**

 I 11 (68.8) 5 (31.3) 6 (60.0) 4 (40.0) 7 (58.3) 5 (41.7)

 II 8 (36.4) 14 (63.6)  11 (68.8) 5 (31.3) 10 (76.9) 3 (23.1)

 III 28 (51.9) 26 (48.1)  15 (42.9) 20 (57.1) 11 (32.3) 23 (67.6)

 IV 1 (16.7) 5 (83.3)  0 (0.0) 3 (100.0) 4 (66.7) 2 (33.3)

Recurrence 0.564* 0.095* 0.181*

 No 37 (50.7) 36 (49.3) 26 (56.5) 20 (43.5) 26 (54.2) 22 (45.8)

 Yes 11 (44.0) 14 (56.0) 6 (33.3) 12 (66.7) 6 (35.3) 11 (64.7)

HP (PCR) 0.213* 0.005* 0.702*

 Negative 18 (41.9) 25 (58.1) 8 (29.6) 19 (70.4) 14 (46.7) 16 (53.3)

 Positive 30 (54.5) 25 (45.5) 24 (64.9) 13 (35.1) 18 (51.4) 17 (48.6)

EBER-ISH   0.098* 0.077** 0.509*

 Negative 32 (53.3) 28 (46.7)  19 (51.4) 18 (48.6) 19 (48.7) 20 (51.3)

 Positive 6 (31.6) 13 (68.4)  3 (23.1) 10 (76.9) 4 (33.3) 8 (66.7)
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Table 2. Evaluation of relationship among tumour-infiltrating-lymphocytes and clinicopathological features. (Continued)

EBV (qPCR)   0.001* 0.012* 0.914*

 Negative 28 (68.3) 13 (31.7)  20 (66.7) 10 (33.3) 14 (50.0) 14 (50.0)

 Positive 20 (35.1) 37 (64.9)  12 (35.3) 22 (64.7) 18 (48.6) 19 (51.4)

Methylated EBV- related 
genes

  0.007*

0.174*

0.928*

 No 16 (69.6) 7 (30.4) 10 (66.7) 5 (33.3) 8 (50.0) 8 (50.0)

 Yes 20 (36.4) 35 (63.6) 16 (45.7) 19 (64.7) 19 (51.4) 18 (48.6)

RASSF1c 0.011* 0.048* 0.915*

 Negative 28 (57.1) 21 (42.9) 20 (62.5) 12 (37.5) 17 (51.5) 16 (48.5)

 Positive 8 (27.6) 21 (72.4) 6 (33.3) 12 (66.7) 10 (50.0) 10 (50.0)

CDKN2A (p 16)c 0.484* 0.025* 0.218*

 Negative 20 (50.0) 20 (50.0) 18 (66.7) 9 (33.3) 18 (58.1) 13 (41.9)

 Positive 16 (42.1) 22 (57.9) 8 (34.8) 15 (65.2) 9 (40.9) 13 (59.1)

MGMTc 0.797* 0.488* 0.630*

 Negative 23 (45.1) 28 (54.9) 16 (48.5) 17 (51.5) 17 (48.6) 18 (51.4)

 Positive 13 (48.1) 14 (51.9) 10 (58.8) 7 (41.2) 10 (55.6) 8 (44.4)

GSTP1c 0.126** 0.661** 0.420**

 Negative 34 (49.3) 35 (50.7) 24 (53.3) 21 (46.7) 25 (53.2) 22 (46.8)

 Positive 2 (22.2) 7 (77.8) 2 (40.0) 3 (60.0) 2 (33.3) 4 (66.7)

HOXA10c 0.735* 0.704** 0.420**

 Negative 31 (47.0) 35 (53.0) 21 (50.0) 21 (50.0) 25 (53.2) 22 (46.8)

 Positive 5 (41.7) 7 (58.3) 5 (62.5) 3 (37.5) 2 (33.3) 4 (66.7)

TP73c 0.205** 0.103** 0.192**

 Negative 34 (48.6) 36 (51.4) 26 (55.3) 21 (44.7) 26 (54.2) 22 (45.8)

 Positive 2 (25.0) 6 (75.0) 0 (0.0) 3 (100.0) 1 (20.0) 4 (80.0)

TIL: Tumour-infiltrating lymphocytes; EBV: Epstein–Barr virus
a1: Well differentiated; 2: Moderately differentiated; 3–4: Poorly differentiated and Undifferentiated
b At least one gene
cMethylated status
*Chi-squared test
**Fisher’s exact test

Association between TILs and EBER-ISH status, Epstein-Barr gene expression or methylation signature

High TIL level and high CD8 density were associated with positive EBV status through qPCR (p = 0.001 and p = 0.012, respectively) and a 
trend with EBER ISH status (p = 0.098 and 0.077, respectively) (Table 1). High TIL level was also associated with the methylation of at least 
one of the 6 EBV-related genes (p = 0.007) and methylation of RASSF1A (p = 0.011). Additionally, high density of CD8-positive cells was 
associated with the methylation status of RASSF1A (p = 0.048) and CDKN2A (p = 0.025) (Table 2). CD3 density wasnot associated with EBER 
ISH (p = 0.124) or with other EBV evaluation (p > 0.05).

The methylome analysis using Infinium MethylationEPIC BeadChip found that a DMR cutoff>30% with a <0.05 p-value identified 32 
DMRs related genes (from 146 DMR) associated with >30% TIL. Furthermore, eight genes were shared among EBER ISH positive status 
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and TIL>30%: HEATR4 (HEAT repeat containing 4) (high), RGMA (repulsive guidance molecule BMP co-receptor a) (high), MTRNR2L1 (MT-
RNR2like 1) (low), SH2D4A (SH2 domain containing 4A) (low), SORCS3 (sortilin related VPS10 domain containing receptor 3) (low), TBC1D14 
(TBC1domain family member 14) (low), TMEM260 (transmembrane protein 260) (low) and TNNT3 (troponin T3, fast skeletal type) (low).

Discussion

We found a remarkable association between TIL level and EBV infection. High TIL level and density of CD8 T lymphocytes were significantly 
associated with positive EBV status and methylation of EBV-related genes.

Methylation patterns have been extensively described in EBV-positive GC [5], and our finding that the TIL level was also associated with 
methylation in at least one of six evaluated cancer genes suggests that methylation process could mediate the immune activity against EBV-
infected tumours. This explanation is also supported by our finding that altered methylation status of eight genes is similar in those tumours 
with high TIL level and in those with EBER ISH positive status in the genome-wide DNA methylation analyses. SORCS3 is one of the genes 
with altered methylation and has been previously described to be related to gastrointestinal tumour progression [16, 17]. Hanahan [20] con-
cluded that nonmutational epigenetic reprogramming is a characteristic process that facilitates the acquisition of hallmark capabilities, and 
recent studies find that methylation of tumour genes can mediate ability of the immune system to detect GC cells [18, 19]. The hypothesis 
that the association between EBV infection and high TIL level (and high CD8 density) is mediated by the methylated pattern deserves further 
research because it could lead to the identification of tumour biomarkers that predict activity of immunotherapy in GC.

Figure 3. Kaplan–Meier curve for OS by age (a), stage (b), HP status (c) and CD8 positive T cell density (d).
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A significant association between high density of CD8-positive lymphocytes and shorter survival was also found in our series. This effect 
could be related to the previously described direct correlation between CD8 T lymphocytes and the level of pro-tumour PD-L1 and FOXP3 
positive T lymphocytes [10–13, 21]. High density of CD163 positive cells (M2 macrophages) was associated with aggressive features like 
diffuse subtype and stage III disease and had a trend to shorter survival (39% versus 56% OS at 3 years, p = 0.24). This protumour effect 
has been previously described [22, 23] and our finding that it was directly correlated with CD8 T cell density could also add to the negative 
survival impact of CD8 density.

HP infection was also significantly associated with longer survival in our series, a relationship that has previously been described by other 
groups [7]. Furthermore, our finding that the good prognostic feature of a low density of CD8-positive lymphocytes is associated with the 
infection, suggests that an effective immune response against GC could explain the better prognosis of HP+ tumours.

Recent publications suggest that the tumour response to immunotherapy could be reduced in patients with HP infection [8]. This fact could 
be explained by our finding of reduced tumour infiltration by CD8 positive T cells.

A limitation of our exploratory research is the small size of our series that makes our results need to be validated in larger-size studies. The 
analysed tumour sample volume was small since we used TMAs; however, the evaluated area of invasive tumour was selected by a patholo-
gist, and most samples obtained in real-world are similarly small as they are obtained from gastroscopies.

Conclusion

In conclusion, we found that high level of TIL in GC was associated with EBV infection, and this association could be mediated by the meth-
ylation status. HP infection is associated with longer survival, and this association could be mediated by lower CD8 T cell infiltration.
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