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Abstract: Safflower (Carthamus tinctorius) is an annual herb belonging to the Compositae family; it has
a history of use as a food colorant, dye, and medicine in oriental countries. LC-MS-UV-based chemical
analysis of extract of the florets of C. tinctorius led to the isolation of two new C10-polyacetylene
glycosides, (8Z)-decaene-4,6-diyne-1,10-diol-1-O-β-D-glucopyranoside (1) and (8S)-deca-4,6-diyne-
1,8-diol-1-O-β-D-glucopyranoside (2), together with five known analogs (3–7). The structures of
the new compounds were determined by using 1D and 2D NMR spectroscopic data and HR-MS
data, as well as chemical transformations. Of compounds 1–7, compounds 2, 3, and 4 inhibited
the adipogenesis of 3T3-L1 preadipocytes, whereas compounds 1 and 6 promoted adipogenesis.
Compounds 2, 3, and 4 also prevented lipid accumulation through the suppression of the expression
of lipogenic genes and the increase of the expression of lipolytic genes. Moreover, compounds 3 and
4 activated AMPK, which is known to facilitate lipid metabolism. Our findings provide a mechanistic
rationale for the use of safflower-derived polyacetylene glycosides as potential therapeutic agents
against obesity.

Keywords: safflower; Carthamus tinctorius; polyacetylene glycosides; 3T3-L1 preadipocytes; AMPK

1. Introduction

Obesity is caused by energy imbalance, which leads to an excessive accumulation
of body fat in adipose tissues [1]. The expansion of adipose tissue accompanies the
differentiation of preadipocytes residing in adipose tissues to mature adipocytes and the
generation and accumulation of lipid droplets in adipocytes [2]. Thus, the identification of
compounds preventing adipogenesis and lipogenesis has been considered as an effective
strategy for the alleviation of obesity and metabolic diseases.

Carthamus tinctorius L., also known as safflower, is a highly branched and thistle-like
annual plant belonging to the Compositae family. C. tinctorius has a long history of use as a
food colorant, dye, and traditional medicine for the treatment of cardiovascular diseases
and gynecological symptoms [3]. The pistil of C. tinctorius is well-known as an edible dye
agent in various European dishes, including paella, risotto, and pasta [4]. In previous stud-
ies, phytochemical investigation of this plant reported the presence of quinochalcones, such
as carthamin, safflower yellow, and safflomin, flavonoids, alkaloids, and polyacetylenes [5].
Further pharmacological studies demonstrated that the polyacetylenes from C. tinctorius in-
hibited LPS-induced NO (nitric oxide) release, showing its potential as an agent for treating
inflammatory diseases [6]. Recent studies have shown that extracts of safflower inhibited
the adipogenesis of 3T3-L1 preadipocytes and alleviated high-fat diet-induced obesity in
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mice [7–10]. In addition, treatment with safflower extracts improved metabolic parameters,
such as glucose metabolism and lipid profiles, in mice with diet-induced obesity [9,10].
Despite numerous evidences showing the beneficial effects of safflower on metabolism, the
exact compounds responsible for the action and the mechanisms underlying their action
remain undiscovered.

As a part of our continued search for natural products with novel structural and/or
biological properties [11–15], seven polyacetylene glycosides (1–7), including two new
C10-polyacetylene glycosides, (8Z)-decaene-4,6-diyne-1,10-diol-1-O-β-D-glucopyranoside
(1) and (8S)-deca-4,6-diyne-1,8-diol-1-O-β-D-glucopyranoside (2), were isolated from the
extract of the florets of C. tinctorius by using LC-MS-UV-based chemical analysis. The
structures of the new compounds were established by 1D and 2D NMR spectroscopic and
high-resolution MS data analysis, and the absolute configurations of the sugar moiety
were elucidated by chemical transformations followed by enzymatic hydrolysis. Herein,
we have described the isolation and structural characterization of the compounds (1–7)
(Figure 1) and the evaluation of their effects on de novo adipogenesis and lipid metabolism
in adipocytes.
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2. Materials and Methods
2.1. General Experimental Procedures

Optical rotations were measured using a Jasco P-2000 polarimeter (Jasco, Easton,
MD, USA). IR spectra were recorded using a Bruker IFS-66/S FT-IR spectrometer (Bruker,
Karlsruhe, Germany). Ultraviolet (UV) spectra were acquired using an Agilent 8453 UV-
visible spectrophotometer (Agilent Technologies, Santa Clara, CA, USA). NMR spectra
were recorded using a Bruker AVANCE III HD 850 NMR spectrometer with a 5-mm TCI
CryoProbe, operated at 850 MHz (1H) and 212.5 MHz (13C). The chemical shifts were
presented in ppm (δ) for 1H and 13C NMR analyses. Preparative HPLC was performed by
using a Waters 1525 Binary HPLC pump with a Waters 996 photodiode array detector (Wa-
ters Corporation, Milford, MA, USA) and an Agilent Eclipse C18 column (250 × 21.2 mm,
5 µm; flow rate: 5 mL/min; Agilent Technologies). Semi-preparative HPLC was per-
formed on a Shimadzu Prominence HPLC System with SPD-20A/20AV Series Prominence
HPLC UV-Vis detector (Shimadzu, Tokyo, Japan) and a Phenomenex Luna C18 column
(250 × 10 mm, 5 µm; flow rate: 2 mL/min; Phenomenex, Torrance, CA, USA). LC-MS
analysis was performed using an Agilent 1200 Series HPLC system, equipped with a
diode array detector and 6130 Series ESI mass spectrometer, and an analytical Kinetex C18
100 Å column (100 × 2.1 mm, 5 µm; flow rate: 0.3 mL/min; Phenomenex). All HRESIMS
data were obtained by using a Waters Xevo G2 quadrupole time-of-flight (QTOF) mass
spectrometer and a Synapt G2 HDMS QTOF mass spectrometer (Waters). Silica gel 60
(230–400 mesh; Merck, Darmstadt, Germany) and RP-C18 silica gel (Merck, 230–400 mesh)
were used for column chromatography. The packing material for molecular sieve column
chromatography was Sephadex LH-20 (Pharmacia, Uppsala, Sweden). Thin-layer chro-
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matography was performed by using precoated silica gel F254 plates and RP-C18 F254s
plates (Merck) and spots were detected under UV light or by heating, after spraying with
anisaldehyde–sulfuric acid.

2.2. Plant Material

The florets of C. tinctorius were collected in Pocheon, Gyeonggi-do, Korea, and pur-
chased from Dongyangpharm in September 2018. The plant was identified by one of the
authors (K. H. Kim). A voucher specimen (HH-18-12) was deposited in the herbarium of
the School of Pharmacy, Sungkyunkwan University, Suwon, Korea.

2.3. Extraction and Isolation

The florets of C. tinctorius (1.8 kg) were extracted using 80% aqueous MeOH (each
20 L× 2 days) at room temperature, filtered through Whatman’s filter paper No. 1, and then
combined and concentrated under vacuum pressure by using a rotary evaporator, which
yielded an MeOH extract (530.0 g). The MeOH extract was suspended in distilled water
(700 mL, each) and then solvent-partitioned with hexane, dichloromethane, ethyl acetate,
and n-butanol, which afforded four fractions: hexane-soluble (37.6 g), CH2Cl2-soluble
(3.3 g), EtOAc-soluble (10.4 g), and BuOH-soluble fractions (57.3 g). After solvent partition,
the residue was solvent-partitioned again with acetone, affording the acetone-soluble
fraction (68.7 g). All these fractions were initially analyzed by LC-MS, which confirmed the
presence of components with a distinctive UV spectrum, which was characteristic of an
enediyne chromophore [16,17] in the EtOAc-soluble fraction. To identify the compounds
of interest, the EtOAc fraction (10.4 g) was resolved by silica gel column chromatography
[300 g; eluted using a CH2Cl2/MeOH (50:1→1:1, v:v) gradient solvent system and washed
with 90% MeOH] and investigated by monitoring through LC-MS using our in-house UV
library. As a result, seven fractions (E1–E7) were obtained from the column chromatography,
and fraction E5 (3.2 g) was separated by MPLC, using the Yamazen UNIVERSAL Premium
ODS-SM column with MeOH/H2O (30–100% MeOH) to yield five subfractions (E51–E55).
Subfraction E52 (638.7 mg) was loaded onto a Sephadex LH-20 column by using a solvent
system of 100% MeOH to yield three subfractions (E521–E523). Subfraction E521 (267.2 mg)
was separated by preparative reversed-phase HPLC using a gradient solvent system
of MeOH/H2O (50–100% MeOH) to yield five subfractions (E5211–E5215). Subfraction
E5212 (87 mg) was subjected to silica gel column chromatography [3.0 g, eluted with
CH2Cl2/MeOH (50:1→1:1) gradient solvent system, and washed with 90% MeOH] to yield
five subfractions (E52121–E52125). Subfraction E52125 (20.7 mg) was purified by semi-
preparative HPLC (36% MeOH) to furnish compound 5 (tR 29.5 min, 3.0 mg). Subfraction
E5215 (23.4 mg) was separated by semi-preparative HPLC (17% acetonitrile, MeCN) to
yield compound 2 (tR 38.0 min, 1.5 mg). Subfraction E522 (68.2 mg) was purified by
using semi-preparative HPLC (35% MeOH) to yield compound 1 (tR 43.0 min, 1.2 mg).
Fraction E6 (1.3 g) was separated by MPLC with a gradient solvent system MeOH/H2O
(30–100% MeOH) to yield five subfractions (E61–E65). Subfraction E62 (172.7 mg) was
subjected to Sephadex LH-20 column using a solvent system of 100% MeOH to yield three
subfractions (E621–E623). Subfraction E622 (46.6 mg) was purified by semi-preparative
HPLC (37% MeOH) to yield compounds 6 (tR 42.5 min, 1.5 mg) and 7 (tR 47.5 min, 3.1 mg).
Subfraction E64 (299.4 mg) was separated by preparative reversed-phase HPLC with a
gradient solvent system of MeOH/H2O (70% MeOH) to yield five subfractions (E641–E645).
Subfraction E643 (96.2 mg) was purified by semi-preparative HPLC (28% MeCN) to furnish
compounds 3 (tR 32.5 min, 12.5 mg) and 4 (tR 34.0 min, 1.5 mg).

2.3.1. (8Z)-Decaene-4,6-diyne-1,10-diol-1-O-β-D-glucopyranoside (1)

Yellowish amorphous gum; [a]25
D − 68.0 (c 0.06, MeOH); UV (MeOH) λmax (log ε) 208

(3.41), 215 (3.47), 240 (0.72), 255 (1.46), 268 (1.76), 287 (1.66) nm; IR (KBr) νmax 3396, 2976,
2265, 1655, 1610, 1365, 1116 cm−1; 1H (850 MHz) and 13C (212.5 MHz) NMR data, see
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Table 1; ESIMS (positive-ion mode) m/z 349.1 [M + Na]+; HRESIMS (positive-ion mode)
m/z 349.1252 [M + Na]+ (calculated for C16H22O7Na, 349.1263).

Table 1. 1H and 13C NMR data for compounds 1 and 2 in CD3OD. a

Position
1 2

δC, Type δH (J in Hz) δC, Type δH (J in Hz)

1 68.9, CH2
3.98, dt (10.0, 6.0)
3.67 dt (10.0, 6.0) 69.1, CH2

3.95, dt (10.0, 6.0)
3.64 dt (10.0, 6.0)

2 29.5, CH2 1.87, m 29.6, CH2 1.83, m
3 16.5, CH2 2.52, t (7.0) 16.3, CH2 2.44, t (7.0)
4 85.9, C 81.4, C
5 65.5, C 65.6, C
6 80.3, C 70.1, C
7 71.4, C 78.0, C
8 109.3, CH 5.61, d (11.0) 64.0, CH 4.27, d (6.5)
9 146.6, CH 6.20, dt (11.0, 6.5) 31.7, CH2 1.67, m

10 60.8, CH2 4.32, d (6.5) 9.6, CH3 0.98, t (7.5)
1′ 104.2, CH 4.28, d (8.0) 104.5, CH 4.25, d (8.0)
2′ 74.9, CH 3.19, dd (9.0, 8.0) 74.9, CH 3.16, dd (9.0, 8.0)
3′ 77.7, CH 3.28, m 77.7, CH 3.28, m
4′ 71.3, CH 3.29, m 71.3, CH 3.29, m
5′ 77.8, CH 3.36, m 77.8, CH 3.35, m

6′ 62.5, CH2
3.89, dd (12.0, 2.0)
3.69, dd (12.0, 5.5) 62.6, CH2

3.86, dd (12.0, 2.0)
3.67, dd (12.0, 5.5)

a Signal multiplicity and coupling constants (Hz) are in parentheses; the measurements are based on HSQC,
HMBC, and 1H-1H COSY experiments.

2.3.2. (8S)-Deca-4,6-diyne-1,8-diol-1-O-β-D-glucopyranoside (2)

Colorless amorphous gum; [a]25
D − 18.5 (c 0.07, MeOH); UV (MeOH) λmax (log ε)

210 (3.03), 222 (3.46), 242 (0.68), 255 (0.98), 270 (1.21), 285 (0.91) nm; IR (KBr) νmax 3374,
2953, 2205, 1650, 1235, 1051 cm−1; 1H (850 MHz) and 13C (212.5 MHz) NMR data, see
Table 1; ESIMS (positive-ion mode) m/z 351.1 [M + Na]+; HRESIMS (positive-ion mode)
m/z 329.1598 [M + H]+ (calculated for C16H25O7, 329.1600).

2.4. Enzymatic Hydrolysis and Absolute Configuration Determination of the Sugar Moiety of 1
and 2

The absolute configuration of the sugar moiety was determined by using an LC-MS-
UV-based method [18]. Compounds 1 and 2 (each 0.5 mg) were hydrolyzed with crude
hesperidinase (10 mg, from Aspergillus niger; Sigma-Aldrich, Saint Louis, MO, USA) at
37 ◦C for 72 h, individually, and then, EtOAc was used for the extraction. Each aqueous
layer was evaporated by using a vacuum evaporator and dissolved in anhydrous pyridine
(0.5 mL) with the addition of L-cysteine methyl ester hydrochloride (1.0 mg). After the
reaction mixture was heated at 60 ◦C for 1 h, O-tolylisothiocyanate (50 µL) was added, and
the mixture was incubated at 60 ◦C for 1 h. The reaction product was evaporated by using a
vacuum evaporator and dissolved in MeOH. Subsequently, the dissolved reaction product
was directly analyzed by LC-MS [MeOH/H2O, 1:9→7:3 gradient system (0–30 min), 100%
MeOH (31–41 min), 0% MeOH (42–52 min); 0.3 mL/min] using an analytical Kinetex C18
100 Å column (100 mm × 2.1 mm i.d., 5 µm). The sugar moiety from 1 and 2 was identified
as D-glucopyranose based on the comparison of the retention time with an authentic sample
(tR: D-glucopyranose 19.3 min).

2.5. Cell Culture and Differentiation

3T3-L1 preadipocytes, purchased from the American Type Culture Collection (ATCC®

CL-173™, Manassa, VA, USA), were grown in Dulbecco Modified Eagle Medium (DMEM)
supplemented with 10% bovine calf serum and 1% penicillin/streptomycin (P/S) [19]. For
the adipogenic differentiation, 3T3-L1 cells were incubated in DMEM with 10% fetal bovine
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serum (FBS), 1% P/S, 0.5 mM 3-isobuyl-1-methylxanthine (IBMX), 1 µM dexamethasone,
and 1 µg/mL insulin. Then, the medium was replaced with DMEM containing 10% FBS,
1% P/S, and 1 µg/mL insulin every alternate day until Day 8. To evaluate the effects of
compounds 1–7 on adipogenesis, we treated 3T3-L1 cells with these compounds throughout
the process of adipogenesis.

2.6. Oil Red O Staining

To observe the accumulated lipid droplets in adipocytes, Oil Red O staining was per-
formed after the differentiation [20]. After the adipocytes were fixed in 10% formaldehyde
for 1 h and washed with 60% isopropanol, mature adipocytes were incubated with the Oil
Red O working solution for 1 h. Then, the cells were washed with distilled water twice,
and images of the stained lipid droplets were captured with Cytation™ 5.

2.7. Cell Counting

First, 3T3-L1 cells were treated with compounds 1–7 at concentrations of 10, 20, and
40 µM for 24 h; then, they were incubated with EDTA for 5 min for detachment. The
detached cells were diluted with PBS, and the numbers of cells were counted by using a
LUNA-II™ Automated Cell Counter (Logos Biosystems, Annandale, VA, USA).

2.8. Western Blotting

Proteins were extracted with Pro-Prep (Intron Biotechnology, Seoul, Korea) for 20 min
on ice and then centrifuged at 13,000 rpm at 4 ◦C for 20 min. For Western blotting, 15 µg
of each protein in the supernatant was separated by SDS-polyacrylamide gel (10%) elec-
trophoresis. The proteins were transferred to polyvinylidene difluoride (PVDF, Millipore,
Darmstadt, Germany) membranes using a semi-dry transfer apparatus (Bio-Rad, Hercules,
CA, USA). The membranes were incubated with the primary antibodies (dilution 1:2000)
overnight at 4 ◦C, followed by incubation with horseradish peroxidase (HRP)-conjugated
secondary antibodies (Abcam) for 1 h at room temperature. HRP signals reacting with
chemiluminescence reagents (Abclon) were detected using AGFA X-ray films and quan-
tified using the ImageJ software. Anti-phospho (T172) AMPKα (Abcam, ab2535) and
anti-AMPKα (Abcam, ab2532S) antibodies were used for Western blotting.

2.9. Reverse Transcription and Quantitative Real-Time PCR (RT-qPCR)

Total RNA was extracted from adipocytes using Easy-Blue reagent (Intron Biotechnol-
ogy) in accordance with the manufacturer’s instructions. For reverse transcription (RT),
cDNA was synthesized from 1 µg of total RNA using the Maxim RT-PreMix Kit (Intron
Biotechnology). For quantitative real-time PCR (qPCR), cDNA from RNA was incubated
with KAPA SYBR® FAST qPCR Master Mix (Kapa Biosystems) and primers for each gene.
The qPCR reaction was detected using a CFX96 TouchTM real-time PCR detector (Bio-Rad).
The relative mRNA expression for each gene was normalized to the expression of β-actin.
The sequences of qPCR primers used in this study are listed in Table 2.

Table 2. Sequences of primers used for RT-qPCR.

Gene Forward Reverse

β-Actin 5′-ACGGCCAGGTCATCACTATTG-3’ 5′-TGGATGCCACAGGATTCCA-3′

Adipsin 5′-CATGCTCGGCCCTACATG-3’ 5′-CACAGAGTCGTCATCCGTCAC-3′

Fabp4 5′-AAGGTGAAGAGCATCATAACCCT-3’ 5′-TCACGCCTTTCATAACACATTCC-3′

SREBP1 5′-AACGTCACTTCCAGCTAGAC-3’ 5′-CCACTAAGGTGCCTACAGAGC-3′

ATGL 5′-TTCACCATCCGCTTGTTGGAG-3’ 5′-AGATGGTCACCCAATTTCCTC-3′

HSL 5′-CACAAAGGCTGCTTCTACGG-3’ 5′-GGAGAGAGTCTGCAGGAACG-3′
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2.10. Statistical Analysis

Statistical significance was analyzed by using a two-tailed Student’s t-test with Excel
and evaluated by using a p-value. The data represent the mean ± SEM for n = 3 replicates.
* p < 0.05, ** p < 0.01, and *** p < 0.001 vs. the control group.

3. Results and Discussion
3.1. Isolation of the Compounds

The crude extract of the florets of C. tinctorius was solvent-partitioned using water
and five organic solvents of increasing polarity (hexane, dichloromethane, ethyl acetate,
n-butanol, and acetone). The obtained fractions were primarily monitored and analyzed
by LC-MS, which allowed us to identify the presence of components with a distinctive
UV spectrum in the EtOAc-soluble fraction, which is characteristic of an enediyne chro-
mophore [16,17]. To identify the compounds of interest, the LC-MS-based phytochemical
analysis of the EtOAc fraction and preparative and semi-preparative HPLC were per-
formed; the processes resulted in the isolation of two new C10-polyacetylene glycosides
(1 and 2) and five known analogs (3–7).

3.2. Structural Elucidation of Isolated Compounds

Compound 1 was obtained as yellowish amorphous gum and exhibited UV data
characteristic of an enediyne chromophore (Figure S2, Supplementary Materials) [16,17].
The molecular formula was established as C16H22O7 from the molecular ion peak [M +
Na]+ at m/z 349.1252 (calculated for C16H22O7Na, 349.1263) in the positive-ion HR-ESIMS
(Figure S1) and NMR data (Table 1). The IR spectrum showed absorptions attributable
to the hydroxy (3396 cm−1) and acetylenic (2265 cm−1) groups. The 1H (Figure S3) and
13C NMR spectra of 1 (Table 1), combined with heteronuclear single quantum coherence
(HSQC) and heteronuclear multiple bond correlation (HMBC) data, indicated the presence
of a cis-configured ∆8,9 double bond with signals at δH 5.61 (1H, d, J = 11.0 Hz)/δC 109.3
and 6.20 (1H, dt, J = 11.0, 6.5 Hz)/δC 146.6, four acetylenic carbons at δC 65.5, 71.4, 80.3,
and 85.9, and two oxygenated methylene signals at δH 3.98 (1H, dt, J = 10.0, 6.0 Hz) and
3.67 (1H, dt, J = 10.0, 6.0 Hz)/δC 68.9 and 4.32 (2H, d, J = 6.5 Hz)/δC 60.8, as well as a
β-D-glucopyranosyl moiety at δH 4.28 (1H, d, J = 8.0 Hz)/δC 104.2 and δC 62.5, 71.3, 74.9,
77.7, and 77.8. Detailed NMR analysis and 2D NMR experiments (Figures S4–S6) revealed
the strong similarity of 1 with bidenoside C [21], which was isolated as compound 3 in this
study. The noticeable difference between the two compounds was that the NMR chemical
shifts of C-10 in 1 showed a downfield shift owing to hydroxylation, which was confirmed
based on the HMBC correlations between H-10 and C-8/C-9 (Figure 2). The gross structure
of 1 was further established by the analysis of cross-peaks in the 1H-1H COSY (Figure S4)
and HMBC (Figure S6) spectra (Figure 2). The absolute configuration of the sugar unit was
determined by using an LC-MS-UV-based method [18], and enzymatic hydrolysis of 1 with
hesperidinase resulted in the production of a glucopyranose. The β-D-glucopyranose was
determined by comparing the retention time of its thiocarbamoyl-thiazolidine derivative
with that of the standard sample of D-glucopyranose by LC-MS analysis and the coupling
constant (J = 8.0 Hz) of the anomeric proton signal. Accordingly, the structure of 1 was
characterized as (8Z)-decaene-4,6-diyne-1,10-diol-1-O-β-D-glucopyranoside.
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Compound 2 was isolated as a colorless amorphous gum, and its IR spectrum showed
absorption bands for hydroxy (3374 cm−1) and acetylenic (2205 cm−1) groups. Its molecular
formula, C16H14O7, was established on the basis of the positive-ion HRESIMS peak at m/z
329.1598 [M + H]+ (calculated for C16H25O7, 329.1600, Figure S7) and NMR data (Table 1).
The UV spectrum (Figure S8) of 2 was typical for an enediyne chromophore [16,17]. The
1H (Figure S9) and 13C NMR spectra of 2 (Table 1) showed a close resemblance to those
of 8S-deca-4,6-diyne-1,8-diol-8-O-β-D-glucopyranoside [22], which was isolated as com-
pound 5 in this study. The only slight difference in their chemical shifts was at the level
of the glycosylated carbon group at C-1 and C-8, which was observed in compound 2 at
δC 69.1 (C-1, ∆δC +7.8 ppm in CD3OD) and δC 64.0 (C-8, ∆δC −5.6 ppm in CD3OD) [22].
This set of data indicated that compound 2 had a glucose moiety at C-1, the position of
which was confirmed by the HMBC correlation between H-1′ and C-1 (Figure 2). The
complete structure of 2 was determined further by the 2D NMR analysis [1H-1H COSY
(Figure S10), HSQC (Figure S11), and HMBC (Figure S12)] (Figure 2). The assignment
of β-D-glucopyranose was also achieved by the LC-MS-UV-based method [18], which
was followed by the enzymatic hydrolysis of 2 with hesperidinase. The absolute con-
figuration of C-8 was established by the value of specific rotation of 2a (aglycone of 2,
4,6-decadiyne-1,8-diol) derived from the enzymatic hydrolysis of 2. The specific rotation
value of 2a [[a]25

D + 12.5 (c 0.01, MeOH)] was comparable with those of the related analogs,
(S)-panaxjapyne A [[a]28

D + 11.0 (c 0.1, MeOH)] [23], (2S)-(3Z,11E)-decadiene-5,7,9-triyne-
1,2-diol [[a]25

D + 15.8 (c 0.1, MeOH)] [24], (6S)-undeca-2,4-diyne-1,6-diol [[a]25
D + 10.74 (c 0.37,

CH2Cl2)] [25], (6R)-undeca-2,4-diyne-1,6-diol [[a]25
D − 10.16 (c 0.13, CH2Cl2)] [25], and

(2R)-(3E,11Z)-decadiene-5,7,9-triyne-1,2-diol [[a]25
D − 16.5 (c 0.1, MeOH)] [24] (Figure 3),

which led to the assignment of the absolute configuration of C-8 as S. Consequently, the
structure of 2 was designated as (8S)-deca-4,6-diyne-1,8-diol-1-O-β-D-glucopyranoside.
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The five known compounds were identified as bidenoside C (3) [21], (8E)-decaene-
4,6-diyne-1-ol-1-O-β-D-glucopyranoside (4) [26], 8S-deca-4,6-diyne-1,8-diol-8-O-β-D-
glucopyranoside (5) [22], (2E)-tetradecaene-4,6-diyne-1,10,14-triol-1-O-β-D-glucopyranoside
(6) [6], and (2E,8E)-tetradecadiene-4,6-diyne-1,12,14-triol-1-O-β-D-glucopyranoside (7) [6]
through the comparison of their respective NMR data with previously reported data, in
addition to LC-MS analysis.

3.3. Evaluation of Biological Activity of the Isolated Compounds

Prior to the assessment of the anti-adipogenic properties of the isolated compounds,
we first evaluated the cytotoxic effects of compounds 1–7 in 3T3-L1 preadipocytes. No
compounds exhibited cytotoxicity at concentrations of 10 and 20 µM, but compounds 1,
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5, and 6 decreased cell viability at a concentration of 40 µM (Figure 4). Hence, we treated
3T3-L1 cells with compounds 1–7 at a concentration of 20 µM during the entire process
of adipogenesis for the evaluation of the anti-adipogenic activities of these compounds.
Oil red O staining data showed that compounds 2–4 prevented the de novo generation
of adipocytes and lipid accumulation within adipocytes (Figure 5A). The transcription
levels of mature adipocyte marker genes (Adipsin and Fabp4) were significantly reduced
by treatment with compounds 2–4 (Figure 5B). These data indicated that the new C10-
polyacetylene glycoside (2) and two known analogs (3 and 4) inhibited the adipogenesis of
3T3-L1 preadipocytes.

As the failure of lipid fusion was observed in the groups treated with compounds
2–4 (Figure 5A), we then investigated whether compounds 2–4 affected lipid metabolism.
Upon exposure to compounds 2–4 during adipogenesis, the expression of the lipogenic
gene SREBP1 was suppressed (Figure 6A), whereas the mRNA expression of the lipolytic
gene ATGL was increased (Figure 6B). In the case of compound 4, the expression of another
lipolytic gene, HSL, was also markedly enhanced (Figure 6C). These results suggested that
compounds 2–4 can enhance lipid metabolism through the inhibition of lipogenesis and
the facilitation of lipolysis.

AMP-activated protein kinase (AMPK) is known to be a key controller of energy
metabolism through the inhibition of adipogenesis and the stimulation of lipid metabolism
upon its activation [27]. It has been reported that treatment of brain cells with safflower
yellow B derived from C. tinctorius induced the phosphorylation of AMPK [28]. Thus,
we assessed the effects of compounds 1–7 on AMPK activation by detecting the level of
phosphorylated AMPK. Western blotting data showed that compounds 3 and 4 significantly
increased the phosphorylation of AMPK compared with the total amounts of AMPK
(Figure 6D).
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4. Conclusions

In this study, we identified two novel C10-polyacetylene glycosides (1 and 2) and
five known compounds (3–7) from the MeOH extract of the florets of C. tinctorius. The
effects of the seven identified compounds on adipogenesis were evaluated; compounds
2–4 efficiently inhibited adipocyte differentiation from 3T3-L1 preadipocytes, reducing the
mRNA expression levels of Adipsin and Fabp4. Furthermore, compounds 2–4 promoted
the expression of lipolytic genes while downregulating the expression of lipogenic genes.
Compounds 3 and 4 induced AMPK phosphorylation, which is known to improve energy
metabolism (Figure 7); in contrast, compound 2 appeared to regulate lipid metabolism
through other pathways not involved in AMPK signaling. Our findings provide experimen-
tal evidence to support the metabolic role of safflower-derived polyacetylene glycosides in
the prevention of excessive lipid accumulation in obesity.
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