
RESEARCH ARTICLE

Increased lipid availability for three days

reduces whole body glucose uptake, impairs

muscle mitochondrial function and initiates

opposing effects on PGC-1α promoter

methylation in healthy subjects

Roy Eldor1*, Luke Norton2, Marcel Fourcaudot2, Cynthia Galindo2, Ralph A. DeFronzo2,

Muhammad Abdul-Ghani2

1 Diabetes Unit, Institute for Metabolism, Endocrinology and Hypertension, Tel Aviv Sourasky Medical

Center, Tel Aviv, Israel, 2 Division of Diabetes, University of Texas Health Science Center, San Antonio,

Texas, United States of America

* eldorroy@yahoo.com

Abstract

Aims

FFA and FFA metabolites cause insulin resistance and impair beta cell function. The goal of

our research was to examine whether elevation of plasma FFA impairs mitochondrial func-

tion and alters PGC-1α promoter methylation.

Methods

In this uncontrolled, change from baseline study design, insulin sensitivity and glucose-stim-

ulated insulin secretion were measured in 9 normal glucose tolerant subjects before and

after 3 day lipid infusion to elevate plasma FFA concentration. Vastus lateralis muscle biop-

sies were obtained and mitochondrial function, PGC-1α expression, and PGC-1α promoter

methylation were quantitated.

Results

Increased plasma FFA (440±93 μmol/Lto 997±242 μM, p<0.001) decreased insulin-stimu-

lated total glucose disposal (TGD) by 25% (p = 0.008), impaired suppression of endogenous

glucose production (p = 0.01), and reduced mitochondrial ATP synthesis with complex 1

(34%, p<0.05) and complex 2 (30%, p<0.05) substrates. Lipid infusion had no effect on mus-

cle PGC-1α RNA expression, total methylation or non-CpG methylation, but methylation of

the alternative PGC-1α promoter decreased (1.30±0.30 to 0.84±0.15% methylated resi-

dues/patient•strand, p = 0.055). Within PGC-1α promoter there was demethylation of CpT

residues (0.72±0.16 vs. 0.28±0.10 methylated residues/patient•strand) (p = 0.002), which

was inversely correlated with PGC-1αmRNA expression (r = -0.94, p<0.0001) and ATP syn-

thesis with complex 1 (r = -0.80, p<0.01) and complex 2 (r = -0.69, p<0.05) substrates. Lipid
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infusion increased DNMT-3B (methyltransferase associated with PGC-1α promoter non-

CpG methylation) mRNA expression (0.87 ± 0.09 to 1.62 ± 0.22 arbitrary units, p = 0.005),

which correlated inversely with CpT demethylation (r = 0.67, p<0.05).

Conclusion/Interpretation

Physiologic plasma FFA elevation in NGT individuals has opposing effects on PGC-1α non-

CpG residue methylation (CpT demethylation and increased DNMT-3B expression), which

is correlated with changes in PGC-1α expression and skeletal muscle mitochondrial

function.

Introduction

Insulin resistance is a key pathophysiologic derangement in type 2 diabetes mellitus (T2DM)

and is strongly associated with obesity [1]. Lipotoxicity plays a pivotal role in development of

insulin resistance [2–4]. Studies from our laboratory and others have shown that acute expo-

sure (2–6 hour) to supraphysiological plasma free fatty acid (FFA) levels (increased to 5–10

fold above fasting levels) reduced insulin sensitivity in healthy individuals and in individuals

with T2DM [5–9]. However, the clinical relevance of these experiments was limited since FFA

levels in healthy individual under normal living conditions rarely rise to such high levels. A

more clinically relevant approach is to increase the plasma FFA level to the high physiologic

range as seen in T2DM and obese individuals [9]) for longer a period of time (2–4 days). We

have shown that this results in both an increase in insulin resistance in healthy individuals [10]

and impaired insulin secretion in genetically predisposed, normal-glucose-tolerant (NGT)

individuals[11]. Conversely, sustained plasma FFA reduction with acipimox in NGT subjects

with strong family history of T2DM and in obese NGT and T2DM subjects enhances insulin-

mediated muscle glucose disposal and suppression of hepatic glucose production [12, 13].

In vivo and ex vivo studies [14–16] have demonstrated impaired mitochondrial function in

skeletal muscle of insulin resistant individuals. We have shown that reduction in plasma FFA

with acipimox improves mitochondrial ATP synthesis rate by >50% (7). The increase in ATP

synthesis rate correlated closely with the decrease in plasma FFA and increase in insulin-medi-

ated glucose disposal.

A potential link between lipotoxicity and mitochondrial dysfunction may be peroxisome

proliferator-activated receptor γ co-activator 1α (PGC-1α) which plays a central role in regu-

lating skeletal muscle mitochondrial function and biogenesis in response to changes in plasma

and intracellular lipid levels [17, 18]. We previously have shown that lipid infusion for 48-

hours resulted in a decrease in PGC-1α mRNA expression [19]. Hypermethylation of the

PGC-1α promoter was identified in a genome-wide analysis screening for differential pro-

moter DNA methylation in T2DM [20]. PGC-1α promoter methylation has been implicated

in development of mitochondrial dysfunction following an increase in plasma/intracellular

lipid levels. In low birth weight subjects, high-fat overfeeding caused peripheral insulin resis-

tance, reduced PGC-1α gene expression, and increased PGC-1α promoter methylation at

sequence CpG sites. However, PGC-1α promoter methylation did not correlate with PGC-1α
mRNA expression [21]. In skeletal muscle of T2DM individuals increased methylation of non-

CpG nucleotides of PCG-1α promoter was negatively correlated with PGC-1α mRNA expres-

sion and responsive to acute ex vivo FFA exposure, but not to insulin [20].
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We hypothesized that mitochondrial dysfunction could be induced in healthy NGT indi-

viduals by short-term increased lipid availability and that PGC-1α promoter methylation

played a pivotal role in mediating this negative interaction. The aim of our research was to

examine whether elevation of plasma FFA impairs mitochondrial function and alters PGC-1α
promoter methylation.

Methods

Subjects

Eleven subjects were recruited between July 2007 and February 2009. Two subjects withdrew

consent during the study and nine healthy normal glucose tolerant (NGT) subjects [4 females/

5 males; age = 37.2±3.2 years (range 22–40 years); BMI = 23.6 ± 1.2 kg/m2; FPG = 99±3 mg/

dl] completed the study. All subjects had a normal 2-hour OGTT. Body weight was stable (±2

lbs) over 3 months prior to study and no subject participated in an excessively heavy exercise

program. Routine screening blood tests, urinalysis, thyroid function, and EKG were normal.

Protocol was approved by Institutional Review Board of University of Texas Health Science

Center at San Antonio and informed written consent was obtained before participation.

Study design

After screening, eligible subjects received: (i) 4-hour euglycemic insulin clamp (80 mU/

m2min) with vastus lateralis muscle biopsies before the start of insulin clamp, (ii) 2-step hyper-

glycemic clamp (+100 and +300 mg/dl), (iii) DEXA scan. After completing baseline studies,

subjects were admitted to the CRC and received intravenous 20% neutral triglyceride solution

(Liposyn III; Hospira Inc., Lake Forest, IL) containing 54.5% linoleic, 22.4% oleic, 10.5% pal-

mitic, 4.2% stearic, and 8.3% linolenic acid (1 ml/minute) for 4 days and heparin (0.2 units per

kilogram per min) on days 1 and 2 [22]. On days 3 and 4, euglycemic insulin and hyperglyce-

mic clamp studies [23] were repeated.

OGTT

A catheter was placed into an antecubital vein and blood samples were collected at –30, –15, 0,

30, 60, 90 and 120 min for measurement of plasma glucose, insulin, C-peptide and FFA.

Dual X-ray absorptiometry

Dual X-ray absorptiometry (Hologic Inc., Waltham, MA) was performed to measure fat and

fat-free mass (FFM).

Euglycemic insulin clamp [23]

Following 10-hour overnight fast, a catheter was placed into antecubital vein for infusion of all

test substances. A second catheter was inserted retrogradely into vein on dorsum of hand

which was placed into a thermoregulated box heated to 70˚C. At 0800 hours, participants

received prime (40 μCi × fasting plasma glucose/90)–continuous (0.40 μCi/min) infusion of

[3-3H] glucose (DuPont NEN Life Science, Boston, MA). After 2-hour basal tracer equilibra-

tion period, participants received prime–continuous insulin infusion at 240 pmol•min−1•m−2

(80 mU•min−1•m−2) for 240 min. During last 30 min of basal equilibration period, plasma

samples were taken at 5–10 min intervals for determination of plasma glucose and insulin con-

centrations and [3H] glucose radioactivity. During insulin infusion, plasma glucose was mea-

sured every 5 minutes, and variable infusion of 20% glucose was adjusted to maintain plasma

glucose at each participant’s fasting level with coefficient of variation <5%. Plasma samples
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were collected every 5–15 min for determination of plasma glucose and insulin concentrations

and [3H] glucose radioactivity.

Muscle biopsies

Sixty minutes before insulin clamp, percutaneous vastus lateralis muscle biopsy (*300 mg)

was obtained [24]. Muscle biopsy was placed in buffer on ice for mitochondrial isolation and

measurement of mitochondrial ATP synthesis and ROS production rate.

Hyperglycemic clamp [23]

Following 10-hour overnight fast, a catheter was placed into antecubital vein for infusion of all

test substances. A second catheter was inserted retrogradely into vein on dorsum of hand, and

hand was placed into thermoregulated box heated to 70˚C. After obtaining three baseline sam-

ples, plasma glucose was rapidly raised and maintained by +100 mg/dL above fasting for 120

minutes and then by +300 mg/dL for an additional 90 minutes with variable infusion of 20%

glucose. At 210 minutes, a 5 gram bolus of arginine was infused over 1 minute while maintain-

ing plasma glucose constant for another 30 minutes. Blood samples were collected at -30,−20,

−10, 0, 2, 4, 6, 8, 10, 12, 15, 30, 45, 60, 75, 90, 100,110, 120, 122, 124, 126, 128, 130, 135, 150,

165, 180, 190, 200, 210, 212, 214, 216, 218, 220, 225, 230 and 240 minutes for measurement of

plasma insulin and C-peptide concentrations.

Analytical techniques

Plasma glucose was measured by glucose oxidase reaction (Glucose Oxidase Analyzer; Beck-

man, Fullerton, CA). Plasma insulin was measured by radioimmunoassay (Coat A Count;

Diagnostic Products, Los Angeles, CA). Tritiated glucose-specific activity was determined on

deproteinized barium/zinc plasma samples. Plasma FFA was measured by enzymatic colori-

metric method (Wako Chemicals, Neuss, Germany).

Mitochondrial purification

Mitochondria were purified from muscle tissue as previously described [25]. Mitochondrial

integrity was assessed by respiratory control ratio (>6 with pyruvate) at end of each experi-

ment. All procedures were performed on ice and entire isolation procedure lasted ~ 60 min.

Final mitochondrial solution was kept on ice and used immediately following isolation.

Mitochondrial ATP production

Mitochondrial ATP synthesis rate was measured ex vivo with chemiluminescence technique as

previously described [13]. Briefly, mitochondria were isolated from fresh muscle tissue by dif-

ferential centrifugation. 4 μg of mitochondrial protein was aliquoted to each reaction well.

Substrates were added as follows: 2.5 mM pyruvate, 2.5 mM glutamate, 5 mM succinate plus

0.001 mM rotenone, 0.5 mM palmitoyl-L-carnitine. 2.5 mM malate was added to complex I

substrates. Luciferine/luciferase was added to monitor ATP production. After 5 minute incu-

bation at 37˚C, substrates were added and reaction was started by addition of adenosine

diphosphate (ADP) [25].

Mitochondrial ROS production

The rate of mitochondrial ROS production was measured by quantitation of the release of

mitochondrial H2O2 with the fluorescent dye Amplex Red (Molecular Probes, Eugene, OR) as

previously described [14]. ROS production rate was performed in mitochondria under state II
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(with substrate and without the addition of ADP) conditions. The substrate concentrations

were the same as with the measurement of ATP synthesis. Fluorescence was observed at 530

nm excitation and 590 nm emission for 5 min. The slope in fluorescence was converted to the

H2O2 production rate using a standard curve [15].

Bisulfite sequencing

Bisulfite treatment was performed using EpiTect Bisulfite Kit (QIAGEN) according to manu-

facturer’s protocol. DNA was extracted from a fragment of the vastus lateralis muscle obtained

by biopsy. For amplification of region from 337 to 37 of PGC-1α promoter, the following

primers were used: sense 50 TAT AGT TAT TTT GTT ATG AAA TAG GGA GTT TT G
30; antisense 50 CCA ATC ACA TAA CAA AAC TAT TAA AAA ATA A 30. For amplifi-

cation of the region from 243 to 47 of the alternative PGC-1α promoter, the following primers

were used: sense 50 ATA GGG TTG TTG GAA AGT ATA TGA TAT T 30; antisense 50
AAA AAA CAC TCA CAA CAA AAA CTT C 30. The obtained PCR fragments were puri-

fied from agarose gel using MinElute Gel Extraction Kit (QIAGEN) and cloned using

pGEM1-T Easy vector system (Promega), according to manufacturer’s protocol. Individual

clones were grown and plasmids purified using QIAprep Spin Miniprep Kit (QIAGEN) and

EcoR1 Fast Digest restriction enzyme (Thermo Fisher Scientific, Rockford, IL). For each con-

dition, 10–15 clones were sequenced using T7 promoter primer on ABI 3730xl DNA Analyzer

platform (Cogenics, Hope End, UK).

Quantitative PCR

Total RNA was isolated using TRIZOL reagent (Sigma-Aldrich, St Louis, MO). One-step

RT-PCR was performed on ABI-Prism-7900HT System (Applied Biosystems, Foster City,

CA). mRNA levels were normalized to HMBS. Primers were designed using Primer Express

computer software (Applied Biosystems).

Statistical analysis and calculations

Following an overnight fast, steady-state conditions prevail and endogenous glucose produc-

tion (EGP) was calculated as [3H] glucose infusion rate (dpm/min) divided by steady state

plasma [3H] glucose specific activity (dpm/mmol). During insulin clamp, non-steady-state

conditions for [3H] glucose specific activity prevail, and rate of glucose appearance (Ra) was

calculated with Steele’s equation [26]. Rate of residual EGP during insulin clamp was calcu-

lated by subtracting exogenous glucose infusion rate from tracer-derived Ra. Insulin-stimu-

lated total glucose disposal (TGD) rate was calculated by adding rate of residual EGP to

exogenous glucose infusion rate.

ATP synthesis rate was measured as slope of chemi-luminescence over time. Slope of the

blank well (mitochondria without substrate) was subtracted from slope obtained with any

given substrate, and normalized per mg mitochondrial protein per min. Rate of H2O2 produc-

tion was measured as slope of fluorescence over time. Slope of blank well was subtracted from

slope obtained with any given substrate and normalized per mg mitochondrial protein per

min. Methylation was calculated as mean of percent methylated cytosine residues from total

and specific combinations of residues per patient.

Values are presented as mean ± standard error. For comparison of values obtained during

insulin clamp performed with and without Liposyn infusion, ANOVA was used. Simple Pear-

son correlation was used to assess correlation between variables. Statistical analyses were per-

formed with SPSS (version 14) (SPSS, Chicago, IL). Statistical significance was considered at

p<0.05. Statistical significant differences were confirmed by Bonferroni test.

Lipid availability and PGC-1α promoter methylation

PLOS ONE | https://doi.org/10.1371/journal.pone.0188208 December 20, 2017 5 / 17

https://doi.org/10.1371/journal.pone.0188208


Results

Plasma FFA concentration

Baseline fasting plasma FFA concentration was 440±93 μmol/L. 72-hours of Liposyn infusion

increased plasma FFA ~2-fold (997±242 μM, p<0.001).

Insulin sensitivity in muscle and liver

3-day physiologic increase in plasma FFA increased basal fasting (pre-clamp) insulin levels

from 3.6± 0.7 to 7.0 ± 0.9 mIU/ml (S1a Fig, p<0.001), reduced insulin-stimulated TGD from

12.1±1.0 to 9.2±1.2 mg/kg•min (p = 0.01) (Fig 1a), while insulin-induced suppression of

endogenous glucose production was impaired (0.10±0.10 vs. 0.63±0.21 mg /kg•min p = 0.008)

(Fig 1b and S1 Fig).

Glucose-stimulated insulin secretion

The fasting plasma insulin concentration, as well as the plasma insulin response during all

hyperglycemic clamp steps (+125mg/dL, +300 mg/dL and arginine), were higher after Liposyn

infusion (but did not reach statistical significance during the +300 mg/dL step): fasting (2.3

±0.7 vs. 4.0±0.7 μIU/ml, p = 0.03); +125mg/dL (time 90-120min: 37±5 vs. 51±7 μIU/ml;

p = 0.01); +300mg/dL (time 90-120min: 154±21 vs. 180±26 p = 0.10); and after arginine (428

±35 vs. 476±29 uU/ml; p = 0.01) (Fig 1c and S2 Fig), indicating the normal physiologic

response to the insulin resistance associated with Liposyn infusion. The lack of statistical sig-

nificance in insulin secretion in the 2nd hyperglycemic clamp step may be due to the relatively

small number of subjects in this study or perhaps to a specific mechanism by which extreme

hyperglycemia may overcome the Liposyn mediated increase in glucose stimulated insulin

secretion. We previously have shown in a similar study that prolonged Liposyn infusion to

produce a physiologic increase in the plasma FFA concentration results in a significant

increase in insulin secretion during the 2nd phase of the hyperglycemic clamp in NGT individ-

uals [11].

Mitochondrial ATP synthesis

Due to technical problems, mitochondrial ATP synthesis was not tested in 1 of the 9 subjects

and ATP synthesis data are presented on 8 subjects. FFA-induced insulin resistance was

accompanied by reduced mitochondrial ATP synthesis with complex 1 (by ~ 34±9%, p<0.05)

and complex 2 (by 30±5%, p<0.05) substrates (Fig 2a). When results obtained from men and

women were analyzed separately the trend towards reduced mitochondrial function did not

change. Mitochondrial ROS generation was significantly lower with pyruvate and glutamate,

but not with palmitoyl-L-carnitine or succinate (Fig 2b).

PGC-1α expression

Mean skeletal muscle PGC-1α mRNA expression of the complete cohort did not change signif-

icantly following Liposyn infusion (0.83±0.08 vs. 0.73±0.10) (n = 9). However, the change in

PGC-1α mRNA expression levels in individual subjects correlated positively (r = 0.69,

p = 0.03, one-tailed Pearsons correlation) with the change in pyruvate-induced mitochondrial

ATP synthesis following lipid infusion (Fig 2c). Higher levels of PGC-1α mRNA expression

were associated with a smaller reduction in ATP synthesis in response to increased lipid avail-

ability. These observations align with previous publications suggesting a decline in mitochon-

drial ATP synthesis in response to lipid exposure [25]) and an association between PGC-1α
expression and mitochondrial ATP synthesis [27–29].
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Fig 1. Effect of chronic (3 day) physiologic increase in plasma FFA concentration on insulin sensitivity parameters. a: insulin-

stimulated total body glucose disposal (TGD) and b: suppression of endogenous glucose production (EGP) during the euglycemic

insulin clamp. n = 9, *p<0.05. c: Plasma insulin concentration following an overnight fast and during the two-step hyperglycemic clamp

(+125 and +300 mg/dL) with arginine. n = 9, *p<0.05.

https://doi.org/10.1371/journal.pone.0188208.g001
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Fig 2. Effect of chronic (3 day) physiologic increase in plasma FFA concentration on mitochondrial function and PGC-1αmRNA

expression. a: Rate of mitochondrial ATP production with complex I substrates 2.5 mM pyruvate (Pyr), 2.5 mM glutamate (Glu), 0.5 mM

palmitoyl-L-carnitine (PC) and the complex II substrate 5 mM succinate plus 0.001 mM rotenone (Suc) (*p = 0.002, **p = 0.004,

***p = 0.001, †p = 0.005 paired student’s t-test). b: Rate of mitochondrial hydrogen peroxide production with complex I substrates 2.5 mM

pyruvate (Pyr), 2.5 mM glutamate (Glu), 0.5 mM palmitoyl-L-carnitine (PC) and the complex II substrate 5 mM succinate plus 0.001 mM

rotenone (Suc) (*p = 0.02, **p = 0.03, paired student’s t-test). c: Correlation between change in individual subject mitochondrial complex I

function (ΔATP synthesis with pyruvate) and change in individual subject PGC-1αmRNA expression (Δ PGC-1αmRNA expression) following

lipid infusion. Results are from 8 subjects with available data. PGC-1αmRNA expression was assessed by real time rtPCR. PGC-1α levels
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PGC-1α promoter methylation

Lipid infusion had no effect on total PGC-1α promoter methylation or on non CpG methyla-

tion, while there was a non-statistically significant trend towards reduced methylation of the

alternative PGC-1α promoter (0.84±0.15% vs. 1.29±0.29% methylated residues/patient•strand,

p = 0.055) (Fig 3a and 3b). When the following specific cytosine residue combinations (CpG,

CpC, CpT, CpA) in PGC-1α promoter were examined, a significant decrease in CpT methyla-

tion was demonstrated (0.28±0.09% vs. 0.72±0.16% methylated residues/subject, p = 0.002)

(Fig 3c and S3 Fig)] with no change in CpT methylation in Alt- PGC-1α promoter (Fig 3d).

The decrease in CpT methylation was observed both in men and women when each group was

analyzed separately. Reduction in CpT methylation was inversely correlated with the individ-

ual change in PGC-1α mRNA expression (r = -0.94, p<0.0001) (Fig 4a), suggesting an inhibi-

tory effect of CpT methylation on PGC-1α mRNA expression. A similar trend with high r

values was obtained when samples from men and women were analyzed separately (r = 0.946

men and r = 0.939 in women). Similarly, change in CpT methylation correlated negatively

with lipid-associated reduction in ATP synthesis by mitochondrial complex 1 activity (ATP

synthesis with pyruvate; r = -0.80, p<0.01) (Fig 4b) and complex 2 activity (ATP synthesis with

succinate plus rotenone; r = -0.69; p = 0.03) (Fig 4c). Thus, CpT de-methylation during pro-

longed FFA exposure was associated with preservation of mitochondrial ATP synthesis. It is

notable that the two subjects with minimal or no change in CpT methylation are the subjects

with the greatest change in PGC-1α mRNA expression and the greatest decline in mitochon-

drial complex 1 activity. While these individuals may be considered outliers, their response

during the insulin clamp studies, their plasma FFA levels, and other physiologic parameters

did not differ from the rest of the cohort. Because of the consistent response with respect to

methylation, gene expression and mitochondrial function assays, we believe that the results in

these 2 subjects represent a physiologic response to lipid exposure. Correlation beteween CpT

methylation and mitochondrial H2O2 production was less consistent; while a significant nega-

tive correlation was noted with the complex 1 substrates glutamate (r = -0.66, p = 0.038) and

palmitoyl-L-carnitine (r = -0.865, p = 0.003), no correlation was observed with pyruvate and

the complex 2 substrate succinate (S4 Fig).

In mammals, three DNA methyltransferases have been identified: DNMT-1 is considered

to be a maintenance DNA methyltransferase, while DNMT-3A and DNMT-3B contribute to

de novo DNA methylation [30]. In skeletal muscle from NGT and T2DM subjects, quantitative

analysis of DNMT isoforms using RT-PCR revealed an increase in mRNA expression of

DNMT3B in T2DM versus NGT subjects while DNMT1 and DNMT3A did not change. Con-

sistent with this, we measured DNMT-3A in 5 subjects (corrected for 18S) and failed to

observe any change from baseline (0.83 ± 0.43, p = 0.19 arbitrary PCR units). Liposyn infusion

resulted in significant increase in DNMT-3B expression (1.61 ± 0.22 to 0.87 ± 0.09 arbitrary

PCR units relative to HMBS expression, p = 0.005) without change in DNMT-1 expression

(1.09 ± 0.19 vs. 0.96 ± 0.15 arbitrary PCR units relative to HMBS expression, p = NS) (Fig 4d

and 4e). In an ex vivo human skeletal muscle model, DNMT-3B silencing with siRNA pre-

vented palmitate-induced down regulation of PGC-1α mRNA expression [20]. Amongst a

subset of “responders” (7 of 9 subjects, excluding the two subjects mentioned above who had

minimal or no change in CpT methylation), a greater increase in individual DNMT-3B expres-

sion correlated with less Liposyn-induced CpG demethylation (i.e. demethylation of the PGC-

were corrected for HMBS gene expression. Complex I function was measured by ATP synthesis with pyruvate. p = 0.03 one-tailed Pearsons

correlation.

https://doi.org/10.1371/journal.pone.0188208.g002

Lipid availability and PGC-1α promoter methylation

PLOS ONE | https://doi.org/10.1371/journal.pone.0188208 December 20, 2017 9 / 17

https://doi.org/10.1371/journal.pone.0188208.g002
https://doi.org/10.1371/journal.pone.0188208


Fig 3. Effect of chronic (3 day) physiologic increase in plasma FFA concentration on PGC-1α promoter methylation.

a: Change in % methylation/strand of all cytosine residues in PGC-1α (left) and b: alternative PGC-1α (right) promoters

(n = 9). Alternative PGC-1α p = 0.055 vs baseline study without Liposyn infusion. c,d: Change in % methylation of each

cytosine residue combination in the PGC-1α promoter before and after lipid infusion. c: % methylation of specific cytosine-

residue combinations relative to total cytosine residues in the amplified strand (CG-4; CA-21; CT-29; CC-9) (n = 9). *p = 0.002

for CT methylation. d: % methylation of specific cytosine-residue combination relative to total cytosine residue combinations in

the amplified strand (n = 9).

https://doi.org/10.1371/journal.pone.0188208.g003
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Fig 4. Correlation between the change in CpT methylation in the PGC-1α promoter, PGC-1αmRNA expression &

mitochondrial function. a: Correlation between the change in CpT methylation in the PGC-1α promoter and PGC-1αmRNA

expression following prolonged (3 day) lipid infusion (n = 9) (r = -0.94, p<0.0001). b: Correlation between the change in CpT

methylation in the PGC-1α promoter and change in mitochondrial Complex I function following prolonged lipid infusion (n = 8).

Complex I function was measured by ATP synthesis with pyruvate (r = -0.80, p<0.01). c: Correlation between the change in CpT
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1α promoter was lower in subjects in whom DNMT3B mRNA expression was higher) (Fig 4f)

(p = 0.04, r = 0.67). A non-statistically significant inverse trend was noted between DNMT-3B

expression and change in individual PGC-1α expression level (p = 0.07, r = 0.60).

Lastly, we combined all values obtained at baseline and during Liposyn treatment, looking

for correlation between absolute levels of methylation, PGC-1α and DNMT-3B mRNA expres-

sion levels and mitochondrial ATP production with complex 1 and complex 2 substrates. %CT

methylation/site strand was significantly and negatively correlated with DNMT-3B mRNA

expression (S4e Fig r = -0.48, p = 0.02) and ATP production with complex 1 substrates was

correlated with ATP production with complex 2 substrates (r = 0.902, p<0.001)

Discussion

The lipotoxic effect of elevated plasma FFA and intracellular lipid metabolites (FACoAs, dia-

cylglycerol, ceramides) on insulin sensitivity in muscle/liver and beta cell function is well

established (2–4). We previously demonstrated that increased lipid availability impairs insulin

signaling and decreases insulin-mediated glucose disposal in lean NGT individuals [22]. Con-

versely, reduced lipid availability improves insulin-mediated glucose disposal in NGT obese

and T2DM individuals [12, 13, 31, 32]. The present results confirm these observations by dem-

onstrating reduced peripheral and hepatic insulin sensitivity (Fig 1a and 1b) in response to

chronic (3 day) lipid infusion and extends these results by demonstrating that a physiologic

increase in plasma FFA reduces skeletal muscle mitochondrial ATP synthesis.

PGC-1α plays a central role in muscle mitochondrial biogenesis and function in response

to external stimuli [18]. A possible mechanism via which PGC-1α mediates this interaction is

through regulation of PGC-1α expression via modification of PGC-1α promoter methylation.

In healthy subjects, acute exercise causes demethylaton of PGC-1α promoter in skeletal mus-

cle, resulting in dose-dependent increase in PGC-1α mRNA expression [33]. Conversely,

increased PGC-1α promoter methylation was observed in skeletal muscle of diabetic subjects

and in myotubes exposed to palmitate ex vivo. Of note, the increase in methylation occurred

primarily in non-CpG residues and was associated with an increase in DNMT-3B expression

[20].

Therefore, we examined the in vivo effect of a chronic (72-hour) physiologic increase in

lipid availability on PGC-1α promoter methylation in NGT subjects. Despite lack of effect on

total PGC-1α methylation or CpG residue methylation, we observed a significant reduction in

CpT residue methylation, which correlated with both PGC-1α mRNA expression levels (Fig

4a) and parameters of mitochondrial oxidative function (Fig 4b and 4c). DNMT-3B levels

increased after lipid infusion and were correlated with preserved methylation of CpT residues.

Thus, subjects with greater CpT demethylation in response to lipid infusion had greater

expression of PGC-1α mRNA and relatively preserved mitochondrial function. In contrast,

subjects with a greater increase in DNMT-3B levels following lipid infusion manifested

reduced CpT demethylation (Fig 4f). A similar and negative correlation between absolute

methylation in the PGC-1α promoter and change in mitochondrial Complex II function following prolonged lipid infusion (n = 8).

Complex II function was measured by ATP synthesis with succinate + the complex I inhibitor rotenone (r = -0.69, p = 0.03). d, e:

Real-time PCR analysis of DNMT-3B and DNMT-1 change in expression after lipid infusion. RNA was extracted from vastus lateralis

muscle biopsies obtained at baseline and after lipid infusion for 72 hours. Results are shown as fold induction normalized to HMBS

values. *p = 0.005 for change in DNMT-3B expression level between baseline and Liposyn exposure. p = 0.27 for change in DNMT-1

expression level between baseline and Liposyn exposure. n = 9. f: Correlation between the change in CpT methylation in the PGC-

1α promoter and DNMT-3B mRNA expression following prolonged lipid infusion amongst a subset of “responders” (7 of 9 subjects

excluding two subjects who had minimal or no CpT demethylation), (n = 7). DNMT-3B mRNA expression was assessed by real time

rtPCR and corrected for HMBS gene expression (r = 0.67, p<0.05).

https://doi.org/10.1371/journal.pone.0188208.g004
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values of %CT methylation/site strand and DNMT-3B mRNA expression levels was observed

(this analysis was conducted on absolute, combined baseline and Liposyn values).

The alternative PGC-1α promoter recently has been identified approximately 13.7kb

upstream of originally identified PGC-1α promoter and yields alternative transcripts which

are present at much lower levels [34]. Interestingly, methylation of the alternative PGC-1α pro-

moter was similar between healthy individuals and individuals with T2DM and expression of

it’s specific isoform, despite rapidly increasing after exercise was not associated with changes

in DNA methylation in a mouse skeletal muscle [20, 35, 36]. In our study, a non-statistically

significant trend towards reduced methylation was noted in the alternative PGC-1α promoter

and no change in individual residue methylation levels was observed.

These results suggest two opposing responses to increased lipid availability in healthy NGT

subjects:

1. a previously undescribed ‘protective’ mechanism via which elevated plasma FFA/intramyo-

cellular lipids cause PGC-1α promoter CpT demethylation, preserved PGC-1α mRNA

expression and preserved mitochondrial function. The enzymatic process leading to

demethylation is poorly defined but may involve Tet catalyzed oxidation followed by decar-

boxylation of methylcytosine [37] or activation of cytidine deaminase or apolipoprotein B

mRNA editing enzyme 1 [38].

2. The above sequence is opposed by an increase in DNMT-3B expression, which preserves

(increases) CpT methylation and decreases PGC-1α mRNA expression. This is supported

by the observation that absolute levels of DNMT-3B were higher when absolute %methyla-

tion levels of the PGC-1α promoter were lower. The strong correlative relationships

between these opposing processes support this hypothesis. We hypothesize that the insulin

resistant, obese diabetic phenotype emerges when the DNMT-3B-mediated increase in

PGC-1α promoter methylation and subsequent mitochondrial dysfunction outweighs the

beneficial effect of PGC-1α promoter demethylation and preservation of mitochondrial

function.

Environmental-induced changes in non-CpG methylation in mammals have been

described in human and murine mitochondrial DNA control regions (D-loop) [39] and in

adult murine brains in regions with low CpG density [40]. The later is similar to the area we

examined in the PGC-1α promoter. Functionally, non-CpG methylation is responsive to envi-

ronmental changes and exerts an inhibitory effect on gene expression [40]. Thus, myotubes

exposed ex vivo to palmitate for 48-hours demonstrate increase PGC-1α promoter mRNA,

non-CpG methylation and PGC-1α expression [20]. Conversely, total non-CpG methylation

declined in murine aortic genomic DNA after prolonged diet-induced hyperlipidemia [41]. In

our study we demonstrated significant changes in CpT methylation without overall effect on

total methylation. This may be explained, in part, by the relative abundance of CpT sites in the

PGC-1α promoter relative to other potential methylation sites (29 CpT sites vs. 4 CpG sites; 21

CpA sites and 9 CpC sites) by an as-of-yet undefined CpT specific process, by species differ-

ences, i.e. human vs murine, or by the intervention, i.e. lipid infusion.

The present study has several limitations including the relatively small number of subjects,

variability between subjects, the lack of control group and the “short” exposure time to

increased lipid availability. With respect to the later, the obese T2DM phenotype develops

after many years of excess caloric intake. However, with this limitation in mind, our study pro-

vides insight into the very early stages of the interaction between excess lipid intake and mito-

chondrial DNA methylation in development of the obese diabetic phenotype at an early

pathophysiologic stage, before overt lipid-associated insulin resistance emerges. As such, these
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observations provide novel insights that may hold the key to preventing and overcoming the

rampant diabetes/obesity pandemic.
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