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Abstract

Matrix assisted laser desorption/ionization time-of-flight (MALDI-TOF) coupled with stable isotope standards (SIS) has been
used to quantify native peptides. This peptide quantification by MALDI-TOF approach has difficulties quantifying samples
containing peptides with ion currents in overlapping spectra. In these overlapping spectra the currents sum together, which
modify the peak heights and make normal SIS estimation problematic. An approach using Gaussian mixtures based on
known physical constants to model the isotopic cluster of a known compound is proposed here. The characteristics of this
approach are examined for single and overlapping compounds. The approach is compared to two commonly used SIS
quantification methods for single compound, namely Peak Intensity method and Riemann sum area under the curve (AUC)
method. For studying the characteristics of the Gaussian mixture method, Angiotensin II, Angiotensin-2-10, and
Angiotenisn-1-9 and their associated SIS peptides were used. The findings suggest, Gaussian mixture method has similar
characteristics as the two methods compared for estimating the quantity of isolated isotopic clusters for single compounds.
All three methods were tested using MALDI-TOF mass spectra collected for peptides of the renin-angiotensin system. The
Gaussian mixture method accurately estimated the native to labeled ratio of several isolated angiotensin peptides (5.2%
error in ratio estimation) with similar estimation errors to those calculated using peak intensity and Riemann sum AUC
methods (5.9% and 7.7%, respectively). For overlapping angiotensin peptides, (where the other two methods are not
applicable) the estimation error of the Gaussian mixture was 6.8%, which is within the acceptable range. In summary, for
single compounds the Gaussian mixture method is equivalent or marginally superior compared to the existing methods of
peptide quantification and is capable of quantifying overlapping (convolved) peptides within the acceptable margin of
error.
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Introduction

MALDI-TOF is a convenient tool for determining peptide

abundance in high-throughput workflows. MALDI-TOF MS is a t

a solid-state ionization technique in which the sample is mixed

with a chemical (matrix) that is excited by an ultraviolet or infrared

laser. The laser excites the matrix leading to the transfer a proton

to the analytes in the sample. The time of flight required for a

given analyte to be detected is proportional to the mass of the

analyte. The ions produced by this technique are primarily singly

charged. Principles underlying each ionization technique have

been well described elsewhere [1] Visualizing specific peptides or

other analytes by exact mass allows for a greater degree of

specificity in quantification and identification. In past work,

MALDI-TOF has been used to measure angiotensin (Ang)

peptides in cell culture or tissue samples and profile these peptides

within their network [2–10]. Ang peptides belong to the renin

angiotensin system (RAS), a hormonal system of major significance

in human biology. The main effector of the system is Ang II [Ang-

(1–8)], an octapeptide that is formed through sequential cleavage

of the substrate angiotensinogen [11]. Among many other

pathophysiological roles, Ang II is known to stimulate blood

vessels to raise arterial blood pressure [12], activate mechanisms of

sodium retention in the kidney [13] and induce proliferation in

cardiac myocytes [14]. Interestingly, Ang peptides that are

generated through alternative pathways of enzymatic processing,

such as the heptapeptide Ang-(1–7), may elicit biological effects

that are counteracting to those of Ang II [15]. Therefore, accurate
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visualization and quantification of Ang peptides is of utmost

importance to adequately study the RAS. Proteins from tissue

sections have been also analyzed, allowing for the localization of

biological molecules to distinct regions of tissue [16–17],

demonstrating the diversity and flexibility of MALDI-TOF

analysis.

Mass spectrometry (MS) based techniques have advanced the

field far beyond antibody-based methods with the capacity of

identifying and quantifying multiple [18–20] peptides and

posttranslational modifications in a single experiment [21]. The

ability to quantify peptides is hindered by their physical and

chemical properties. Differences in charge, hydrophobicity, or

posttranslational modification are some of the properties that effect

the ion formation and time of flight of a sample peptide or peptide

mixture. Similar peptides can have widely varying differences in

ionization within a sample, leading to differential matrix

suppression or ‘flyability’ [2] between peptides. Flyability refers

to the differences in ionization and post-source decay between

similar peptides. Similar peptides may be more or less prone to

ionize and therefore will generate a higher or lower signal,

respectively. In quantification, flyability can be obtained through a

constant based on known differences between peaks of different

peptides [2].

Traditional methods of peptide quantification utilize the specific

binding properties of antibodies to estimate abundance. Enzyme-

linked immunosorbent assay (ELISA) and radioimmunoassay

(RIA) are popular methods that indirectly measure the amount

of bound antibody to the native peptide by a colorimetric reaction

or radioactive decay [22–23]. One of the drawbacks of antibody-

based methods is the potential for cross-reactivity with non-target

peptides. Peptide quantification by mass spectrometry is direct,

thereby avoiding issues associated with antibody cross-reactivity,

and include those based on stable isotope dilution theory, although

label free methods have been described [24–35]. Stable isotope

dilution theory is based on the concept that a stable isotope labeled

protein or peptide behaves exactly the same during MS analysis.

Because the mass difference between the labeled and unlabeled

samples can be detected through direct comparisons of signal

intensities (e.g. time-of-flight) or area under extracted ion

chromatograms (e.g. LC-MS/MS) are used for quantification.

For the case of LC-MS/MS based quantification the sample is first

separated prior to being introduced into the mass spectrometer

thereby reducing the complexity and competition for ionization

[31–34]. Due to lower complexity, the likelihood of overlapping

peptide masses is also reduced and extraction of peptide specific

fragment ion intensity over time can further increase the specificity

of the measurement.

For monitoring biological reaction product formation, such as

peptide metabolism, MALDI-TOF MS is ideally suited and takes

advantage of the internal standardization commonly referred to as

AQUA [35–38] (Absolute QUAntification of protein). Although

MALDI-TOF does have limitations in its reproducibility due to

the effects of uneven matrix-analyte mixture and matrix interac-

tions, the use of SIS quantification allows for the circumvention of

some of these difficulties. All SIS methods involve placing a known

quantity of isotopically labeled peptide in a sample and comparing

the peak intensities between the labeled and native peptide. The

synthetic SIS peptide is identical to the native peptide with the

exception that one amino acid is comprised of stable isotopes of

carbon (13C) and nitrogen (15N). In practice both peptides are

chemically identical with respect to ionization and decomposition,

but the stable isotope labeled peptide is heavier and is detected as a

different m/z window in the mass spectrometer thus allowing

simultaneous comparison with the native. One or more amino

acids can be labelled imparting further flexibility in the monitoring

of peptide metabolism. The sum of the intensities of the first two or

three peaks (M, M+1, or M, M+1, M+2) depending on the

visibility of the peaks or the sum of the areas under the curve

(AUC) of the peaks, calculated using Riemann sums or pixel

counting, for a given peptide are divided by the same measure of

the labeled peptide [36]. The peak intensity is defined as the

maximum height of the peak. The Riemann sum AUC is the

trapezoidal sum of the area under each peak. In both approaches,

a cutoff or baseline is used to remove the effect of signal noise and

is subtracted from the peak height or AUC. This ratio of native to

labeled peptide is then multiplied by the known amount of the

labeled peptide and sometimes corrected for response based on an

external standard curve to estimate the amount of unmodified

peptide.

This method of quantification is not without its difficulties; error

in quantification can range from 2% to 12% [35]. This error has

several possible sources from both methodology used for

quantification and from the analysis itself. A significant amount

of the sample can be lost during preparation due to manipulation

before the addition of the labeled peptide. The amount of SIS

peptide needed for accurate quantification can vary between

experiments depending on the peak intensities found in the

sample. The ratio between native and SIS peptide need to be less

than 10 to aid in accurate estimation [38]. There is also the fact

that there needs to be a SIS peptide for each peptide of interest in

a sample to insure an accurate estimation of that peptide. This

means, mixtures of SIS peptides should be balanced with

endogenous levels for a given experiment. The need for multiple

peptides and the quantity needed to fine tune the mixtures and

preform the actual measurements begin to highlight the costs of

peptide quantification by SIS peptides. In SIS quantification, the

peptide(s) being quantified are known beforehand. This is

necessary to produce the SIS version of the peptide, bypassing

any problems that may occur by matrix suppression (or difference

in ionization). The Gaussian mixture method incorporates the

chemical properties of the known peptides by parametrizing the

probability density function. The approach also provides discrete

peak separation and provides the characteristics through the

estimates of the unknown parameters of the isotopic distribution of

the peptide being examined. An efficient algorithm for estimating

the baseline is also incorporated into this approach. Unlike the

existing Gaussian mixture approaches [38–43] by incorporating

the known chemical information in the parameterization our

approach reduces the dimensionality of the unknown parameter

space. In addition to providing a more accurate quantification, the

approach considerably speeds up the computations. In the

convolved peptide situation peak intensity and Riemann sum

AUC cannot be used to accurately quantify the separate peptides.

Since this method can be automated over a large number of

spectra and peptides, bottlenecks in the data processing pipeline

are avoided.

Past methods are vulnerable to errors in data processing. The

estimation of a baseline and cutoff regions for measurement are

often end-user dependent or automated by proprietary software,

both of which are often accepted and unquestioned. The

calculation of the peak intensities (heights) or AUC are affected

by changes in the signal-to-noise ratio and the resolution of the

individual peaks within the spectra. Combine this with the

problem of quantifying individual peptides of similar mass that

form sets of overlapping peaks and even with SIS methods,

quantification can become a difficult task using either of these

signal intensity measures. Methods like liquid chromatography can

be used to isolate convolved peptides but this adds additional

Gaussian Mixture Model Peptide Quantification
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sources of sample loss, are expensive in terms of both manpower

and funding and do not scale easily to high-throughput workflows.

In the study of the renin-angiotensin system (RAS), the use of

SIS methods for peptide quantification have been used to map out

the extracellular processing of angiotensinogen prior to its

biological action [2–9] at a given cellular target. Ang peptides

from the RAS serve as good examples of isolated isotopic clusters

(Ang-II: octopeptide, molecular weight (MW) 1046 Da) and

convolved clusters (Ang-(2–10): nonapeptide, MW1081 Da and

Ang-(1–9): nonapeptide, MW 1083 Da) detected by mass spec-

trometry.

While Gaussian mixtures have been used in the analysis of mass

spectra [38–43], as mentioned earlier, these methods do not

incorporate known characteristics, such as probable isotopic

distribution of a compound, and have not been used to address

the issues of peptide quantification. The proposed Gaussian

mixture method takes into account the known physical constraints,

such as isotopic mass separation and point distributions. The peak

areas are estimated with the same error range as the peak intensity

and peak AUC methods of SIS quantification in Ang peptide data.

The range of error is carried over to convolved groups of peptides

where no direct comparison of methods can be made. This

method is easily automated using an R-package, for implemen-

tation of a multiple peptide search over several spectra.

Due to the abundance of data generated from MS analysis,

there are several software packages that can be used to aid in the

analysis of MS data. These include commercial packages such as

Progenesis MALDI (Nonlinear USA Inc., Durham, NC) and

many open platform packages that have been produced individ-

ually [44–49]. Each of these uses different methods for identifying

and quantifying mass spectra, the details of which have not been

published. Here, the aim is to show the versatility of partially

known Gaussian mixture method in dealing with overlapping

peptide clusters in the framework of SIS peptide quantification.

Materials and Methods

The purpose of this study was to provide a new approach to the

problem of quantifying single and convolved peptides in MALDI-

TOF MS data using a Gaussian mixture model to measure and

compare native peptides to SIS peptides. This approach will be

compared to the established methods of single peptide quantifi-

cation: peak intensity and Riemann sum AUC peak quantification

for single peptide quantification. Peptides of the RAS were used

for studying the characteristics of our approach and for comparing

with other approaches.

Mass Spectra Collection
Samples were examined using MALDI-TOF MS. Ratios of

native and SIS peptides (Sigma-Aldrich, St. Louis, MO) were

mixed in 2% aqueous trifluoroacetic acid (TFA). The SIS peptides

are 6 Da larger than the native peptide as a result of [13C.15N]-

valine incorporation into the amino-acid sequence. Concentra-

tions of native and labeled peptides ranged from 20 to 1000 nmol/

L (Table 1) depending on the ratio required. SIS-Ang-(1–9) has a

MW of 1189.56, SIS-Ang-(2–10) a MW of 1187.71 and SIS-Ang-

II a MW of 1052.59.

Samples were applied to a MALDI target with a sandwich of a–
cyano-4-hydroxycinnamic acid (cyano matrix) mixed in a one to

one ratio (10 g/L) with 50% acetonitrile/0.1% TFA. The

sandwich consisted of 2 mL of cyano matrix, 2 mL of sample,

then another 2 mL of matrix. Each application was allowed to dry

prior to the application of an additional layer. Spectra were

collected in reflectron mode using a M@LDI MALDI-TOF mass

spectrometer (Waters Corp., Milford, MA and AB SCIEX,

Farmingham, MA). Twenty spectra were combined for analysis

and were converted from MassLynx.raw directories to.mzXML

files using MassWolf [48] or from.mgf to.mzXML using

ProteoWizard [49] MSConvert for import into an R computing

environment, version 3.01, [50] for analysis.

Mass Spectra Data Processing
Once the data were imported into an R environment, the

XCMS [51–53] package is used to load the .mzXML file and

isolate the region around the known mass of the group of peptides

of interest. This range is21 m/z from the monoisotopic mass [M+
H+] of the smallest peptide to +5 m/z from the monoisotopic mass

of the largest peptide in the group. These ranges of peptide masses

were grouped together based on the overlap of isotopic clusters of

individual peptides within the above range. Peak area estimation

was performed by constructing a Gaussian mixture model for each

peptide.

The Gaussian mixture is a multimodal distribution the density

of which is produced by a weighted sum of Gaussian densities. In

the MS context, the density could be written

f (x;D,s)~
XK
k~1

lkfk(x; m0z(k{1)n0zD,s),

where fk(x; m0z(k{1)N0zD,s) is the Gaussian density with

mean m0z(k{1)N0zD and variance s2 for the kth component

of the Gaussian mixture, D is the mass error (or accuracy) of the

spectra due to error in the standard curve calibration of the mass

spectra, lk is the proportion of the kth component as defined by

the isotopic distribution of the peptide that is limited by the total

amount of the peptide accounted for, 99.99% in most instances,

N0 is the mass of a neutron (1.00866912 Da). The square root of

the variance, namely the standard deviation, s, could also be

interpreted as the peak width. Peak resolution can be obtained

from the standard deviation by simple transformation of the ‘Full-

Width Half-Maximum’ of the peak and it can be explained in

terms of s as 2
ffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

p
s. Although general Gaussian mixtures

allow for the variance of each component Gaussian density to

vary, since the resolution of individual peaks in MALDI-TOF are

equal [1] with the change in variance between peaks increasing

(si~
mi

mi{1
si{1), it is reasonable to set the variance across the

examined m/z range to be equal since the change in variance is

very small over the range being examined. The mass difference

between peaks of a single peptide is N0. The addition due to this

mass is negligible over the small m/z range seen in SIS

quantification. For clusters of peptides, the Gaussian mixture of

each peptide is combined across the mass range without additional

weighing of the individual peptides. The peptide peak areas

associated with the mass error and peak width (namely D and s)
yielding the best fit is used as the area estimates for that cluster of

peptides. Goodness of fit of the model is determined by the R2, the

coefficient of determination (computed as the average of the

squared distance between the observed and estimated peaks). The

R2 is calculated over a range of mass error (D) and peak width (s)
values and the area corresponding to the combination of D and s
that yields the highest R2 is considered the final estimate of the

peak area.

Examples of model fits using the Gaussian mixture are shown in

Figures 1, 2 and 3 where the fit of a single peptide (Ang II,

Figure 1) and a convolved set of peptides (Ang-(2–10) and Ang-(1–

9) and SIS peptides, Figure 2 and 3). The estimated individual

Gaussian Mixture Model Peptide Quantification
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contribution of each peptide can be seen in in Figure 3. Often a

vertical shift is observed in spectra and needs to be accounted for

in SIS estimations [54–55]. This shift, hence forth called baseline

shift, could be caused by many sources one of which might be the

noise from the MS signal. It is believed that this noise could act in

either an additive or masking (overlapping) fashion. There is no

universally accepted method in the literature for estimating or

correcting for this baseline shift. However, generally this error

seems to be treated as additive and is treated as such with all

methods discussed in this paper. The baseline shift is described

here as a slope-intercept form of a linear function over the m/z

range examined for each peptide cluster. Figure 1 is presented to

illustrate the importance of including the baseline correction in the

quantification. For this example, there is a less adequate fit

(R2 = .64) when no baseline is assumed, and the fit improves as the

baseline is estimated, which improves further changed from a

simple vertical shift (R2 = .97) to a shift on a gradient (R2 = .99)

described as a slope intercept equation. Figures 2 and 4 shows the

fit of a convolved peptide model (R2 = .94) using a slope intercept

baseline shift.

The proposed approach estimates the mass error and peak

width (D, s respectively), over a range decided by the researcher.

Then peak area for each individual peptide and the slope intercept

of the baseline shift are simultaneously estimated using a QR

decomposition of a linear model between each individual peptide,

the intercept, and the m/z range the cluster covers, and the

spectrum data over that same m/z range. Then the mass and

isotropic distribution based on the composition of each labeled and

native peptide is estimated. Peptides with masses within 5 DA of

each other are then convolved to estimate their abundance. (An R

[49] package implementing this algorithm to estimate the mass

error, peak width, and peak area has been written and will be

made available subsequently.) A full workflow for the Gaussian

mixture method algorithm as described is shown in figure S1.

Two currently available methods for SIS quantification are

considered for comparison against the Gaussian mixture method.

The methods are the peak intensity measure and the Riemann

sum AUC methods of quantification. The peak intensity measures

the height of the identifiable peaks in a given isotopic cluster and

sums them. The Riemann sum AUC is trapezoidal sum of the area

under the identifiable peaks. For single peptide clusters, the peak

intensities of the visible major peaks (usually monoisotopic, M+1,
M+2) and a Riemann sum of the major peaks were estimated for

comparison (Table 1). Both peak intensity and Riemann sum

methods require a baseline shift correction, which are often made

using one of several methods in the literature [26–27,44–47,54–

55]. (For the comparisons made in this manuscript, the baseline

shift estimated from the Gaussian method will be used).

Theoretically, the expected locations of the peaks are known to

be at the mass for each peak (M, M+1, M+2) shifted by the error

adjustment. The new masses (M+D, M+1+D, M+2+D) are each

then used to center a n0 range on the mass-to-charge ratio axis

(MZ). The peak intensities within this range are searched for the

maximum intensity. Once the estimated baseline at this MZ is

found, it is subtracted from the overall intensity at this point and

this is used as the peak intensity for that peak. Riemann sums are

Table 1. Method Comparison Summary.

Method MPE MSE Variance Bias 95% CI

Gaussian Mixture 0.05172 0.00018 0.00201 0.05154 [0.03449, 0.06895]

Peak Intensity 0.05876 0.00030 0.00465 0.05845 [0.03255, 0.08497]

Riemann Sum 0.07691 0.00045 0.00598 0.07646 [0.04718, 0.10664]

Gaussian Mixture, Convolved Peptide 0.06801 0.00064 0.00264 0.06737 [0.03765, 0.09837]

The mean percent error (MPE), MSE, Variance and bias of each method’s percent error of the peptide ratio for various methods of ratio quantification. While all methods
fall within the error parameters of the SIS method The Gaussian mixture model produces estimates in both single and convolved peptides while the peak intensity and
Riemann sum methods of estimation cannot be used in convolved peptides.
doi:10.1371/journal.pone.0111016.t001

Figure 1. Different methods used for fitting a single peptide isotopic cluster to a MALDI-TOF spectrum of unlabeled Angiotensin II.
The inclusion of a slope-intercept form baseline (red estimation) increases the fit over a flat baseline (blue estimation). Both of which are better than
not including a baseline (green estimation).
doi:10.1371/journal.pone.0111016.g001

Gaussian Mixture Model Peptide Quantification
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calculated over these same three MZ ranges using the formula

Xn
i~1

hizhiz1ð Þ:(xiz1{xi)

2
{

BLizBLiz1ð Þ:(xiz1{xi)

2

� �
,

where hi is the intensity of the spectrum at point xi on the MZ axis

and BL is the baseline estimate used for noise subtraction at this

point on the MZ axis.

Once the peak areas for the best fitting model are collected the

ratios of native to labeled peptide are calculated form the peak

intensity, Riemann sum areas and Gaussian mixture areas.

(Table 1) Since peak intensity and Riemann sums cannot be

estimated for all individual peptides in overlapping isotopic clusters

of peptides, only the Gaussian mixture method estimates are

obtained for overlapping peptides.

Once ratios were calculated for the various measures of signal

intensity for the pairs of native and labeled peptides these were

used to calculate percent error form the know ratio present in the

sample. The absolute difference between the known and estimated

ration was divided by the known ratio. These percent errors in

ratio estimation were then used to compare between samples and

peptides. This was done to limit the interference inherent in

samples with a range of signal intensities.

Statistical Analysis
To compare the various methods, the fits are expressed as

percent error of a given ratio and the mean, mean square error

(MSE), variance and bias for each of the three methods are

presented. (Table 1, Table S1) Scatter plots of the percent error of

the true ratio between methods for each spectra analyzed (n= 26,

Material S2) will be presented for graphical illustration of the

agreement between methods (Figure 4). A two-way ANOVA with

peptide (Ang II and Ang-(2–10)) and method (Peak Intensity,

Riemann Sum AUC and Gaussian mixture model) as independent

factors and adjusting for the subsampling (sample replicates) by

including a random effects term in the model will be used to

formally test the null-hypothesis that the methods are similar.

From this analysis the least squares estimates of the mean for each

method, along with post-hoc confidence intervals adjusted using

Tukey’s approach will be presented (Table 2).

Since the currently available methods are not applicable for the

estimation of convolved peptides, there cannot be a direct

comparison between the above methods using convolved peptide

data. An analysis of mean, mean square error (MSE), variance and

bias was used to compare single and convolved peptide estimation

using the Gaussian mixture method (Table 1, Table S2).

Results

Single Peak Analysis
As a proof of principle, the Peak Intensity and Riemann sum

AUC methods of signal measure and the Gaussian mixture

method were used to examine 26 spectra (9 Ang-(2–10)/SIS-Ang-

(2–10) and 17 Ang-(1–9)/SIS-Ang-(1–9)) that consisted of replicate

MALDI-TOF analysis of seven different mixtures. These measures

were then used to back calculate a ratio of native to labeled

peptide which was then compared to the true ratio. Since varying

ratios were involved, the percent error of the true ratio was used to

measure predictive capacity of all three methods. Peak intensity

Figure 2. A MALDI-TOF mass spectrum from the analysis of Ang I extracellular breakdown [2] by rat glomeruli in the presence of
amastatin (APA inhibitor) and thiorphan (NEP inhibitor) at 60 minutes. The sample contains a mixture of Ang-(2–10), Ang-(1–9), and SIS-
Ang-(2–10) that overlap forming one cluster. These peaks are fit and the individual areas for each isotopic cluster can be decomposed from the
spectrum.
doi:10.1371/journal.pone.0111016.g002

Gaussian Mixture Model Peptide Quantification
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and Riemann sum used the first three visible peaks for comparison

(M, M+1, M+2). The Peak Intensity method was found to have a

mean error of estimation of 5.9 [3.3, 8.5]%. The Riemann sum

method was found to have a mean error of estimation of 7.7 [4.7,

10.7]%. The Gaussian mixture method was found to have a mean

error of estimation of 5.2 [3.4, 6.9]% (Table 1). The mean errors

seem to fall within the range of accepted SIS accuracy [34] and

share low variances across all three methods.

Correlation plots between methods show that the peak intensity

measure and Riemann sum are highly correlated (r=0.89) and

that the Gaussian mixture method is similarly correlated (r=0.58,

0.64) with the other methods implemented (Figure 4).

The two-way random effects ANOVA gives more accurate

estimates (Least Square Means) for the comparison of the methods

(Table 2). The estimated means of the methods are 7.2 [4.9, 9.5]%

for Peak Intensity, 9.0 [6.7, 11.3]% for Riemann sum and 5.6 [3.2,

7.9]% for Gaussian mixture. The difference between Peak

Intensity and Riemann sum was not significant and the difference

between Peak Intensity and Gaussian was not significant (p.0.05),

but the difference between Riemann sum and Gaussian methods

was significant (p,0.04).

The analyses of different ratios of Ang-(2–10) and Ang-(1–9)

that were considered are summarized in Table 3. Ten samples of

the three ratios were used for a total of 30 spectra. The 2–10 was

increased while 1–9 and both SIS peptides were kept constant.

The mean error estimate was 2.97 [2.5,3.4]% for 1:1 ratio, 5.7

[.57,10.7]% for a 2:1 ratio, and 5.3 [4.2,6.4]% for a 10:1 ratio.

Convolved Peak Analysis
Convolved peaks are formed by overlapping ionic currents as

described earlier. An example of a typical convolved peak problem

Figure 3. A MALDI-TOFmass spectrum of a known ratio of 1:1:1:1 peptides consisting of 300 nM Ang-(2–10), Ang-(1–9), SIS-Ang-(2–
10) and SIS-Ang-(1–9). The spectrum has been fit using GMM and the figure shows how each estimated peptides contributes to the whole
spectrum. Since all peptides are estimated simultaneously, each peptide is presented here separately to illustrate the individual contribution of each
peptide to the spectrum as a whole. (A) Figure 3a shows the entire estimation as a whole, preformed as a single fit to a single cluster of four
overlapping peptides. The data is shown in black with the estimated peaks superimposed in red. (B) Figure 3b shows the estimated contribution of
Ang-(2–10) to the spectra superimposed in blue. (C) Figure 3c shows the estimated contribution of Ang-(1–9) to the spectra superimposed in green.
(D) Figure 3d shows the estimated contribution of SIS-Ang-(2–10) to the spectra superimposed in dark yellow. (E) Figure 3e shows the estimated
contribution of SIS-Ang-(1–9) to the spectra superimposed in dark purple.
doi:10.1371/journal.pone.0111016.g003
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consisting of multiple peptides is shown in figure 2. The Gaussian

mixture method is the only method capable of decomposing

convolved peptides. To examine how well the Gaussian mixture

method can be used to estimate peptide ratios for this type of

quantification, eleven spectra representing convolved peptides (5

replicate Ang-(2–10)/SIS-Ang-(2–10)/SIS-Ang-(1–9) and 6 repli-

cate Ang-(2–10)/Ang-(1–9)/SIS-Ang-(2–10)/SIS-Ang-(1–9)) were

analyzed. The Ang-(2–10) ratios and Ang-(1–9) ratios were

calculated and compared to the true ratios. The mean error of

estimation from these eleven spectra was found to be 6.8 [3.8,

9.8]%.

Discussion

Our findings demonstrate, the Gaussian mixture method is

capable of handling both single and convolved peptides for the

estimation of SIS ratios with similar accuracy but the performance

of the method is sensitive to peak resolution and signal to noise

ratio. The single peptide estimations produce similar (or better)

results compared to the two previously used methods. For

convolved peaks, the Gaussian mixture method produced similarly

accurate results, while previous two methods treat those situations

intractable. All of the means fall within the acceptable levels

[18,30,35–37] of error for SIS quantification and provide a basis

for the equivalence of the results from the Gaussian mixture model

method for estimating convolved and non-convolved peptides.

Gaussian mixture method is more advantageous because it can be

applied to both single peptide and multiple, overlapping peptides

with at least the same accuracy as past methods. It also supplies a

mathematical justification for baseline estimations instead of an ad
hoc approach.
There are a few limitations in using all the three methods and

some are specific to the Gaussian mixture. A closer examination of

the correlation plot (Figure 4) reveals a grouping of points that

seem to be outliers. These points that cluster furthest from the

diagonal represent samples that on closer examination had lower

resolution and/or exhibited skewed peaks. This cluster of three

data points is farther from the main cluster of data, suggesting a

poor estimation of the ratio using all methods of peak quantifi-

cation. The ability to calculate the native:SIS ratio is affected by

the quality of the data being examined. Quality can be quantified

by the resolution (or variance of the component normal of the

Gaussian mixture distribution) of the peaks. Low quality (high

variance, low resolution and/or misshapen) peaks are harder to

quantify using the Gaussian mixture method. In other words, if the

Figure 4. Correlation plots showing the difference in estimation error of the peak ratio for a given spectrum when different
methods of peak ratio measurement. The red line denotes a correlation of r= 1 and the blue lines denote 0% error in ratio estimation for that
given method. Here we see that the Peak intensity and Riemann sum AUC methods of quantification correlate more highly with one another than
with the Gaussian mixture method. Note that the GMM estimates tend to cluster closer to the blue line suggesting lower error.
doi:10.1371/journal.pone.0111016.g004

Table 2. Two way ANOVA with pairwise testing.

Method Mean Estimate Pr.|t| 95% CI

Peak Sum 0.07181 ,0.0001 [0.049, 0.095]

AUC Sum 0.08999 ,0.0001 [0.067, 0.113]

Gaussian 0.05562 ,0.0001 [0.032, 0.079]

Pairwise comparison of means

Method Mean Difference Pr.|t| 95% CI

Peak Sum v. AUC Sum 20.01818 0.2712 [20.051, 0.015]

Peak Sum v. Gaussian 0.01619 0.3270 [20.017, 0.049]

AUC Sum v. Gaussian 0.03437 0.0399 [0.002, 0.067]

The Two-way ANOVA analysis takes into account that several samples are replicates of a single mixture of peptides (Material S1) and that there may be differences
between peptides used and not just the methods of peak quantifcation. All standard errors for the mean estimates were equal (0.01159).
doi:10.1371/journal.pone.0111016.t002
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underlying assumption of normality under each peak is violated

the Gaussian mixture method might produce larger errors. The

Gaussian method is more sensitive to the resolution, returning

higher error ratio estimates with the lower resolution spectra than

previous methods. The Gaussian mixture method does predict

ratios with better accuracy with higher resolution spectra than

previous methods. This needs to be explored further by analysis of

signal to noise ratios and there correlation with resolution. It is

anticipated that the higher resolution will produce larger signal to

noise ratios, which would explain the sensitivity. This method is

dependent on knowing the exact mass of peptides being quantified

in a given sample. Because GMM data derived from MALDI-ToF

alone analyzes only the intact charged mass, not reacted to

produce highly specific fragment ions (e.g. b/y ions) like that for

other mass spectrometry modalities, unknown compounds that are

nearly identical in mass can confound the accuracy of the

measurement. Only the highest resolution instruments, such as

MALDI- Fourier transform ion cyclotron resonance mass

spectrometers, can achieve peak resolution that can minimize this

overlap. Furthermore, due to their low abundance in plasma,

enrichment strategies are often necessary to measure vasocactive

peptides by MALDI-TOF [29,56] which is a low sensitivity

detection system in the presence of a high matrix environment. In

experiments attempting to profile the metabolism of vasoactive

peptides and quantify the end-products, where GMM is most

relevant, requires the addition of an exogenous peptide to a high

concentration necessary to elevate the signal to detectable levels

[2–5,7,8,10]. Whether or not GMM is applicable to the analysis of

native biological samples is likely to require testing on a case by

case basis using high resolution instruments prior to the use of

MALDI-ToF alone.

The error in estimation increases for convolved peaks

(compared to single peak estimation errors which ranged between

0.051% and 0.068% (Table 1). The analysis of Ang-(2–10) with a

convolved set of SIS peptides shows that convolved peaks when

decomposed can be estimated within the same error range as

single peptide peaks but sets of convolved peptides (Figure 2,3)

show an increase in the error of estimation (Material S1). This

estimation error may be corrected in MALDI-TOF data by

adjusting the peak width estimation by a correction based on the

static resolution of the data. This will be explored in future

research. Even with these increased errors in estimation of the

convolved peptide ratios, the ratios are estimated within the same

allowable error range [35]. It is possible that additional mixture

parameters, such as a variable peak sigma that narrowly increases

across peptides’ m/z range or the use of flyability constant as in

previous work [2] may need to be incorporated to estimate

multiple sets of convolved peptides.

Future refinement of the Gaussian mixture method will require

the examination of several aspects of the algorithm. The

appropriate cutoff for the number of isotopic peaks that constitutes

the significant majority of the peptide in the sample also affects the

minimum m/z that needs to be considered for calling two peptides

separate. This defines their status as a convolved cluster or as

peptides to be considered individually. This is expected to be a

function of the atomic composition of a given compound, where

the more atoms comprising the molecule lead to a larger and more

complex isotopic distribution. Methods for adjusting estimations of

peptide isotopic distributions that reflect possible local variations

will need to be considered to see if they are viable and make a

significant addition to area estimations. Implementation of a

maximum likelihood estimator of the Gaussian parameters will

increase both speed and accuracy of this method, but other

measures of ‘goodness of fit’ need to be explored. Implementation

of a quadrant search algorithm for exploring the parameter space

needs to be implemented to accelerate peak quantification for

larger data sets. Finally, simulation studies are required to validate

this method over a wide range of extremes in spectra composition.

Such a study is being considered and will appear in a subsequent

publication.

The use of informed Gaussian mixture method is a novel

approach to peptide quantification with the tangible benefits of the

flexibility to tackle traditional single peptide cases and overlapping

peptides as well. It also provides baseline estimation with

mathematical justification. This process can also be automated

for multiple peptides over multiple spectra allowing for a high

through put quantification analysis. The Gaussian mixture method

is comparable to both Peak Intensity and Riemann sum methods

of signal measure in SIS quantification. When dealing with

convolved peptides we show similar levels of error relative to non-

convolved peptide area and ratio estimates with the Gaussian

method. The Gaussian method is equivalent, will remove the ad
hoc baseline estimations used else-where, and will give estimations

that fall within the range of acceptable SIS error for both

convolved and non-convolved peptides. This method could be

implemented in a reasonable amount of time for quantification of

any compound, with known composition, examined using mass

spectrometry and an internal standard. The use of the Gaussian

mixture is also variable since mixtures of other distributions could

be used to better describe other spectra where necessary.

Supporting Information

Figure S1 A short workflow of the GMM algorithm used
to fit MALDI-TOF MS data.

(TIF)

Table S1 Contains the raw fit results from the GMM
analysis of data in materials S1 (single peptide spectra),
an expanded LS means table, the results of the peak
intensity and Riemann sum analysis of the single

Table 3. Secondary peptide ratio estimation.

2–10:1–9 Ratio MPE MSE Variance Bias 95% CI

1:1 0.02971 0.00100 0.00013 20.02146 [0.0254, 0.03401]

2:1 0.05684 0.01975 0.01835 20.05555 [0.00574, 0.10795]

10:1 0.05315 0.00361 0.00087 20.02585 [0.04201, 0.06428]

Here the Gaussian mixture method is used to recover the peptide ratio of the second peptide in a convolved set. The error in the estimation of an Ang-(1–9) peak ratio
against its corresponding SIS peptide when convolved with various amounts of Ang-(2–10) and its corresponding SIS is used to test the Gaussian mixture method. The
initial concentration of 300 nM of each peptide (for a 1:1:1:1 ratio of peptides, Material S2) is modified by changing the amount of Ang-(2–10). Here we see that the
Gaussian mixture method can recover the second peptide from a series of different peptide ratios.
doi:10.1371/journal.pone.0111016.t003
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peptide samples, and individual peptide ratio calcula-
tions.

Table S2 Contains the raw fit results from the GMM
analysis of data in materials S2 (convolved peptide
data).
(CSV)

Material S1 Single peptide spectra data.
(CSV)

Material S2 Convolved peptide spectra data.
(CSV)
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