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Abstract

Ocean acidification (OA) is likely to exert selective pressure on natural popula-

tions. Our ability to predict which marine species will adapt to OA and what

underlies this adaptive potential is of high conservation and resource manage-

ment priority. Using a naturally low-pH vent site in the Mediterranean Sea

(Castello Aragonese, Ischia) mirroring projected future OA conditions, we car-

ried out a reciprocal transplant experiment to investigate the relative importance

of phenotypic plasticity and local adaptation in two populations of the sessile,

calcifying polychaete Simplaria sp. (Annelida, Serpulidae, Spirorbinae): one resid-

ing in low pH and the other from a nearby ambient (i.e. high) pH site. We mea-

sured a suite of fitness-related traits (i.e. survival, reproductive output,

maturation, population growth) and tube growth rates in laboratory-bred F2

generation individuals from both populations reciprocally transplanted back into

both ambient and low-pH in situ habitats. Both populations showed lower

expression in all traits, but increased tube growth rates, when exposed to low-pH

compared with high-pH conditions, regardless of their site of origin suggesting

that local adaptation to low-pH conditions has not occurred. We also found

comparable levels of plasticity in the two populations investigated, suggesting no

influence of long-term exposure to low pH on the ability of populations to adjust

their phenotype. Despite high variation in trait values among sites and the rela-

tively extreme conditions at the low pH site (pH < 7.36), response trends were

consistent across traits. Hence, our data suggest that, for Simplaria and possibly

other calcifiers, neither local adaptations nor sufficient phenotypic plasticity

levels appear to suffice in order to compensate for the negative impacts of OA on

long-term survival. Our work also emphasizes the utility of field experiments in

natural environments subjected to high level of pCO2 for elucidating the potential

for adaptation to future scenarios of OA.

Introduction

Ocean acidification (OA) is the process by which anthro-

pogenically derived atmospheric carbon dioxide (CO2) is

absorbed into surface seawater, lowering the pH and

concentration of carbonate ions in the global ocean

(Caldeira and Wickett 2003; Doney et al. 2009). These

changes have a large potential to impact marine biodiversity,

as many marine species are expected to be affected detri-

mentally (Kroeker et al. 2013; Wittmann and P€ortner 2013;
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Mostofa et al. 2015). Adaptation may be the most realistic

option for survival, but our understanding of the scope for

marine species to adapt to ongoing global change over real-

istic, multidecadal timescales is limited (Hendry and Kin-

nison 1999; Carroll et al. 2007; Kelly and Hofmann 2012;

Sunday et al. 2013). One way to test explicitly if and how

species might be able to respond to future oceanic condi-

tions is through studies of local adaptation along natural pH

gradients (Bell and Collins 2008; Sanford and Kelly 2011).

The scope for local adaptation in response to environ-

mental stressors has previously been investigated using nat-

ural environmental gradients and the responses from their

residing populations (Reznick and Ghalambor 2001;

Kawecki and Ebert 2004; Gaston et al. 2009; Sanford and

Kelly 2011; Dam 2013). These studies have provided us

with an understanding on how and why natural popula-

tions succeed or fail to adapt to particular stressful condi-

tions and demonstrate realistic ecological scenarios for

species’ adaptation to OA (Rodolfo-Metalpa et al. 2011;

Maas et al. 2012; Calosi et al. 2013; Lewis et al. 2013). The

majority of examples of contemporary adaptation have

shown that new populations are established by colonization

events (Reznick and Ghalambor 2001), where a subset of a

metapopulation is subjected to a modified environmental

patch within the preexisting range of the species (Reznick

and Ghalambor 2001). Individuals that initially colonize

and proliferate in these new environments can become iso-

lated from their ancestral population and may later radiate

and establish a new metapopulation from which distinct

populations and species arise through gene flow and

repeated colonization [e.g., Losos and Schluter 2000; see

also ‘The Rockall Paradox’ Johannesson (1988)]. This type

of colonization is likely to be the most effective for the

investigation of adaptation to OA, as future chemistry

changes will be global, encompassing many species’ preex-

isting ranges, and initially intensifying current low-pH

areas (i.e. estuaries, fiords, coastal areas, and upwelling

areas) (Barton et al. 2012; Hofmann et al. 2014).

There is limited work on local adaptation in response to

OA (see Sanford and Kelly 2011). The evidence presented

so far indicates that local adaptation to low pH may have

occurred in populations inhabiting naturally, low-pH

upwelling areas. For example, populations of the purple sea

urchin, Strongylocentrotus purpuratus, found in persistent

upwelling waters on the west coast of the USA appear to be

less sensitive than those that are not exposed to low-pH

waters (Kelly et al. 2013; Pespeni et al. 2013). A similar dis-

tinction implying locally adapted populations is further

exemplified in studies of highly calcified coccolithophore,

Emiliania huxleyi, strains that dominate low-pH upwelling

habitats in Chile (Beaufort et al. 2011; Smith et al. 2012).

Supporting this idea, laboratory studies have also demon-

strated that the E. huxleyi upwelling strains have a high

degree of adaptation potential compared with strains that

are not found in high CO2 conditions (Iglesias-Rodriguez

et al. 2008); also see Langer et al. (2009) for counter evi-

dence.

Ocean acidification adaptation studies can also be estab-

lished in venting areas where volcanic CO2 bubbles through

the seafloor and locally lowers pH (Hall-Spencer et al.

2008; Fabricius et al. 2011; Johnson et al. 2013). A vent site

off the island of Ischia, Naples, in the south of Italy is one

such example. Underwater CO2 volcanic emissions interact

with a Posidonia oceanica sea grass habitat off the coast of

the Castello Aragonese peninsula. The CO2 bubbles from

the sea floor and drives the seawater pH down to equal to –
or lower than – business-as-usual IPCC projections for

2100 (pH 6.5–7.8; Hartmann et al. 2013), resulting in a

low-pH ecosystem (Hall-Spencer et al. 2008; Kroeker et al.

2011). As such, the site has been used as an analogue for

ecosystems’ responses to the ongoing OA projected to

occur in the next century (Hall-Spencer et al. 2008; Kroeker

et al. 2011; Lombardi et al. 2011a).

In most cases, species abundance declines in low pH

(Hall-Spencer et al. 2008; Kroeker et al. 2011); however, a

few studies have identified species with higher abundances

in low-pH areas, primarily amphipods and polychaetes

(Kroeker et al. 2011; Fabricius et al. 2014; Garrard et al.

2014; Giangrande et al. 2014; Ricevuto et al. 2014; Lucey

et al. 2015). This is the case in the low-pH Castello CO2

vent system where several species persist in high abundance

and provide an opportunity for testing for the presence of

local adaptation (Rodolfo-Metalpa et al. 2011; Calosi et al.

2013; Lucey et al. 2015).

Reciprocal transplant experiments can be used to deter-

mine levels of adaptation among populations living in low-

pH areas and whether the persistence of the population is

enabled by forms of adaptation to low pH (Etterson and

Shaw 2001; Ayrinhac et al. 2004). In this approach, indi-

viduals are taken from different field habitats and held in

their respective ‘habitat’ conditions for multiple genera-

tions. Following this grow-out period, their progeny are

relocated to the in situ source and test habitats, after which

their fitness (e.g. survival) is quantified (Falconer and

Mackay 1996; Kawecki and Ebert 2004). The performance

of local genotypes can then be explored using reaction

norms and analysis of variance to test for local adaptation

(significant differences between trait means between popu-

lations), plasticity (significant effects of environment), or

genotype by environment interactions (Nuismer and Gan-

don 2008). To our knowledge, no studies so far have used

the reciprocal transplant approach to test for local adapta-

tion to low-pH habitats in this context.

Consequently, the aim of our study was to use a recipro-

cal transplant approach to investigate whether there is evi-

dence for local adaptation and/or plasticity in response to
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natural exposure to low-pH conditions representative of

future OA in the Castello CO2 vents. The study species is a

Spirorbinae polychaete (Serpulidae), Simplaria sp., which

is able to subsist in the naturally low-pH vent habitat (N.

Lucey, C. Lombardi, M. Florio, S. D. Rundle, M. C. Gambi

and P. Calosi, unpublished data). The first and only Medi-

terranean Sea record of this Serpulidae species to date was

in the Castello CO2 vents during this study. The population

in the vents may have relocated to this site sometime dur-

ing the last 40 years from the Caribbean Sea where it was

described as Pileolaria quasimilitaris Bailey, 1970 (now S.

quasimilitaris according to Knight-Jones 1984). The spe-

cies could also be a morphotype of Simplaria pseudomili-

taris (Thiriot-Qui�evreux, 1965) first described in Marseille,

France. Alternatively, it may be a new species to science, as

the morphological characters of the vent individuals are

not in complete agreement with that of either S. quasimili-

taris or S. pseudomilitaris, with distinctive and unique oper-

culum spine morphology (i.e. more abundant, longer,

pronounced distally projecting calcareous spines covering

the operculum plate (N. Lucey, C. Lombardi, M. Florio, S.

D. Rundle, M. C. Gambi and P. Calosi, unpublished data).

Generally, Spirorbinae are small, filter feeders that spend

their adult lives within self-built spiraled tubes that are per-

manently attached to a substrate (Gee 1964; Potswald 1968;

Tanur et al. 2010). They are common members of the ben-

thic community, especially in early substrate colonization

or as epibionts on other organisms (Rouse and Pleijel

2001). These polychaetes are responsive to rapid evolution-

ary change through adaptation (Macdonald 2003). A key

aspect of their suitability for adaptation studies is their life

history: they incubate their embryos in specialized opercu-

lum brood chambers (Bailey 1970; Macdonald 2003) and

release nonfeeding lecithotrophic larvae that settle quickly,

limiting their dispersal (Beckwitt 1981; Kupriyanova et al.

2001). This can result in patchy distributions and signifi-

cant genetic differences among populations found less than

10 m apart from seemingly identical habitats, with no

apparent barriers to mutual colonization (Beckwitt 1981).

Additionally, it is thought that these brooders have radiated

more rapidly than any other clade in the family (Macdon-

ald 2003). Spirorbinae also serve as an excellent taxon for

multigenerational studies as they can be easily cultured

under laboratory conditions and have relatively short gen-

eration times (~90 days, Kupriyanova et al. 2001).

Previous work on calcifiers in the Castello CO2 vents

identified Simplaria sp. as the dominant and most abun-

dant calcifying polychaete species living in moderately low-

pH (~7.7) areas, with respect to population sizes in ambi-

ent seawater sites nearby (N. Lucey, C. Lombardi, M.

Florio, S. D. Rundle, M. C. Gambi and P. Calosi, unpub-

lished data). It is also the only species of Spirorbinae poly-

chaete growing on the P. oceanica sea grass leaves in an

aragonite–calcite tube to maturation within the pH range

6.6–7.7 (N. Lucey, C. Lombardi, M. Florio, S. D. Rundle,

M. C. Gambi and P. Calosi, unpublished data). With this

study, we tested whether the population of Simplaria sp.

from the low-pH site (7.7) would have a significantly

greater tolerance to low pH via plasticity and/or local adap-

tation in comparison to that settled in ambient pH (8.1)

originating populations. This also allowed us to show how

the reciprocal transplant approach can be utilized to find

evidence for, or lack of, adaptation to environmental dri-

vers, which may be helpful in informing future conserva-

tion and resource management actions within the context

of the global change.

Materials and methods

Field site and experimental design

Local population samples from within the larger calcifying

polychaete Simplaria sp. metapopulation living around the

Castello CO2 vent system were collected from two habitats

in the P. oceanica sea grass meadow: a low-pH site (7.69

pH) and two ambient pH sites (8.03 pH). The low-pH site

was selected as the area within the CO2 vents where Sim-

plaria sp. was found in higher abundance compared with

the ambient sites (N. Lucey, C. Lombardi, M. Florio, S. D.

Rundle, M. C. Gambi and P. Calosi unpublished data). The

ambient sites were located between 100 and 400 m away

from the low-pH site and correspond to the control areas

selected for a recent study on the colonization of Posidonia

sea grass mimics (Donnarumma et al. 2014). Research of

closely related spirorbid species has determined their dis-

persal range is on the scale of a few meters (~10 m), sup-

porting the probability of genetic separation between

collection sites in the Simplaria sp. in this study (Beckwitt

1981; Kupriyanova et al. 2001). The locations for these

sites are shown in Fig. 1.

In order to investigate the presence of local adaptation

to low-pH conditions within the Castello CO2 vent system,

we used a reciprocal transplant experiment to compare the

fitness responses of second-generation offspring raised

from grandparents from both pH habitats grown in their

source conditions before being reciprocally transplanted

into both field habitats (see Fig. 2 for experimental sche-

matic; Kawecki and Ebert 2004). We specifically refer to

low and ambient pH populations using the term ‘deme’ to

represent the subset of our sampled population (Kawecki

and Ebert 2004).

Each starting deme consisted of 500 adult individuals, a

quantity regarded as suitable to minimize inbreeding or

genetic drift effects in the subsequent generations (Colin

and Dam 2005; Dam 2013). Adults collected from the two

ambient pH field sites were mixed together to achieve the

maximum genetic diversity within the ambient deme and
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provide comparably sized low and ambient pH starting

demes (Nacci et al. 1999). The individuals that were used in

the reciprocal transplant experiment were 4- to 20-day-old

F2-generation recruits bred in laboratory grow-out condi-

tions resembling the local pH habitats from which their

respective field-collected grandparents were found (Fig. 2).

Using F2-individuals from controlled laboratory conditions

minimized any field-based plasticity and transgenerational

effects that may have occurred if field-collected or F1-gen-

eration individuals were used (in accordance with similar

experimental designs; Dam 2013). All F2 recruits trans-

planted into ambient pH were transplanted to the field site

closest to the low-pH site. Deme-level replication by pH

habitat was not feasible for two reasons. Firstly, we were

required to comply with site-based restrictions using mini-

mal transplants within the sensitive site. Boating traffic

related to the summer season causes heavy disturbances in

many of the alternative transplant sites. Additionally, a pre-

liminary abundance and distribution survey before the col-

lection of adults for this experiment found that the species

was not highly abundant in either of the control or low-pH

areas; therefore, any statistically relevant replication within

the site would have jeopardized the Simplaria sp. popula-

tion through oversampling.

The experimental F2 individuals from both demes were

left in the field for a 66-day period before being recovered,

preserved and assessed for survival, development, repro-

ductive output, population growth, and tube growth rates.

This time frame was chosen to allow adequate time for

growth to maturation and was based on life span projec-

tions of similar species (Kupriyanova et al. 2001).

Adult collection

Collection of live adults was performed between the

29th and 30th of September 2014 by SCUBA diving.

This involved cutting Posidonia leaves with visible tubes

from each pH site and placing them in closed fabric

bags, keeping the low-pH and ambient originating indi-

viduals separated and in their original seawater pH con-

ditions. The seawater pH at each collection site was

taken with an integrated pH meter (SG2; Mettler-

Toledo, Leicester, UK) and refractometer (V2; TMC, S~ao

Juli~ao do Tojal, Portugal) (n = 3) and was 7.61 � 0.26

at the low-pH site and 8.03 � 0.05 and 8.03 � 0.08 at

both ambient sites. The temperature in the entire area

was 21.96 � 1.29.

The material was then transported by boat to the Villa

Dohrn-Benthic Ecology Center of the Stazione Zoologica in

Ischia (approx. 4 km from the Castello CO2 vent’s system;

transport time <1 h) and maintained inside 10 L coolers

with fresh seawater from each of the collection sites. Once at

the laboratory, leaves were immediately trimmed to elimi-

nate as much leaf material surrounding the spirorbid tubes

as possible to help in avoiding undesired fermentation. Indi-

vidual worms were then sorted by their tube spiral direction

and operculummorphology, the main taxonomic characters

that are considered in living individuals to identify the genus

and species (Bailey 1970). All individuals matching the adult

Simplaria sp. description (N. Lucey, C. Lombardi, M. Florio,

S. D. Rundle, M. C. Gambi and P. Calosi, unpublished,

Fig. 3) were maintained in 1.3 L aquaria in seawater match-

ing their respective source pH levels.

Figure 1 Schematic representation of the study area at the Castello

Aragonese off Ischia island (Naples, Italy), showing the sampling loca-

tions of both ambient and low-pH demes (black dots), transplant loca-

tions (*) and Posidonia meadows (black dashed lines).

Figure 2 Experimental design schematic illustrating the pH environ-

ment of both populations; field stages are represented as boxes and

laboratory grow-out stages as circles. Black arrows indicate reciprocal

transplants.
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Individuals were then transported to the Marine Ecology

Laboratory of the Marine Environmental and Sustainable

Development Unit (ENEA, La Spezia, Italy) by ferry and

car on October 3, 2014. During the 8h transport, they were

maintained in separate containers with unfiltered seawater

(volume: 1.3 L; temperature: 22°C; pH: ambient = 8.15 or

low = 7.70; salinity = 36; density: approx. 100 per aquar-

ia). All containers were kept in styrofoam coolers packed

with ice to maintain a consistent water temperature. Tem-

perature and pH were recorded twice during the duration

of the transport using a pH meter with integrated ther-

mometer (SG2, Mettler-Toledo). The mean pH in the con-

tainers remained at 8.15 (ambient samples), or increased

from 7.70 to 8.00 (low-pH samples), while the temperature

decreased from 22 to 19°C for 1 h in all containers during

the 8h transportation period.

Breeding and rearing F2 demes

On arrival at the ENEA laboratory, the specimens from

ambient and low-pH habitats were immediately placed in

two experimental seawater culturing aquarium systems

simulating their respective pH field habitats within the con-

tainers they were transported in (with 100 adults per con-

tainer). Water parameters in the culturing systems were

stabilized within the following 24-h period to values based

on the averages (and standard deviations) of six time series

datasets between 2008 and 2015 at each pH habitat, with

the low-pH grow-out aquarium system set at 7.7

(7.69 � 0.32), and the ambient at 8.1 (8.03 � 0.08) (Rice-

vuto et al. 2014). The temperature was set at a constant

22°C, the average temperature at the Ischia site the previ-

ous year during the same time frame of the planned field

experiment. Temperatures in this dataset did range from

17.5 to 25.6°C, but we did not account for this variability

in the laboratory, as the standard deviation was relatively

low (1.23°C).
After a 2-day exposure period to laboratory conditions,

16 glass ‘catchment slides’ pretreated with a biofilm from a

24-h-filtered seawater soak were positioned along the sides

of each container as a substrate for F1 juvenile settlement

(Fig. 4). Parents on leaf sections were kept in the contain-

ers bordered with catchment slides at a density of 100 indi-

viduals per container for one month (Fig. 4). After this

period, the containers were disassembled and parents

removed. Slides with F1 recruits were placed in slide stands

in their respective pH grow-out tanks in a vertical position.

When individuals from the F1 generation of each deme

reached maturity, the process for collecting their offspring

on slides was repeated in the same way, but with the slides

with F1 adults in the containers instead of the original par-

ent individuals on leaf sections. The low-pH and ambient

pH demes and their seawater were never mixed throughout

the entire grow-out period to ensure no interpopulation

breeding or genetic mixing via spermcasting occurred.

Laboratory grow-out system, animal husbandry, and

physico-chemistry

The two seawater culturing aquarium systems were modi-

fied and integrated versions of the equilibration flow-

through systems used by Widdicombe et al. (2009) and

Melatunan et al. (2011). Each pH treatment level consisted

of two header tanks (volume = 90 L each) of seawater, sup-

plied from one sump (22°C) and aerated with either air

(pCO2 ~ 380 latm, for pH = 8.2), or CO2-enriched air

(pCO2 ~ 1000 latm, for pH = 7.7). CO2 gas was slowly

released into a Buchner flask to enable mixing using a CO2

regulator (6000 CO2, BOC, La Spezia, Italy). pCO2 in the

air supplied to header tanks was measured continuously

throughout the grow-out period with a CO2 gas analyzer

(Li-820; Li-Cor Biosciences, Lincoln, NE, USA) and

adjusted manually to the experimental level when necessary.

From each of the four header tanks, seawater was grav-

ity-fed at a constant rate (100 mL/min) to each of the five

larval catchment containers for each deme (transparent

sealed 1.3 L containers), which were held within larger

holding trays (volume = 150 L) where excess seawater was

allowed to flow and the juvenile-adult settlement slides

were set up in slide stands. These slides were distributed

(A) (B)

(C) (D)

Figure 3 Simplaria individuals: (A) adult settled on Posidonia blade,

scale: 10 mm, (B) close-up of mature adult with embryos inside the

operculum brood chamber, scale: 0.5 mm, (C) juvenile settled on glass

settlement slide, scale: 0.5 mm, and (D) postmetamorphic juvenile on

glass settlement slide, scale: 0.1 mm.
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evenly throughout the holding trays and mini submersible

circulation pumps (HJ-311; Aquapump, Mondialfauna,

Milan, Italy) created a circular flow around the trays to

promote filter feeding and gamete circulation. Slides and

larval catchment containers were randomly rotated on a

weekly basis. One standard florescent white light was posi-

tioned above each experimental tank and put on a 14 h:

10 h = L:D schedule to simulate a diurnal cycle. Seawater

overflowed from the experimental trays to the respective

sumps and was filtered by protein skimmers (V2Skim 600;

TMC). Heaters (V2-Therm 300 W’ TMC) and submersible

circulation pumps (HJ-311; Aquapump) were also used in

each sump to maintain stable temperature conditions and

enhance a homogeneous mixing of the seawater that was

then recirculated via a submersible pump (V2 Power Pump

2200; TMC) to the header tanks.

All seawater was collected from La Spezia bay, La Spezia,

Italy, approximately every 3 weeks and filtered using a

0.1 lm and UV sterilization filtration system (V2ecton

120; TMC) for 5 days before being introduced to the sys-

tems. Partial water exchanges were made with this filtered

seawater, exchanging approximately 400 L per system every

2 weeks. Additionally, a food mixture of rotifers, Artemia,

and microalgae for filter feeders was added to each system

at a concentration of 3 mL feed per 300 L of seawater twice

weekly (Gamma Nutraplus Reef Feed; TMC). On feeding

days, the food mixture was injected near the growing indi-

viduals and protein skimmers were turned off for a 24-h

period to provide adequate time for ad lib. feeding. These

laboratory-based feeding conditions were chosen to best

match the food composition and availability found in the

natural Posidonia habitats in both pH sites (Ricevuto et al.

2014), preventing any growth restrictions due to diet.

Deionized water was added daily to keep the salinity stable

around 38 � 1.

During the laboratory grow-out period, the seawater pH,

temperature, and salinity were measured daily in each lar-

val catchment container and holding tray with an inte-

grated pH meter (SG2; Mettler-Toledo) and refractometer

(V2; TMC) (n = 6). The pH meter was calibrated daily

with pH buffer standards (4.01, 7.0, 9.21; Mettler-Toledo).

The pH in the low and ambient conditions averaged

7.79 � 0.10 and 8.22 � 0.07, with temperatures of

22.38 � 1.08 and 22.06 � 0.96°C, respectively, throughout
the 7-month grow-out period (Table 1). Seawater samples

(250 mL) were taken monthly from the same holding tray

locations for total alkalinity analysis (n = 3). Samples were

fixed with HgCl2 (0.02%), stored in borosilicate flasks

(250 mL), and maintained in dark, dry conditions until

total alkalinity (AT) was determined using Gran titration

method (Dickson et al. 2007). Carbonate system parame-

ters were calculated from AT, pH, temperature, and salinity

using the package SeaCarb v.2.4.8 in software R (Lavigne

and Gattuso 2013; Table 1).

Reciprocal transplant experiment setup

In preparation for the field transplant, slides with post-

metamorphic individuals from the F2 generation between

age 4 and 20 days from both low-pH and ambient demes

were collected from the laboratory grow-out systems and

photographed with a digital camera (Nikon Sight DS-U1;

Nikon, Milan, Italy) mounted on a light microscope

(AZ100; Nikon). Photographs were analyzed with ImageJ

software (Rasband WS, US National Institutes of Health,

Bethesda, MD, USA) to obtain tube surface area (mm2;

Abr�amoff et al. 2004).

F1 individuals were removed from these slides, as well as

any individuals on the back of the slides. This ensured that

there was only one slide face with F2 individuals. Each slide

had between 1 and 14 individuals. As it was not possible to

control how may larvae settled on the slides, we accounted

for the resulting variability by placing slides with both low

and high numbers of settlers in traps in each treatment.

Furthermore, we attempted to balance the number of indi-

viduals per treatment by equally dividing the slides between

treatment and field stakes. Details of replication levels are

given in Table 2. The slides were then inserted into settle-

ment traps that consisted of three faces folded together as a

triangular prism with 0.45 lm mesh caps secured on both

ends. This mesh size was primarily used to attain F3 data

by retaining any trochophore larvae within the trap, as the

larvae are approximately 50 lm in diameter (Lucey, pers.

obs.). The mesh served three additional purposes: (i) pre-

venting any tube loss due to detachment inside the trap,

(ii) decreasing the predatory risk from larger crustaceans or

fish, and (iii) restricting other polychaete larvae from set-

ting inside traps. Laboratory flow-through tests using col-

ored dye were performed to determine whether water

circulation through the traps differed depending on the

presence of mesh caps (i.e. with or without mesh caps). No

differences were observed so we assumed that food

(A) (B)

Figure 4 (A) Larval catchment containers lined with glass slides (indi-

cated by black arrow) and (B) field-collected adult individuals on Posido-

nia leaf sections (grandparents).
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availability and water parameters inside the traps would be

comparable to the field measurements. This glass structure

was then was inserted into a PVC tube and secured with

thin plastic zip-ties (Fig. 5).

These field traps were transported to the Benthic Ecology

Center of Ischia on April 26, 2015. During the 8h

transport, the individuals were maintained in separate

containers with filtered seawater (volume = 1.3 L;

temperature = 22 � 3°C; pH: ambient = 8.15 � 1,

low = 7.7 � 1; salinity = 36; density: 8 traps per con-

tainer). All containers were kept in styrofoam coolers

packed with ice to maintain a consistent water temperature

(22 � 3°C). Upon arrival, traps were put in flowing ambi-

ent seawater for one night. Before deployment, mesh caps

were visually inspected for detached tubes. Then, three to

four traps were attached to rope between 5 and 10 cm long

and secured to the top a 40-cm-long iron stakes and trans-

ferred by boat in coolers with seawater to the field sites, and

brought to the seafloor via SCUBA diving. Stakes were

pushed into the sea grass mat and were vertically positioned

on the seafloor in the Posidonia meadow at the origin sites

of both populations. Attached traps drifted within the sea

grass meadow. Ten stakes were prepared for the ambient

and low-pH deme traps, with 10 traps for each of four treat-

ments: (i) Amb-Amb, (ii) Low-Low, (iii) Amb-Low, and

(iv) Low-Amb, with ‘Amb’ as ambient, control pH condi-

tions (8.1), and ‘Low’ as Low pH (7.7). This experimental

time frame allowed the F2 individuals to grow into adult-

hood, and any resulting offspring to settle on the three glass

slide surfaces of the trap. The stakes are considered repli-

cates of each treatment nested inside the traps.

Reciprocal transplant experiment collection and

characterization of fitness metrics

The stakes with the traps were collected from the field via

SCUBA after the 66 days of in situ exposure (on July 2).

The traps were immediately put into a magnesium chloride

solution (75 g/L seawater) to relax the specimens for

20 min, after which they were transferred to 4% neutral-

ized formalin for 24 h. Traps were then immersed in fresh-

water to rinse formalin out, and immediately transferred

into 70% EtOH for long-term preservation. This was done

to prevent formalin, although neutralized, from possibly

corroding the calcium carbonate tubes of the worms.

The traps were disassembled, and the contents were

examined to find and identify larvae or detached tubes.

Recorded positions of individuals on the slides at the start

of the experiment were compared to those at the end of the

experiment to identify original F2 individuals. Survival at

time of collection was defined by determining the presence

of worm bodies within the F2 tubes, seen through the

underside of the slides: The presence of worm body indi-

cated that the individual was alive throughout the

Table 1. Seawater physico-chemistry parameters (mean + SD) mea-

sured (in bold) or calculated (plain text, determined using the SeaCarb

program*) during the laboratory grow-out phase and reciprocal trans-

plant experiment in each pH habitat.

Ambient pH Low pH

Laboratory: acclimation and grow-out phase

pHd 8.22 � 0.07 7.79 � 0.10

Temperature

(°C)d
22.06 � 0.96 22.38 � 1.08

Salinityd 38.70 � 0.99 38.57 � 0.92

TA (lmol/kg)m 2469.78 � 110.15 2434.51 � 156.66

[CO2] (lmol/kg) 732.92 � 142.69 2545.18 � 590.09

pCO2 (ppm) 244.05 � 43.54 852.65 � 197.83

[HCO�
3 ] (lmol/kg) 1704.45 � 107.19 2097.39 � 173.84

[CO2�
3 ] (lmol/kg) 307.99 � 36.98 135.79 � 17.88

DIC (mol/kg) 0.002 � 1.02 9 10�4 0.002 � 1.72 9 10�4

Ω calcite 4.70 � 0.54 2.07 � 0.27

Ω aragonite 7.16 � 0.82 3.16 � 0.40

Field: reciprocal transplant experiment†

pHh 8.05 � 0.05 7.36 � 0.35

Temperature

(°C)h
24.01 � 0.51 24.01 � 0.51

Salinitym 37.41 � 1.34 37.41 � 1.34

TA (lmol/kg)* 2401.52 � 91.70 2283.72 � 222.54

[CO2] (lmol/kg) 1183.30 � 183.66 3132.11 � 1484.10‡

pCO2 (ppm) 402.82 � 61.74 5267.93 � 7332.39

[HCO�
3 ] (lmol/kg) 1848.59 � 106.07 2101.41 � 272.14

[CO2�
3 ] (lmol/kg) 222.76 � 22.09 73.02 � 55.99

DIC (mol/kg) 0.002 � 9.98 9 10�5 0.002 � 3.59 9 10�4

Ω calcite 3.44 � 0.30 1.13 � 0.87

Ω aragonite 5.24 � 0.46 1.73 � 1.33

Sampling frequency is denoted superscripts, where ‘h’: hourly, ‘d’:

daily, and ‘m’: monthly.

*Lavigne and Gattuso (2013).

†Low pH and temperature field site monitoring spanned from June 17

to July 2; ambient pH site data taken from Donnarumma et al. (2014)

during similar time periods. Field-based TA measurements also include

data from collection period and time series data from Ricevuto et al.

(2014).

‡Outlier removed.

Table 2. Quantity of total individuals in each reciprocal transplant treatment and the number of corresponding traps and stakes per treatment.

Treatments Low pH ? low pH Low pH ? ambient Ambient ? ambient Ambient ? low pH

Individuals (#) 25 12 16 33

Traps per treatment (#) 7 6 6 10

Stakes per treatment (#) 5 3 3 5
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experiment. Photographs of ‘live’ individual tubes were

taken and tube surface area measured using ImageJ soft-

ware described above. Tube growth rates were calculated as

the ratio between final tube surface area over initial tube

surface area (mm2), which also accounted for tube dissolu-

tion. Mortality was recorded for any empty tubes or

detached tubes found in the mesh without bodies.

To determine the developmental stage of the individuals,

tubes were carefully broken open and worm bodies

extracted. Individuals were categorized as juveniles, or

mature adults with or without embryos. For mature adults

with embryos, the operculum was dissected and embryos

counted. Reproductive output was measured as the number

of additional tubes found inside the trap on any of the three

slides plus any embryos found in the F2 operculum brood

chamber. When more than one mature F2 adult was present

in a trap with F3 recruits, the number of F3 individuals was

divided by the number of surviving mature F2 adults in the

trap. When more than one F2 individuals was found dead

in a trap with living F3 individuals, offspring were assumed

to originate from only one F2 parent. F3 growth was

defined as the average tube area of all F3 tubes from one

adult, determined by photographing new F3 tubes with

ImageJ software as described above. F3 individuals with full

spirals were dissected to determine developmental stage.

Reciprocal transplant experiment seawater physico-

chemistry

During the field transplant experiment, hourly measure-

ments of pH and temperature at the low-pH site were

recorded with the pH meter (Honeywell Seafet pH sensor;

Martz et al. 2010), which was deployed next to the experi-

mental transplant from June 17, 2015, to July 2, 2015

(Table 1, Fig. 6). pH values for the ambient site were taken

from past datasets (Table 1). Discreet field measurements of

pH, salinity, temperature, and total alkalinity were taken at

the field sites at the time of specimen collection and at the

experimental end with an integrated pH meter (SG2; Met-

tler-Toledo) and refractometer (V2; TMC) (n = 3). For total

alkalinity, seawater samples (250 mL) were collected from

each site (n = 3), and sampled with the same methodology

used for the laboratory seawater chemistry described above.

Data analysis

To test the relative importance of ‘deme’ (i.e. potentially

different genotypes), ‘habitat’ (i.e. different pH conditions)

and their interaction on: (i) F2 survival, (ii) maturation,

(iii) reproductive output, as the number of F3 recruits and

embryos per F2 parent, (iv) total population growth, as the

total number of F2 survivors, embryos and F3 recruits; and

(v) F2 tube growth rate, we constructed generalized linear

models (GLMs), setting ‘deme’ and ‘habitat’ as fixed fac-

tors. Initial ‘tube area’ was set as the covariate, to account

for differences in starting size and/or age. Initially, models

included ‘trap’ set as a random factor nested in ‘stake,’

which was also set as a random factor nested in ‘habitat.’

As the factors ‘stake’ and ‘trap’ did not exert a significant

effect on the study variables, they were removed from sub-

sequent models (Crawley 2012). Interactions and the

covariate were retained in all cases. For the traits (i) sur-

vival and (ii) development to maturation, we used GLMs

with binomial errors. Preliminary data analysis (Zuur et al.

2010) indicated over-dispersion for the traits (iii) repro-

ductive output and (iv) total population growth, which we

corrected using a Poisson GLM, and also corrected the

standard errors using a quasi-GLM model.

Two replicate stakes placed in the ambient habitat went

missing, likely due to accidental boat anchor removal, leav-

ing the experimental design with three stakes in the ambi-

ent field habitat, and five in the low-pH field habitat.

Regardless, the experimental design included four treat-

ments with a minimum of three stake replicates, and

between 12 and 33 individual worm replicates per treat-

ment (see Table 2), and the models employed accounted

for this heteroscedasticity (Sokal and Rohlf 1995). Addi-

tionally, in each final model, nonsignificant terms are

retained to show all interactive effects. To further validate

the final models, nonsignificant terms were sequentially

dropped until the minimal adequate model was reached

(Crawley 2012), and the fit of these simplified models was

assessed by plotting residuals against fitted values to check

for mean residual deviation of zero and constant variance.

(A)

(B)

Figure 5 (A) Settlement traps holding laboratory-grown F2 individuals

on glass slides (drawing by J. Paulus) and (B) PVC tubes with animals

secured inside the glass triangular prism, capped with mesh and

secured to the top of stakes vertically positioned on the seafloor in the

Posidonia meadow at the sites of both population’s origin.
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Differences between tube areas from F3 recruits in the

ambient habitats from both demes were analyzed using a

one-way ANOVA. No interaction could be tested with F3

tube area, as there was an insufficient quantity of individu-

als from the low-pH habitat.

All statistical analyses were performed using the statisti-

cal software R v.3.1.3 (R Core Team 2015).

Results

Pre-experiment grow-out recruitment and survival

The first F1 recruit from the ambient deme was observed

5 days after relocation to the laboratory, whereas the first

low-pH deme F1 recruit was observed 7 days after reloca-

tion (Table 3). Field-collected parents continuously repro-

duced during the first month, which resulted in 599 F1

recruits from the ambient and 1076 F1 recruits from the

low-pH demes. Greatest mortality levels were observed

within the first 3 months of recruitment with 76% mortal-

ity in the low-pH and 55% in the ambient deme. In the fol-

lowing 4 months, mortality was observed to decrease to

45% and 24%, in the low-pH and ambient pH demes,

respectively. The low-pH deme’s mortality was comparably

higher throughout the grow-out period; however, mortality

levels for both ambient and low demes were equal at the 4-

month mark (Table 3).

Approximately 35% of the initial F1 recruits from the

ambient deme survived and became reproductively mature

adults. In the low-pH deme, only 13% of the initial F1

recruits survived to maturity, although the actual quantities

of mature individuals were not as dissimilar, with respect

to initial recruitment, with quantities of 143 mature indi-

viduals in the low pH and 204 in the ambient pH. Addi-

tionally, the time for the first F1 individual to reach

maturation was 5 months in ambient deme versus

6 months in low-pH deme (Table 3). At the time of field

transplant (April 27, 2015), F2-deme sizes reflected the dis-

parity in F1 developmental timing, as the ambient F1 deme

had an additional 30 days to produce F2 offspring, com-

pared with the low-pH deme, and was 40.9% larger in

overall size (164 individuals vs 67).

Transplant experiment

We observed comparable, significant reductions in the sur-

vival, development to maturity and total population

growth in both Simplaria sp. demes transplanted to the

low-pH habitat, and found no significant effect of ‘deme’

or the interaction between ‘deme’ and ‘habitat’ (Figs 7 and

8, Table 4). There was also a reduction in the number of F3

embryos and recruits produced (reproductive output) fol-

lowing exposure to the low-pH habitat in both demes, yet

this decline was only marginally significant (Fig. 8,

Table 4). The low-pH deme was, however, able to repro-

duce more than once during the field period, whereas the

ambient pH deme did not. For both demes, tube growth

rates were twice as high when they were exposed to the

6/17/15 6/20/15 6/23/15 6/26/15 6/29/15 7/2/15

6.
5

7.
0

7.
5

pH trends at the low-pH site

Date

pH

Figure 6 Boxplots representing the daily median, spread, and skewness

of pH measurements throughout each day during the reciprocal trans-

plant experiment at the low-pH transplant site, with the dashed hori-

zontal line depicting the expected average pH (7.7). Measurements

taken hourly by a Honeywell Seafet pH sensor stationed approximately

2–4 m from the transplants on the seafloor.

Table 3. Laboratory deme population sizes and maturation times for

both F1 and F2 during the laboratory grow-out phase.

Low-pH deme Ambient pH deme

Initial parent population

size: Oct. 4, 2014

500 500

F1 Population size at

maturation (date of first recruit)

143 (Oct. 10) 204 (Oct. 8)

F2 Population size at

transplant (date of first recruit)

67 (April 7) 164 (March 6)
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Figure 7 Reaction norm of percent survivorship in second-generation

(F2) Simplaria sp. individuals from both the low-pH deme (red solid line)

and ambient pH deme (blue dotted line), transplanted into both pH

habitats (8.1 and 7.7). Points are mean � SE.
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low-pH habitat – a difference that was significant (Fig. 8,

Table 4). There was no significant difference between

demes, however, and reaction norms were the same for all

traits (Figs 4 and 8). In each of the traits described above

except for survival, the initial tube area was a significant

covariate, with low-pH demes having smaller tubes, com-

pared with ambient pH demes. This was likely negative for

every trait except tube growth rates.

Additionally, the F3 recruits grew to similar sizes in the

ambient habitat regardless of parent deme identity, with F3

recruits from low-pH demes having a mean tube surface

area of 0.33 � 0.06 mm2, and recruits from ambient pH

demes having a mean tube surface area of

0.28 � 0.06 mm2 (F1,7 = 0.381, P = 0.539). In both low-

pH treatments, only one F3 tube was found, indicating that

low pH severely inhibits tube production regardless of

deme identity. This F3 tube was from the low-pH deme.

Discussion

Our reciprocal transplant experiment provides no evidence

that local adaptation in the Simplaria sp. population living

under low-pH conditions has occurred. Furthermore, we

show that worms’ phenotypic plastic responses could not

compensate for the negative effects of exposure to low pH

by improving fitness. This suggests that multigenerational

exposure to low-pH conditions within the CO2 vents has

not imposed selection for Simplaria sp. genotypes that are

tolerant to extreme pH variability and low pH (~7.36).
Moreover, the conditions at the low-pH vent site seem
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Figure 8 Reaction norms for fitness-related traits assessed in second-generation (F2) Simplaria sp. individuals from both the low-pH deme (red solid

line) and ambient pH deme (blue dotted line), transplanted into both pH habitats (8.1 and 7.7): (A) reproductive output from all individuals, (B) per-

cent of individuals developing to maturity in the field, and (C) total population size, as living individuals plus their embryos and settled juveniles of

individuals, and (D) percent increase in tube growth rates. Points are mean � SE.
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responsible for reducing the mean fitness of individuals

originating from both low and ambient pH habitats. These

results stand in contrast to previous research on poly-

chaetes and other marine calcifiers showing extensive,

rapidly evolving adaptive divergence when exposed to pol-

lution, elevated temperature, changes in pCO2, and even

multistressors (Grassle and Grassle 1977; McMullin et al.

2000; Lohbeck et al. 2012; Pansch et al. 2014; Schluter

et al. 2014; Parker et al. 2015; Rodr�ıguez-Romero et al.

2015; Thor and Dupont 2015). Below we discuss the possi-

ble constraints to local adaptation in this low-pH habitat

and emphasize the complexities involved in predicting evo-

lutionary patterns, as well as the need for further work with

more replication to further validate these findings (Bell and

Collins 2008). We then consider how the Simplaria sp.

response might reflect the inherent inability of certain spe-

cies to adapt to the stressful OA conditions expected to

occur (Dupont and P€ortner 2013).

Local adaptation constraints

Many studies have indicated that phenotypic plasticity

might enhance the process of adaptation by moving the

phenotype closer to the fitness optimum for genetic selec-

tion, for example, adaptive plasticity (Pigliucci 2005; Gha-

lambor et al. 2007). Here, the responses do not seem to

strongly support previous findings where plasticity was

considered to be a precursor to adaptation (Meril€a and

Sheldon 2000; R�eale et al. 2003; Rodr�ıguez-Romero et al.

2015). Neither of the Simplaria sp. demes investigated here

have different plastic responses in any of the fitness traits,

indicating an inability to change fitness outcomes through

plasticity. However, the general depressed fitness in low pH

of both demes compared with those in ambient pH habitats

indicates a possible nonadaptive plastic response at the

metapopulation scale (Huey and Berrigan 1996; Calosi

et al. 2013; Turner et al. 2015). Nonadaptive plasticity is

where phenotypic changes do not directly contribute to

increased fitness under the changed conditions, and it has

primarily been associated with limiting population persis-

tence (Chevin et al. 2010). However, current work has

recently revived the idea that nonadaptive plasticity may

also facilitate adaptive genetic changes by increasing the

strength of natural selection (Ghalambor et al. 2015; Merila

2015).

In contrast to the uncertain role of plasticity, bottleneck

and genetic drift effects are mechanisms thought to hinder

adaptation and speciation (Coyne and Orr 2004). The

brooding nature of the Simplaria sp. could naturally result

in genetic drift effects compared with species with greater

dispersal potential. However, genetic drift may eventually

result in adaptation (Gavrilets and Hastings 1996), as

demonstrated by the numerous brooding species found

with local adaptations (Sanford and Kelly 2011). While no

adaptation was evident at the time of this study, expanded

distribution surveys of Simplaria sp. and experimental

replication at alternate vent sites, as well as along varying

temporal periods in the same site, would help to determine

whether genetic drift is affecting this population, and if

improved fitness through genetic drift is possible.

Increased magnitude and frequency of the selective dri-

ver through time, in this case pH, is likely the most perti-

nent explanation for the lack of observable genotype

environment interactions, and the significant effect of low-

pH ‘habitat’ on reduced fitness (Hoffmann and Sgr�o 2011).

The mean pH in the low-pH habitat during the transplant

was on average 0.43 pH units lower than the low pH rear-

ing conditions in the laboratory (in situ pH range: 6.14–
7.90; mean � SD: 7.36 � 0.35, pCO2 > 5000 latm,

Table 1). Increased CO2 venting was likely the general

cause for the observed low pH, as no pH measurements

during the last week of the experiment were at or above the

Table 4. Results of GLMs investigating the effect of deme (geno-

type = G) and habitat (environment = E) on survival, maturation, repro-

ductive output, total population growth, and tube growth rate in the

calcifying spirorbid Simplaria sp. (with initial tube area as a covariate).

Trait Estimate SE Z value P value

Survival

Intercept �1.495 0.797 �1.876 0.061

Deme (G) 0.647 0.804 0.806 0.421

Habitat (E) �2.083 0.822 �2.534 0.011

Interaction (G 9 E) �0.383 1.245 �0.308 0.758

Initial tube area (cov) 10.826 5.669 1.910 0.056

Maturation

Intercept �2.704 1.002 �2.699 0.007

Deme (G) 0.702 0.889 0.790 0.430

Habitat (E) �2.111 1.001 �2.109 0.035

Interaction (G 9 E) �0.400 1.557 �0.257 0.797

Initial tube area (cov) 16.322 7.567 2.157 0.031

Reproductive output

Intercept �0.341 0.666 �0.513 0.610

Deme (G) 0.856 0.639 1.340 0.184

Habitat (E) �4.233 2.286 �1.852 0.068

Interaction (G 9 E) 2.030 2.450 0.828 0.410

Initial tube area (cov) 6.867 2.421 2.836 0.006

Population growth

Intercept �0.052 0.540 �0.096 0.924

Deme (G) 0.813 0.524 1.553 0.124

Habitat (E) �2.823 0.986 �2.864 0.005

Interaction (G 9 E) 0.530 1.246 0.426 0.671

Initial tube area (cov) 6.378 2.022 3.154 0.002

F2 tube growth rate

Intercept 2.415 0.184 13.110 <0.005

Deme (G) 0.077 0.205 0.376 0.707

Habitat (E) 0.676 0.195 3.462 <0.005

Interaction (G 9 E) �0.270 0.308 �0.876 0.381

Initial tube area (cov) �2.996 0.988 �3.033 0.002

Bold values indicate a statistically significant effect (P < 0.05).
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expected pH (Table 1, Fig. 6). Additionally, hourly mea-

surements in the field showed consistent patterns of severe

pH fluctuation, where pH decreased each night before

increasing the next day (Fig. 6, outliers), the latter likely

being the result of sea grass and algae diurnal photosyn-

thetic activity. The field site’s pH intensity and frequency

(i.e. variability) was not replicated in the laboratory, nor

was it expected during the experiment. During the past

6 years of pH monitoring at the low-pH site, the pH was

highly variable (Ricevuto et al. 2014). However, pH only

reached levels lower than those recorded here in one study

(Calosi et al. 2013; pH 7.19), and only for one documented

week. While grandparents of the low-pH originating deme

were subjected to previous natural pH fluctuations, the

levels of the pH during the experiment may have surpassed

a pH threshold (Scheffer et al. 2001; Dupont et al. 2009;

Christen et al. 2013), resulting in the overall lowered fitness

of both Simplaria sp. populations in the low-pH site.

The sea grass may also be creating a microenvironment

that adds to the magnitude of the low-pH fluctuations,

potentially causing effects to the spirorbids settled on it

(Garrard et al. 2014; Wahl et al. 2016). High levels of pho-

tosynthesis are thought to provide a refuge from low-pH

conditions during the day; sea grass can create a localized

change in pH up to 1 unit higher according to Hendriks

et al. (2014). An example of this effect was observed in the

spirorbid Spirorbis spirorbis settled on the algae Fucus serra-

tus (Saderne and Wahl 2013). In more detail, when the

spirorbids were exposed to high pCO2, a reduction in the

growth rate was observed, whereas the calcification

response measured during irradiation hours was 40%

higher with respect to that recorded during dark hours.

Spirorbid presence in low-pH vent site could therefore be

attributable to a pH buffering effect from photosynthetic

and respiratory processes of the host sea grass on the car-

bonate system, if there is a positive net effect throughout

the diurnal cycle (Saderne and Wahl 2013). This natural

pH variability has not been investigated in the Posidonia

meadows at a microscale <1 mm, but the dial fluctuations

measured in the low-pH site support the hypothesis that

the spirorbids are naturally subjected to high variability

due to photosynthetic processes. This type of variability is

thought to drive selection to favor high phenotypic plastic-

ity and/or select for more robust genotypes, as seen in Pan-

sch et al. (2014) where barnacle tolerance to naturally low

pH was higher when populations originated from highly

variable pH environments, compared with nonfluctuating

environments. It is therefore possible that the pH variabil-

ity in the low-pH site may similarly promote plasticity or

robust genotypes during ‘normal’ venting periods, and that

high venting periods may degrade any previously devel-

oped tolerances (Pansch et al. 2014). The implementation

of detailed monitoring of abiotic parameters to future

natural evolution experiments will help to resolve the

uncertainty regarding how varying scales of temporal pH

fluctuations common to coastal systems will influence plas-

ticity and adaptation, an important and overlooked com-

ponent of constraining evolutionary predictions in the

context of global change (Wahl et al. 2016).

Natural pathogens may also have influenced our results

(Kawecki and Ebert 2004). Predation and pathogens in

populations subjected to environmental change tend to act

continuously on the average phenotype, reducing the mean

fitness and impeding diversification by reducing popula-

tion sizes (Van Valen 1973; Morgan and Buckling 2004;

Meyer and Kassen 2007; Bell and Collins 2008). In this

experiment, we controlled for main predators in the field,

such as fish and crustaceans through trap protection and

the use of mesh caps on these traps. However, pathogens

could not be accounted for as easily. In particular, proto-

zoans appeared to be relatively abundant in low-pH condi-

tions, but not in ambient pH conditions in the laboratory

culture. There is a substantial research body documenting

the presence of protozoa on and within spirorbid tubes (re-

viewed in Kupriyanova et al. 2001), however whether the

nature of this relationship causes harm remains inconclu-

sive (Knight-Jones et al. 1975). Generally, protozoa are

associated with consuming bacteria (Barker and Brown

1994); therefore, the increase in protozoa may indicate a

change in bacterial communities with low pH (Lidbury

et al. 2012). Accounts of bacterial/ microbial communities

in low-pH environments from other venting sites have

demonstrated decreased low-pH tolerance of certain spe-

cies with changed microbial communities (Morrow et al.

2015). This highlights the importance of indirect commu-

nity and host interactions in response to low pH, and the

need for experiments specifically testing hypotheses regard-

ing multispecies adaptive interactions (see Morrow et al.

2015).

One of the main difficulties of natural evolution studies

using small CO2 vents is the unattainability of popula-

tion-level replication for many species among different

vents. This is partly because the populations living in

most CO2 vent systems are not easily comparable, that is,

different ‘tolerant’ populations and/or species (see Kroe-

ker et al. 2011; Fabricius et al. 2014, and differences

between the Castello and Papua New Guinea CO2 vent

dominating species). Many of these systems are also in

different regions with different conditions and stressors,

for example, Italy, Mexico, and Japan (Boatta et al. 2013;

Crook et al. 2016). The small spatial scale of these CO2

vent sites also limits the possibility to replicate popula-

tions of adequate sizes in order to acquire F2 individuals,

as in the Castello CO2 vents where population replication

was not possible due to the limited quantity of individu-

als. Due to these caveats, the variability of the results of
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nonreplicated studies must be cautiously assessed. In our

results, high variance in the standard error around the

means for each population in most assessed traits

occurred (Figs 7 and 8). Despite this, the effect of ‘pH

habitat’ was consistently significant among all traits and

the interactive effects in all traits were nowhere near sig-

nificant, suggesting that our findings are reliable. The

variability, therefore, likely reflects either the relatively

high plasticity of the studied populations, or variability in

the small-scale local conditions that occurred during

experimental field exposure. Replicated studies through

time and the use of multiple (separated) reference sites

might help to overcome these within-site replication limi-

tations, and also help to determine whether changes in

interpopulation variability would result in significant pop-

ulation (deme) effects.

Regardless of the considerations discussed above, our

results may be an indication of the inability of the Simplar-

ia sp. metapopulation within this system to adapt to highly

variable low-pH conditions. Increased mortality in this spe-

cies was coupled with decreased reproductive effort and

increased growth rates as a result of low-pH exposure.

Increased mortality is not necessarily detrimental to a pop-

ulation if it leads to selection for adaptive changes in life

history traits, such as increased reproductive output (see

Stearns 1983; Reznick et al. 1990). However, the high mor-

tality in all demes in the low-pH in situ habitat are associ-

ated with lower reproductive capacity, leading to lower

mean fitness and therefore a reduced opportunity for adap-

tation (Bell and Collins 2008).

In contrast, increased reproduction and increased mor-

tality in the low-pH deme was indicative of a trade-off dur-

ing the laboratory grow-out period, where mortality and

recruitment in the low pH was twice that of the ambient

pH after F1-generation recruitment. Furthermore, the only

individuals able to produce two broods during the field

experiment were from the low-pH deme, despite suffering

from high mortality levels in low pH. These high mortality

levels alongside increased recruitment levels within the low

pH rearing phase align well with the idea that the two pop-

ulations tested here have two different morphologies (phe-

notypes). This appears to be a trade-off that could lead to

an adaptive phenotypic response within the population if

allowed more time, but also resembles a high risk (Stearns

1989). An alternative explanation for the grow-out period

mortality results may be attributed to natural mortality

variability. Comparisons of postsettlement mortality levels

ranged from 79.5% to over 90% in populations of similar

species of brooding spirorbids (Kupriyanova et al. 2001),

indicating that the variance between the mortality levels

Simplaria populations may be within normal ranges. Fur-

ther work is necessary to establish this species’ natural mor-

tality levels by comparing the responses of other nearby

Simplaria sp. populations. Replicated transplant experi-

ments through time could also help to determine whether

increased reproduction is a significant adaptive trait or

trade-off (Kawecki and Ebert 2004).

Interestingly, exposure to low-pH conditions prompted

increased tube growth rates in all surviving individuals,

which was coupled with decreased maturation and lower

reproductive output. Tube growth rate was the only trait

that increased in low pH, and notably the only trait that

was not directly representative of Darwinian fitness. It is

thought that tube size is generally correlated with body size,

maturation, and reproductive output in spirorbids

(Kupriyanova et al. 2001), but our findings indicate that

there may be a nonadaptive trade-off caused by low-pH

exposure hampering this relationship. For example, the

energetically costly activity of mineralization could be

detracting resources/energy away from reproductive efforts

under low pH (Knoll 2003). In a physiological context,

these findings support those of Lombardi et al. (2011a,b),

where bryozoans transplanted into low-pH vent sites

switched resource allocation away from defense to favoring

rapid growth. Wood et al. (2008) also showed increases in

calcification rates and metabolism in a brittlestar, but at

the cost of muscle wastage, which was thought to be unsus-

tainable. Furthermore, similar patterns were also found in

four other marine calcifiers, where exposure to low pH

implied a shift in the energy budget expenditure away from

survival-related processes and into calcification (Findlay

et al. 2011). The increased tube growth rates in Simplaria

sp. exposed to low pH seem to indicate a reallocation of

energy away from long-term survival toward calcification

investment, which may be compounding the species risk to

OA. This finding also highlights the need to measure traits

linked to Darwinian fitness, as only measuring size or

growth rates can misrepresent actual evolutionary

responses to OA.

Concluding remarks and applied relevance

The reciprocal transplant experiment we carried out pro-

vided evidence against the idea that either local adaptation

or phenotypic plasticity are evolutionary strategies support-

ing increased fitness levels in populations of Simplaria sp.

from the low-pH habitat during an abnormally intense

venting period at the Castello CO2 vents. These results

indicate that actual adaptive constraints to low pH as a

selective driver can exist for this and other calcifying species

and/or populations, which may be particularly relevant

when the intensity and duration of pH exposure surpasses

historically known variation for such populations (Parker

et al. 2010; Kelly et al. 2013). This idea aligns well with the

general notion that near-future low-pH projections will act

as a severe threat particularly to marine calcifiers in highly
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variable regions such as coastal areas, lowering their ability

to persist through the next century (Christen et al. 2013;

Dupont and P€ortner 2013).

The temporal scale of OA may also compound these

concerns. OA may exert a selective force on current marine

populations that is too strong for adaptation within the

given time frame (Reznick and Ghalambor 2001; Carroll

et al. 2007), despite evidence that certain marine calcifying

species are able to rapidly adapt to climate changes (Sch-

luter et al. 2014). Ocean acidification is occurring at a rate

ten times faster than any time in the last 55 million years

(Hartmann et al. 2013). The pH range in some areas of the

Castello CO2 vent site is similar to that predicted in global

oceans by 2100 if high CO2 emissions continue (RCP 8.5,

50–100 years), but the vents have likely been active for

approximately 2000 years (Lombardi et al. 2011a). This

time lag may have provided local species and populations

with a considerably longer time period to colonize and

adapt than future marine populations will have. The lack of

adaptive evolutionary responses in the benthic Simplaria sp.

within the tested populations at this site, however, alludes

to the possibility that the rate and magnitude of future OA

conditions may not bode well for the maintenance of high

levels of biodiversity in all marine species through evolu-

tionary responses. Subsequently, we may expect an increase

in extinction rates of certain calcifying species under future

OA conditions, as already documented through the geologi-

cal record (Benton and Twitchett 2003; Veron 2008). This

would likely have important consequences for marine

ecosystem functioning (Solan et al. 2004).

This study demonstrates the functionality of using natu-

ral pH gradients with F2 generation recruits in an in situ

reciprocal transplant experiment to test for the presence of

local adaptation. This experimental approach is powerful

in that it relies on the natural evolutionary pathways that

populations have previously experienced – pathways that

are impossible to exactly replicate in breeding experiments

or experimental evolution (Bell and Collins 2008). Further-

more, this approach is considered to be the best way to

assess whether changes are adaptive by separating environ-

mental effects from genetic effects (Nuismer and Gandon

2008; Meril€a and Hendry 2014), and as such can directly

help us determine the importance of plasticity as a mecha-

nism enabling adaptive evolution (Munday et al. 2013;

Sunday et al. 2013). Predictably, the diversity of pheno-

typic plasticity responses (i.e. nonadaptive or adaptive plas-

ticity) and the time scales in which they are presented [i.e.

intergenerational or transgenerational plasticity (TGP)]

make it difficult to determine the role plasticity will play in

evolutionary change (West-Eberhard 2003; Ghalambor

et al. 2007; Chakravarti et al. 2016; Rodr�ıguez-Romero

et al. 2015). Expanding the basic reciprocal transplant

approach to include common garden experiments

performed under both low and ambient pH ‘common’

conditions, would help to broaden our understanding of

plasticity as a mechanism of rapid adaptation by relating

adaptation to TGP (Parker et al. 2015; Rodr�ıguez-Romero

et al. 2015; Thor and Dupont 2015; Chakravarti et al.

2016; Ross et al. 2016).

In this study, neither local adaptation nor plasticity were

found to improve the fitness of a calcifying tubeworm pop-

ulation from low-pH vents, yet our results illustrate how

realistic natural in situ plastic and adaptive responses can

be multifaceted. We suggest that the in situ reciprocal

transplant approach be used as a means to improve our

limited knowledge of contemporary evolution of marine

species under global change. The approach can also be used

as a tool to refine future research with aims that can pro-

duce coordinated evolutionary predictions within the con-

text of global change. Improving our understanding of how

and why natural populations succeed or fail to adapt to

OA, and global change drivers in general, will help guide

resource management and conservation efforts (Palumbi

2001; Ashley et al. 2003; Stockwell et al. 2003; van Oppen

et al. 2015).
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