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Abstract: Spontaneous edible plants have an old history of use in popular traditions all around
the world, and the rediscovery of these species could also be useful for the search of new drugs.
Chenopodium album L. (Amaranthaceae) and Sisymbrium officinale (L.) Scop. (Brassicaceae) are two
annual plants traditionally used both as food and herbal remedies against inflammatory disorders.
In this work, the potential anti-inflammatory and anti-arthritic activities of these plant species have
been investigated, together with their antioxidant potential. The phytochemical composition was
assessed as well by means of gas chromatography coupled to mass spectrometry (GC-MS) and
high performance thin layer chromatography (HPTLC). The antioxidant properties were assessed
using the DPPH and β-carotene bleaching test. The ability of extracts to protect against lipid
peroxidation was also examined in rat-liver microsomal membranes. All the samples showed a
preservation of antioxidant activity up to 60 min. A significant inhibitory activity on the production
of the pro-inflammatory mediator nitric oxide was induced in lipopolysaccharide (LPS)-stimulated
RAW 264.7 cells by the dichloromethane fraction of C. album extract, with an IC50 value equal to
81.7 ± 0.9 µg/mL. The same sample showed also a concentration-dependent anti-denaturation effect
on heat-treated bovine serum albumin (IC50 = 975.6 ± 5.5 µg/mL), even if the best in vitro anti-arthritic
activity was observed for the dichloromethane fraction of S. officinale extract, with an IC50 value of
680.9 ± 13.2 µg/mL.

Keywords: anti-arthritic; anti-denaturation property; antioxidant; bovine serum albumin; Chenopodium;
nitric oxide; Sisymbrium

1. Introduction

Chenopodium album L. (Amaranthaceae), commonly known as pigweed, is an annual herb growing
widely in open habitats such as roadsides and riverbanks [1]. This plant was used in folk medicine as
antihelmintic, laxative, as a blood purifier, and it was also used for the treatment of hepatic disorders,
intestinal ulcers, and burns [2]. Beside these traditional uses, this species is a known antirheumatic
remedy in the traditional medicine of Lebanon. The decoction of its aerial parts mixed with alcohol
was utilized against rheumatism and arthritis [3]. C. album is common in Italy, where it is also known
as fat hen, and traditionally consumed boiled or used in salads, soups, and stews [4].

Sisymbrium officinale (L.) Scop. (synonym Erysimum officinale L., Brassicaceae) is an annual plant
present in Europe, Asia, and northern Africa. It is commonly called hedge mustard, but is also
known as “singer’s plant”, because of its traditional use in vocal tract diseases: Flowers and leaves
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were used for preparing decoctions or tinctures for the treatment of sore throats, coughs, hoarseness,
laryngitis, and pharyngitis [5,6]. S. officinale is rich in sulfated compounds (particularly glucosinolates,
isothiocyanates and sulfated lactones), to which its beneficial properties have been related. However,
despite its traditional use, this plant has not yet been deeply investigated [7]. Moreover, shoots and
leaves of the wild plant have been traditionally used also as food, in salads [8,9].

Wild edible plants have always been important in the popular traditions of many Mediterranean
countries, and ethno-directed research is very useful in the discovery of new drug and food resources [10].
Ethnobotany is a discipline that focuses on the relationships between humans and plants, and it is
based on the use of methods from both social and natural sciences. Bioprospecting for new drugs of
plant origin, a more powerful tool than random assays for the finding of new active compounds, has
classically been based on ethnobotanical information [11,12].

The anti-rheumatic potential of C. album was already investigated by Arora and coworkers, who
tested the acetone extract of aerial parts on Complete Freund’s adjuvant induced rheumatoid arthritis
in rats. The authors reported that the extract was able to induce a significant reduction in rat paw
edema (80.13%) after 21 days of treatment at the dose of 200 mg/kg per os, and they also proved that
the antirheumatic activity was linked to the inhibition of NF kappa B (NFκB) protein [13].

Politi and colleagues tested the anti-inflammatory activity of S. officinale dichloromethane and
methanol extracts in the murine Croton oil-induced ear edema model, but just a modest effect was
observed at the highest concentrations [14].

Here, in our efforts to investigate the potential health benefits of wild edible plants from Southern
Italy [15–18], we wanted to deeply investigate C. album and S. officinale biological properties. Together
with the antioxidant activity, the potential anti-inflammatory and anti-arthritic activities of these plant
species have been investigated. Methanolic extracts and their fractions were tested for their ability to
inhibit the lipopolysaccharide (LPS)-induced production of nitric oxide (NO) in the murine macrophage
RAW 264.7 cell line, and their capacity to protect bovine serum albumin from heat denaturation. The
phytochemical profile has been elucidated as well by means of gas chromatography-mass spectrometry
(GC-MS) and high performance thin layer chromatography (HPTLC).

To the best of our knowledge, this is the first report concerning the in vitro anti-denaturation
effects on bovine serum albumin for these species.

2. Results and Discussion

2.1. Phytochemical Profile

The aerial parts of wild C. album and S. officinale from Southern Calabria (Italy) were extracted
with methanol through maceration. Obtained yields were 23.2% and 10.6% for the two raw extracts,
respectively (Table 1). A fraction of each crude extract was then successively extracted with solvents
with different polarity, n-hexane (yield 0.9% for both plant species, referred to dry plant material),
dichloromethane (1.6% and 2.2, for C. album and S. officinale, respectively), and ethyl acetate (0.3%).
Remaining aqueous fractions (20.4% and 7.2%) were investigated as well.

Table 1. Investigated plants: Extraction yields and total phenolic and flavonoid contents.

Botanical Name Family Voucher
Number Yield (%) TP 1 TF 2

Chenopodium album L. Amaranthaceae 26247 23.2 12.8 ± 1.6 0.77 ± 0.01
Sisymbrium officinale (L.) Scop. Brassicaceae 26236 10.6 8.1 ± 0.1 0.50 ± 0.01

1 Total phenolic content. 2 Total flavonoid content. Data are expressed as mean ± SE (n = 3). Results were expressed
as mg of chlorogenic acid or quercetin equivalent per g of dry plant material, respectively.

The phytochemical content of the apolar fractions was assessed by means of GC-MS. The n-hexane
samples were particularly rich in fatty acids, being palmitic acid the most abundant one (15.7% and
10.0% of total peak areas in total ion current (TIC) for C. album and S. officinale, respectively, Table 2).
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Table 2. Phytochemical profile of n-hexane fractions of Chenopodium album L. and Sisymbrium officinale
(L.) Scop.

Compound 1 Rt 2 RAP 3

C. album L. S. officinale (L.) Scop.

Fatty Acids

Caprylic acid 10.106 Tr 4 Tr
Pelargonic acid 12.00 - 0.1

Lauric acid 15.044 Tr 0.1
Myristic acid 16.799 0.7 0.3

4,8,12-Trimethyltridecanoic acid 16.930 - 0.1
Pentadecanoic acid 17.616 Tr 0.2
Tetradecanoic acid,

5,9,13-trimethyl- 17.708 Tr -

Palmitelaidic acid 18.096 Tr -
Palmitic acid 18.159 15.7 10.0

Oleic acid 18.531 Tr -
Margaric acid 18.902 0.3 -
Isooleic acid 19.456 0.8 -
Stearic acid 19.634 1.3 1.0

Arachidic acid 20.988 0.8 1.0
Linoleic acid 21.051 - 0.5
Behenic acid 22.274 0.9 0.8

Tricosylic acid 22.966 Tr 0.4
Lignoceric acid 23.731 - 0.6

Pentacosylic acid 24.696 - 0.3
Cerotic acid 25.829 - 0.9

Montanic acid 28.847 - tr

Terpenes

Dihydroactinidiolide 14.987 0.9 0.4
Neophytadiene 17.473 0.7 -

Phytosterols

β-Sitosterol 33.882 3.2 -
1 Compounds listed in order of elution from SE30 MS column. 2 Retention time (as min). 3 Relative area percentage
(peak area relative to total peak area in total ion current (TIC) %). 4 Tr: Traces percentages < 0.1%.

Stearic acid (1.3% and 1.0%) and arachidic acid (0.8% and 1.0%) were detected to a lesser extent. The
other fatty acids were only found at percentages < 1.0%. Two terpenes were also identified in C. album
n-hexane fraction: The diterpene neophytadiene (0.7%) and the monoterpene dihydroactinidiolide
(0.9%) also identified in S. officinale sample (0.4%). Moreover, the presence of β-sitosterol was also
recognized in C. album.

Table 3 reports the chemical composition of the two dichloromethane fractions. The
monoterpene lactone loliolide was the most abundant compound in C. album (1.7%), followed
by methylethylmaleimide (1.4%). This last compound was also identified in S. officinale, even if at a
lesser extent (0.3%). The phenylpropanoid coniferyl alcohol (1.2%) and the hydroxycinnamic acid
ferulic acid (0.7%) were instead the most abundant compounds in S. officinale.
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Table 3. Chemical composition of dichloromethane fractions of Chenopodium album L. and Sisymbrium
officinale (L.) Scop. methanolic extracts.

Compound 1 Rt 2 RAP 3

C. album L. S. officinale (L.) Scop.

Phenol 7.677 - Tr 4

Benzoic acid 10.758 1.0 -
Methylethylmaleimide 11.575 1.4 0.3
2,4-Di-tert-butylphenol 14.621 - Tr

Loliolide 17.073 1.7 -
Coniferyl alcohol 17.250 - 1.2

Ferulic acid 17.565 - 0.7
1 Compounds listed in order of elution from SE30 MS column. 2 Retention time (as min). 3 Relative area percentage
(peak area relative to total TIC peak area %). 4 Tr: Traces percentages < 0.1%.

Total phenolic and total flavonoid contents of C. album and S. officinale raw extracts were also
assessed. The amounts were expressed as chlorogenic acid and quercetin equivalents per g of dry
material, respectively. C. album showed the highest amounts, with 12.8 ± 1.6 mg/g of phenolic
compounds and 0.77 ± 0.01 mg/g of flavonoids, while values of 8.1 ± 0.1 and 0.50 ± 0.01 were observed
for S. officinale (Table 1), respectively. With the aim to identify the most interesting phenolic compounds,
the polar fractions of both plant extracts were then investigated by means of HPTLC, chosen as a
practical solution to characterize the complex mixtures of substances present in natural products [19].
Analyses allowed to tentatively identify the presence of rutin and chlorogenic acid (Figure 1).
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Figure 1. (A) High performance thin-layer chromatography (HPTLC) analysis of the ethyl acetate
fractions of investigated plants. Mobile phase: Ethyl acetate/dichloromethane/acetic acid/formic
acid/water (100:25:10:10:11, v/v/v/v/v). Visualization—366 nm, derivatization—Natural Product
Reagent (NPR). Tracks: 1, C. album L.; 2, S. officinale (L.) Scop.; 3, rutin; 4, chlorogenic acid. (B) Rutin.
(C) Chlorogenic acid.

The flavonoid glycoside rutin was detected in the EtOAc fraction of C. album, as indicated by the
typical yellow spot after post chromatographic exposure to NP reagent. Chlorogenic acid was instead
identified in the ethyl acetate fractions of both plant species, and it is recognizable as a blue spot in
Figure 1. Figure 2 reports the chromatographic profiles of investigated samples and reference standards.
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2.2. Antioxidant Activity

The in vitro antioxidant capacities of C. album and S. officinale extracts and fractions were
first evaluated by means of the DPPH and β-carotene bleaching methods. Almost all the
samples demonstrated radical scavenging potency. The relation between concentration and
percentage inhibition was explained by non-linear regression models. A strong association between
concentration and percentage inhibition was observed. As regards the two raw extracts, S. officinale
(IC50 = 143.00 ± 2.61 µg/mL, Table 4) exerted a better radical scavenging potency than C. album (IC50 =

172.70 ± 2.18 µg/mL, P < 0.05, Bonferroni post-hoc test). The best activity was demonstrated by the
ethyl acetate fraction of S. officinale, with an IC50 value of 60.11 ± 1.79 µg/mL.
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Table 4. In vitro antioxidant activity of plants extract and fractions.

Species Sample IC50 (µg/mL)

DPPH Test β-carotene Bleaching Test

30 min 60 min

C. album L. Raw extract 172.70 ± 2.18 d 60.51 ± 2.34 e >100
n-Hexane >1000 >100 >100
CH2Cl2 435.60 ± 12.97 f >100 >100
EtOAc 140.40 ± 4.36 c 12.07 ± 0.04 b 38.03 ± 1.88 d

H2O >1000 >100 >100

S. officinale (L.) Scop. Raw extract 143.00 ± 2.61 c 2.61 ± 0.06 a,b 8.53 ± 0.27 b

n-Hexane >1000 >100 >100
CH2Cl2 >1000 61.02 ± 2.31 e >100
EtOAc 60.11 ± 1.79 b 12.62 ± 0.75 b 30.49 ± 1.17 c

H2O 262.9 ± 0.93 e >100 >100

Ascorbic acid 1 2.00 ± 0.01 a - -
Propyl gallate 1 - 1.00 ± 0.02 a 1.00 ± 0.02 a

Data are expressed as mean ± SEM (n = 3). Different letters along column (DPPH test) or between columns
(β-carotene bleaching test) indicate statistically significant differences at P < 0.05 (Bonferroni post-hoc test). 1

Positive controls.

This fraction and the EtOAc fraction of S. officinale showed an interesting antioxidant activity
also in the second test, the β-carotene bleaching method, with IC50 values equal to 12.07 ± 0.04. and
12.62 ± 0.75 µg/mL after 30 min of incubation, respectively. The best results were obtained for S.
officinale raw extract, with an IC50 value of 2.61 ± 0.06 µg/mL. This result is particularly interesting if
compared with the positive control, propyl gallate.

The capacity of C. album and S. officinale extracts to protect against lipid peroxidation, induced by
tert-butyl hydroperoxide (tert-BOOH), was evaluated in rat-liver microsomes for one hour [20–22].
The antioxidant efficiency of extracts were time-dependent and evaluated as MDA production (in
nmol mg−1 protein, Figure 3). The obtained results indicated that all extracts are effective antioxidants
against tert-BOOH-induced lipid peroxidation, showing a preservation of their efficacy up to one hour.
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Figure 3. Effects of Chenopodium album L. (a) and Sisymbrium officinale (L.) Scop. extract (b) on
malondialdehyde (MDA) production induced by tert-butyl hydroperoxide (tert-BOOH) in rat liver
microsomal membranes. Results represent the mean ± SEM of four separate experiments. Overall
P < 0.01.

A good antioxidant potential was already reported for C. album by Pandey [23], who investigated
the biological properties of the petroleum ether, methanol, and aqueous extracts by means of
(2,2’-azino-bis (3-ethylbenzothiazoline-6-solfonic acid (ABTS) and ferric reducing/antioxidant power
(FRAP) methods, and by Chludil and coworkers [24], who studied the influence of soil quality on
C. album antioxidant potential. As regards S. officinale, the sample from Calabria here investigated
showed a better biological activity compared to literature [25].
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2.3. Anti-Inflammatory and Anti-Arthritic Potential

The anti-inflammatory potential of C. album and S. officinale extracts was first investigated through
the assessment of their ability to inhibit the LPS-induced production of NO in the murine macrophage
RAW 264.7 cell line. Cells were cultured with different concentrations of investigated samples in the
presence of LPS (final concentration 1 µg/mL). The presence of nitrite, a stable oxidized product of NO,
was verified in cell culture medium by means of the Griess reagent 24 h later.

Then, the potential role of C. album and S. officinale extracts in the treatment of arthritic disorders
was assessed in vitro through the evaluation of their capacity to protect bovine serum albumin from heat
denaturation. The denaturation of tissue proteins is a major cause of arthritic diseases. Thus, agents
able to prevent protein denaturation could be useful for the development of new anti-inflammatory
drugs [26].

The observed nitric oxide production inhibition is reported in Figure 4. Cells were treated with
different concentrations of raw extracts and fractions, ranging from 25 to 1000 µg/mL, with the only
exception of the dichloromethane fraction of C. album (6.25–250 µg/mL) and the n-hexane fraction of S.
officinale (12.5–500 µg/mL), as higher concentrations caused cytotoxic effects on the used macrophage
cell line. The absence of cytotoxic effects on RAW 264.7 macrophages was verified for all the samples
by means of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. No toxic
effects were detected for the other samples.
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Both raw extracts were effective in inhibiting nitric oxide production, with IC50 values equal to
483.2 ± 6.4 and 734.4 ± 21.2 µg/mL for C. album and S. officinale, respectively (Table 5). A good biological
activity was observed for the n-hexane fraction of S. officinale, with an IC50 value of 142.0± 5.5µg/mL. An
excellent inhibitory activity was induced by the dichloromethane fraction of C. album, for which an IC50

value equal to 81.7± 0.9 µg/mL was calculated (Table 5). This significant result is interesting if compared
to both positive controls (P < 0.05, Bonferroni post-hoc test), indomethacin (IC50 = 58.0 ± 0.9 µg/mL)
and L-NAME (IC50 = 45.9± 0.5µg/mL). This fraction significantly reduced LPS-induced synthesis of NO
in a concentration-dependent manner (Figure 4a), inducing 96.76 ± 0.94% inhibition of NO production
at the concentration of 250 µg/mL (P < 0.001, Dunnett’s multiple comparison test). Additionally, at 100
µg/mL the inhibition percentage was significant compared to control (P < 0.001).

Table 5. In vitro inhibitory activity on NO production and anti-arthritic potential.

Species Sample IC50 (µg/mL)

NO Inhibition BSA Denaturation Inhibition

C. album L. Raw extract 483.2 ± 6.4 c n.a.
n-Hexane n.a. n.a.
CH2Cl2 81.7 ± 0.9 a 975.6 ± 5.5 c

EtOAc n.a. n.a.
H2O n.a. n.a.

S. officinale (L.) Scop. Raw extract 734.4 ± 21.2 d n.a.
n-Hexane 142.0 ± 5.5 b n.a.
CH2Cl2 n.a. 680.9 ± 13.2 b

EtOAc n.a. n.a.
H2O n.a. n.a.

Indomethacin 1 58.0 ± 0.9 a -
L-NAME 1 45.9 ± 0.5 a -

Diclofenac 1 - 15.73 ± 0.2 a

Data are expressed as mean ± SEM (n = 4, NO inhibition; n= 3, Bovine serum albumin (BSA) denaturation). Different
letters along columns indicate statistically significant differences at P < 0.05 (Bonferroni post-hoc test). n.a. = not
active. 1 Positive controls.

Interestingly, the same fractions showed also a concentration-dependent anti-denaturation effect
on heat-treated bovine serum albumin (IC50 = 975.6 ± 5.5 µg/mL, Table 5), even if, in this case, the
highest activity was observed for the dichloromethane fraction of S. officinale extract, with an IC50

value of 680.9 ± 13.2 µg/mL. At the concentration of 1000 µg/mL, this fraction was able to induce
63.74% ± 1.77% inhibition of protein denaturation (Figure 5). At lower concentrations (750 and
500 µg/mL) inhibition percentages were 51.28% ± 1.09% and 42.36% ± 0.83%, respectively. The same
fraction was still significantly effective at 250 µg/mL (17.82% ± 1.67%, P < 0.001, Dunnett’s multiple
comparison test).

Usman and coworkers investigated the anti-inflammatory potential of the essential oil of C.
album leaves from Nigeria, reporting a significant reduction in 12-O-tetradecanoylphorbol-13-acetate
(TPA)-induced ear edema in mice [27]. As regards S. officinale, a study conducted by Calcinoni
demonstrated that this plant was able to reduce perceived disability in patients claiming vocal tract
discomfort [5].

Our work adds interesting information about the anti-inflammatory potential of investigated
species, demonstrating their effectiveness in inhibiting the production of the pro-inflammatory mediator
nitric oxide. Moreover, to the best of our knowledge, this is the first report concerning the in vitro
anti-denaturation effects on bovine serum albumin for these species.
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3. Materials and Methods

3.1. Chemicals

Bovine serum albumin, diclofenac sodium, potassium chloride, disodium hydrogen phosphate,
sodium chloride, potassium dihydrogen phosphate, DMEM, FBS, PBS, MTT, L-NAME, L-glutamine,
penicillin/streptomycin, trypan blue, Griess reagent, indomethacin, Folin-Ciocalteu reagent, aluminum
chloride, ascorbic acid, DPPH, β-carotene, linoleic acid, propyl gallate, Tween 20, EDTA, sucrose,
HEPES, trichloroacetic acid (TCA), butylated hydroxytoluene (BHT), hydrochloric acid, tert-butyl
hydroperoxide, 2-thiobarbituric acid (TBA), and reference compounds utilized in HPTLC analyses were
purchased from Sigma-Aldrich S.p.A. (Italy). The RAW 264.7 cell line was obtained from American
Type Culture Collection (ATCC) no. TIB-71, UK. Normal phase glass plates were obtained from Merck
(Germany). All the solvents used were reagent grade and were purchased from VWR International
s.r.l. (Italy).

3.2. Extraction Procedure

The aerial parts from wild plant species were collected in Southern Italy (Calabria) in July 2015
during the flowering stage (leg. F. Conforti, det. F. Conforti). Voucher specimens are deposited in the
Herbarium CLU of our University (Table 1). Dried samples were extracted with methanol through
maceration at room temperature (plant to solvent ratio 1:10 g/mL, 48 h × 3 times). Obtained solutions
were then filtered and dried. A fraction of each raw extract (suspended in methanol:water, 9:1) was then
extracted with n-hexane. The residue was then suspended in distilled water and extracted successively
with dichloromethane and ethyl acetate. Samples were preserved at −20 ◦C.

3.3. Gas Chromatography-Mass Spectrometry (GC-MS) Analyses

The chemical composition of the n-hexane and dichloromethane fractions of the two raw extracts
was assessed using a Hewlett-Packard 6890 gas chromatograph with an SE-30 capillary column 100%
dimethylpolysiloxane (30 m length, 0.25 mm in diameter, 0.25 µm film thickness) coupled to a mass
spectrometer Hewlett Packard 5973. Helium was used as carrier gas and analyses were run using a
programmed temperature from 60 to 280 ◦C (rate 16 ◦C/min) with helium as carrier gas (linear velocity,
0.00167 cm/sec), as previously described [28]. The comparison of spectra with those of the Wiley 138
mass spectral library allowed the identification of compounds.
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3.4. Total Phenolic Content and Flavonoid Content

The Folin Ciocalteau reagent was used to determine the total phenolic content of the
two raw extracts as previously reported [29]. Briefly, 200 µL of each sample (2 mg/mL in
acetone/MeOH/H2O/formic acid, 40:40:20:0.1) were added to 1 mL of Folin–Ciocalteau reagent and
1 mL of 7.5% w/v sodium carbonate. The absorbance was measured after two hours at 726 nm.

Total flavonoid content was evaluated using a colorimetric method as earlier described [30].
The absorbance of a mixture consisting of sample (2 mg/mL in 80% EtOH) and 2% AlCl3 (1 mL) was
measured at 430 nm after 15 min of incubation. Results were calculated from calibration curves based
on the standards chlorogenic acid (for phenolics determination) or quercetin (flavonoids analysis), and
were expressed as mg of standard equivalent per g of dry plant.

3.5. High-Performance Thin Layer Chromatography (HPTLC) Analyses

The constituents of the polar fractions from C. album and S. officinale were identified by means of
high-performance thin layer chromatography (HPTLC) by means of the CAMAG semi-automated
HPTLC system including a Linomat 5 sample applicator connected to a TLC Visualizer and controlled
with wincats planar chromatography software.

Samples and reference compounds were dissolved in methanol to a final concentration of 50 and
3 mg/mL, respectively, and spray-applied with a micro-syringe on 20 × 10 cm silica gel glass plates
(silica 2–10 µm; 2 µm thickness). Operating conditions were the same as previously described [31].
Plates were developed using a mixture of ethyl acetate/dichloromethane/acetic acid/formic acid/water
(100:25:10:10:11, v/v/v/v/v). For post-chromatographic derivatization, plates were dipped in freshly
prepared NPR reagent and anisaldehyde reagent, and heated at 100 ◦C for 5 min. The first reagent was
prepared by dissolving diphenylborinic acid aminoethyl ester (1 g) in AcOEt (200 mL). The second
one by mixing p-anisaldehyde (1.5 mL), sulfuric acid (2.5 mL), AcOH (1 mL), and ethanol (37 mL).
The plates were examined before and after derivatization under UV light (254 or 366 nm) and white
light. Samples were analyzed by co-chromatography with the reference compounds rutin, chlorogenic
acid, cinnamic acid, caffeic acid, sinapic acid, p-coumaric acid, naringenin, quercetin, kaempferol,
luteolin, ferulic acid, catechin, and naringin.

3.6. Free Radical Scavenging Activity (FRSA) Assay

The DPPH method was used to evaluate the radical scavenging activity of extracts and their
fractions. The radical 2,2-diphenyl-1-picrylhidrazyl (DPPH, 0.1 mM in MEOH, 0.8 mL) was mixed with
samples (0.2 mL) at concentrations ranging from 5 to 1000 µg/mL (or to ascorbic acid in the positive
control group). Absorbance was measured at 517 nm 30 min later [32].

3.7. β-Carotene Bleaching Test

The antioxidant activity was evaluated using the β-carotene bleaching test. An emulsion was
prepared by adding a β-carotene solution (1 mL, 0.5 mg/mL in CHCl3) to linoleic acid (0.02 mL) and
100% Tween 20 (0.2 mL), removing chloroform and adding distilled water (100 mL). Five milliliters
of obtained emulsion was mixed with 0.2 mL of different samples solutions (0.25–100 µg/mL), or to
propyl gallate in the positive control group, and incubated at 45 ◦C. Absorbance was measured at
470 nm at different times (initial time, 30 min, and 60 min). The prevention of β-carotene bleaching
indicated the antioxidant activity of samples [33].

3.8. Microsomal Suspensions

The microsomal suspension was prepared from liver of Wistar rats homogenizing the tissue
in a PotterElvehjem with a solution, pH 7.5, containing 0.25 M sucrose, 5 mM HEPES, and 0.5 mM
EDTA [20,34]. Microsomes were isolated by the nuclear fraction at 8000 g for 10 min and subsequently
by mitochondrial fraction at 18,000 g for 10 min. The microsomal fraction was sedimented at 105,000 g
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for 60 min, washed in 0.15 M KCl, and collected again at 105,000 g for 30 min [35]. The microsomes
were suspended in 0.1 M potassium phosphate buffer, pH 7.5, and stored at −80 ◦C. The protein
concentration was determined by the Bio-Rad method [36].

3.8.1. Addition of Extracts to Microsomes

Aliquots of extracts were added to the microsomes to give concentrations in the range 0.1–1 mg/mL.
Control samples were treated with a water amount equal to those present in extracts-treated microsomes.
These were suspended and then were incubated at 37 ◦C in the dark in the presence of t-BOOH.

3.8.2. Malondialdehyde Formation

Aliquots of 1 mL of microsomal suspension were mixed with a solution composed of TCA, TBA,
and BHT in 95% ethanol, and then incubated in a 40 ◦C bath for 1 h. Subsequently, the TBA-MDA
complex was extracted with 3 mL of isobutyl alcohol and malondialdehyde (MDA) was measured at
535 nm.

3.9. Nitric Oxide Production Inhibition

The ability of plant extracts and their fractions to inhibit NO production was verified in vitro
on RAW 264.7 cells stimulated with LPS. Dulbecco’s modified Eagle’s medium (DMEM) was used
as growth medium. It was supplemented with L-glutamine, fetal bovine serum, and a solution of
penicillin and streptomycin (1%, 10% and 1%, respectively). Cells were cultured at 37 ◦C under 5%
CO2. For the experiments, cells were removed from flask by scraping and then seeded onto microplates
(96 wells, 100,000 cells/well). After 24 h, medium was removed and fresh DMEM containing samples
at different concentrations (6–1000 µg/mL in DMSO, final ratio of DMSO to medium 0.5% v/v) and
1 µg/mL LPS was added. After 24 h of incubation, the Griess reagent was used to evaluate the presence
of nitrite, a stable end product of nitric oxide oxidation, in cell culture media. A total of 100 µL of
Griess reagent was added to 100 µL of cell culture supernatant. Absorbance was measured at 550 nm.
Indomethacin and the NO synthase inhibitor L-NAME were used as positive controls [37].

The absence of cytotoxic effects on RAW 264.7 macrophages was verified by means of the MTT
assay [38]. At the end of the experiments, MTT (0.5%, 100 µL/well) was added to the wells. Four hours
later, DMSO (100 µL/well) was also added and absorbance was measured at 550 nm.

3.10. Anti-Arthritic Potential

The anti-arthritic potential of C. album and S. officinale extracts and fractions was evaluated by means
of the in vitro protein denaturation assay reported by Palit and colleagues [39] with some modifications.

To realize the experiment, 2.40 mL of a 3.5% bovine serum albumin water solution (BSA) were
mixed with 0.10 mL of samples (concentrations ranging from 1000 to 50 µg/ml in DMSO). Diclofenac
sodium (250 µg/mL) was used as positive control. pH was adjusted at 6.3 using 1N HCl and samples
were then incubated at 37 ◦C for 20 min and then heated at 71 ◦C for 1 min. After cooling, phosphate
buffered saline (pH 6.3, 2.5 mL) was added to each sample. Buffer was prepared by dissolving 8 g
of NaCl, 0.2 g of KCl, 1.44 g of Na2HPO4, and 0.24 g of KH2PO4 in 800 mL of distilled water; pH
was adjusted at 6.3 using 1N HCl and the final volume was brought to 1000 mL with distilled water.
Diclofenac sodium (250 µg/mL) was used as positive control.

The turbidity of obtained solutions was measured spectrophotometrically at 660 nm. Product
control groups were prepared without bovine serum albumin and the percentage of protein denaturation
inhibition was calculated as shown in the following equation:

Inhibition % = [1 − (Abs test solution − Abs product control) / Abs untreated control] × 100. (1)
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3.11. Statistical Analysis

Experiments were run in triplicate, except for tests involving cell cultures, for which four replicates
were performed. Data were expressed as means ± S.E.M. Normality of data and homogeneity of
variances were assessed using D’Agostino–Pearson’s K2 test and Levene’s test, respectively. Nonlinear
regression analyses were performed using Graph-Pad Prism Software (San Diego, CA, USA) in order
to deduce the IC50 parameters. One-way ANOVA was carried out to test the statistical differences
between treated groups and the control (Dunnett’s multiple comparison test) and among treated
groups means (Bonferroni post-hoc test, P ≤ 0.05, SigmaStat Software, SanRafael, CA, USA).

4. Conclusions

Botanicals may potentially play an important role in the treatment of anti-inflammatory diseases,
with the aim to avoid common undesired side effects of the main synthetic drugs commonly utilized [40,
41]. Herbal remedies and dietary plants used in traditional medicine could be a promising source of
new effective drugs [42,43].

In this context, the results of this work proved in vitro the potential effectiveness of C. album and
S. officinale, two traditionally used herbal drugs in the treatment of inflammatory disorders. Both
species demonstrated to inhibit the production of the pro-inflammatory mediator nitric oxide in
LPS-stimulated murine macrophages in a concentration-dependent manner, the dichloromethane
fraction of C. album being the most active sample (IC50 = 81.7 ± 0.9 µg/mL). Moreover, some samples
demonstrated an interesting in vitro anti-arthritic effect in experimental studies, showing significant
protein anti-denaturation effects, verified on heat-treated bovine serum albumin. Additionally, in
this case, C. album dichloromethane fraction was effective, even if to a lesser extent compared to the
same fraction of the second species, S. officinale, with IC50 values, respectively, equal to 975.6 ± 5.5 and
680.9 ± 13.2 µg/mL.

Furthermore, both plant species demonstrated in vitro antioxidant properties, verified by means
of the DPPH and β-carotene bleaching methods. The activity of extracts against lipid peroxidation was
also verified in microsomal suspension from rat liver. All extracts were effective antioxidants against
tert-BOOH-induced lipid peroxidation, showing a preservation of their activity up to one hour.

In conclusion, the results reported in this study seem to support the traditional use of C. album
and S. officinale in the treatment of inflammatory conditions.
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