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Abstract
Coronavirus 2 (SARS-CoV-2), often known by the name COVID-19, is a type of acute respiratory syndrome that has had 
a significant influence on both economy and health infrastructure worldwide. This novel virus is diagnosed utilising a con-
ventional method known as the RT-PCR (Reverse Transcription Polymerase Chain Reaction) test. This approach, however, 
produces a lot of false-negative and erroneous outcomes. According to recent studies, COVID-19 can also be diagnosed 
using X-rays, CT scans, blood tests and cough sounds. In this article, we use blood tests and machine learning to predict the 
diagnosis of this deadly virus. We also present an extensive review of various existing machine-learning applications that 
diagnose COVID-19 from clinical and laboratory markers. Four different classifiers along with a technique called Synthetic 
Minority Oversampling Technique (SMOTE) were used for classification. Shapley Additive Explanations (SHAP) method 
was utilized to calculate the gravity of each feature and it was found that eosinophils, monocytes, leukocytes and platelets 
were the most critical blood parameters that distinguished COVID-19 infection for our dataset. These classifiers can be uti-
lized in conjunction with RT-PCR tests to improve sensitivity and in emergency situations such as a pandemic outbreak that 
might happen due to new strains of the virus. The positive results indicate the prospective use of an automated framework 
that could help clinicians and medical personnel diagnose and screen patients.
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1 Introduction

The Coronavirus is an extremely dangerous infection 
transmitted by the Severe Acute Respiratory Coronavirus 
2 (SARS-CoV-2) that has rapidly spread around the world. 
It has turned out to be an extremely fatal disease and is the 
reason for more than 500,000 deaths across 216 countries 
[1]. Every aspect of human activity has been impacted 
severely in all geographic territories and quick detection 
and treatment of this virus is extremely crucial to avert the 
escalation of this infectious virus. Currently, COVID-19 is 
commonly diagnosed using RT-PCR (Reverse Transcrip-
tion Polymerase Chain Reaction) along with the Rapid 
Antigen tests (RAT) [2]. These tests are time-consuming 
and about 20% false negative rates have been observed 
[3]. A large number of underdeveloped nations do not 
have accessibility to RT-PCR testing kits. RAT testing is 
based on IgM/IgG antibodies. Low specificity (77.8%) and 
sensitivity (18.8%) have been the main drawbacks of this 
method [4]. Therefore, emphasis is being given to other 
methods of testing that might be more accessible and less 
expensive in the future. One of the most trending concepts 
in the modern world is Artificial Intelligence (AI). Vari-
ous aspects such as Machine Learning (ML), modelling, 
statistics, simulations and algorithms are included in the 
above concept. It also contributes significantly to clinical 
and academic research [5]. Engineering, medical, psychol-
ogy, sociology, hazard mitigation, multi-disciplinary sci-
ence and other fields can efficiently make use of ML in 
the future. Numerous applications of Machine Learning 
(ML) have been utilized in activities such as sanitizing 
places with drones [6], tracking users using face recog-
nition, drug development, automated robots delivering 
medicine and food, COVID-19 diagnosis, etc. According 
to the current literature, ML and hybridised models have 
been successfully applied in several domains of engineer-
ing [7–10], psychometric analysis [11, 12], medical and 
pharmaceutics [13–15], graph theory [16], and social sci-
ences [17–19].

A considerable interest has been taken by various 
researchers in examining the field of AI and ML applica-
tions in battling this deadly virus by effectively deploying 
them in forecasting, diagnosis and prognosis, drug dis-
covery and disease surveillance [20, 21]. ML techniques 
have been deployed to help health care specialists with 
rapid, reliable and accurate detection of the novel corona-
virus in this article. Computed Tomography Scans (CT-
Scans) and chest X-ray images (XSR) images along with 
AI based medical imaging have been successfully used to 
detect the viral disease. Biomedical image analysis using 
AI has gained a lot of prominence and a lot of articles have 
been published with a sole focus on CT-Scans and X-rays 

[22–25]. However, the radiation doses emitted during CT-
Scans can cause cancer. High cost and availability of CT-
Scanners is also an issue. Research has also taken place 
in exploring the use of cough sounds for COVID-19 diag-
nosis using NLP (Natural Language Processing) [26–28].

The blood and laboratory markers of COVID-19 
patients can change drastically and these parameters can 
be used in the preliminary screening according to a numer-
ous number of medical studies [29–33]. The presence of 
this infection can be confirmed by diagnosis, while a prob-
abilistic indication of the disease's presence can be pro-
vided by a round of initial screening tests. It is very diffi-
cult for a doctor/physician to extract complete information 
from different laboratory blood tests. But, various patterns 
obtained from blood parameters can be easily differenti-
ated by the AI models. Therefore, development of ML 
models that can diagnose COVID-19 has been explored by 
many ML researchers and enthusiasts [34–36].

The ML framework using blood tests for COVID-19 
detection can lead to an accessible, less expensive, easy to 
use and faster alternative to time-consuming and expensive 
tests. Furthermore, these tests can be utilised in conjunc-
tion with RT-PCR testing to avoid false negatives. Blood 
test-based tests can be used in poor and underdeveloped 
countries that suffer from a lack of technology and labo-
ratory supplies. This inexpensive system can also speed 
up testing and maintain a smooth flow of patients [37, 
38]. The main findings and contributions of this article 
are given below:

• An exhaustive review of various ML applications that 
diagnose COVID-19 using various blood and laboratory 
markers.

• An in-depth data analysis that reveals crucial and critical 
blood markers that are key in diagnosing coronavirus.

• Different machine-learning models that accurately detect 
COVID-19 from a variety of clinical indicators.

• Shapley Additive Explanations (SHAP) and random for-
est technique were used to validate feature importance. It 
was observed that platelets, leukocytes, monocytes and 
eosinophils were the most critical markers that may sig-
nify the occurrence of coronavirus for our data.

• Additional information about the various blood parame-
ters that are critical in the diagnosis of the novel COVID-
19 virus.

The aim and objective of this article is to introduce a ML 
based diagnosis framework that detects COVID-19 using 
routine blood parameters. Accuracy, recall, specificity, sen-
sitivity, f1-score, AUC and brier score were the metrics used 
to evaluate our models to understand the advantages and 
disadvantages of the classifiers in this extensive study.
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The Random forest classifier achieved the best results 
in diagnosing COVID-19 for the dataset that was available 
publicly from Hospital Israelita Albert Einstein, Brazil. The 
Synthetic Minority Oversampling Technique (SMOTE) was 
employed to prevent imbalance in the data distribution since 
the dataset was extremely unbalanced. The Shapley Addi-
tive Explanations (SHAP) and the random forest approaches 
were utilized to calculate importance of the features and 
Pearson’s co-relation was used to find the various hidden 
co-relations between the various blood parameters and its 
relationship with this contagious virus. In this study, we 
first perform an extensive review of the existing literature 
in Sect. 2. Exploratory data analysis and the proposed design 
methodology are outlined in Sect. 3, followed by the evalua-
tion of models in Sect. 4. Various challenges and the direc-
tions for future researches are described in Sect. 5. The arti-
cle concludes in Sect. 6. Description of various techniques 
required for the design and development of the prospective 
ML models is given in Fig. 1.

2  Related Work

This section consolidates a number of ML researches that 
have been used to diagnose COVID-19. These infections are 
increasing at a rapid rate and it is of utmost importance to 
identify patients early to avoid the large scale spread of the 
contagious disease. RT-PCR is the existing standard proce-
dure for diagnosing coronavirus and samples are accumu-
lated from the respiratory tracts. Further, PCR amplification 
is conducted after the RNA has been extracted successfully 
using a predefined medical protocol. This unique method is 
still the golden standard for diagnosis. However, it still has a 
number of limitations. Specialist equipment and trained per-
sonnel are required to execute this test [39]. Testing a single 
sample is not feasible since it is very expensive and can take 
a lot of time (4 to 5 h). To reduce costs, PCR machines are 
used with a number of samples. False negative rates have 

been found at a rate estimated to be between 3 and 30%. 
[40]. These incorrect results are dangerous since the patient 
will not be isolated and can cause further spread of the dis-
ease. CT-Scans have been used as an alternative to PCR tests 
[41, 42]. However, they cannot confirm the exact diagnosis 
of this viral disease. CT-Scans are not available everywhere 
and they can also cause exposure to unnecessary radiation 
[43]. Hence, doctors do not recommend CT-Scans and chest 
radiographs (CXR) for every single patient [44]. Clinical 
and routine blood tests can be used as an inexpensive and 
quick means of COVID-19 detection. These accurate algo-
rithms can be used efficiently, especially during a pandemic 
peak when there is an acute shortage of hospital resources 
[45, 46]. Validation of RT-PCR tests maybe be conducted 
to reduce false negatives and increase the sensitivity using 
these blood test classifiers [47, 48]. Some researchers have 
used one particular model, others have chosen multiple mod-
els and some of the predictive models are a combination of 
many models. Various ML models that diagnose COVID-19 
are described below. The rest of the articles, along with their 
key characteristics, are described in Table 1.

Wu et al. [49] presented the first model that diagnosed 
COVID-19 from routine blood parameters. They used 11 
parameters out of the initial 49 parameters for training the 
ML model. A combination of 235 (105 COVID-19) patients 
were used in this research. The accuracy, specificity and 
sensitivity obtained were 95.95%, 95.13%, and 96% respec-
tively for the external dataset. The blood parameters of 279 
patients (177 COVID-19) from San Raffael Hospital were 
collected in the study [36]. Fourteen important blood param-
eters were given as input features to the various machine-
learning classifiers. The accuracy obtained was 82–86% 
and the sensitivity obtained was 92–95%. The paper also 
concluded that AST (Aspartate Aminotransferase), lympho-
cytes, LDH (Lactate dehydrogenase), WBC (White Blood 
Cells) and CRP (C-Reactive protein) were the most impor-
tant diagnostic blood parameters.

Fig. 1  Integral learning steps required for the development of ML classifiers
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Table 1  List of ML models that diagnose COVID-19

References Source Size Total attributes Models used Accuracy of 
best model

Sensitiv-
ity of best 
model

Specific-
ity of best 
model

AUC of best 
model

[57] Hospital Isra-
elita Albert 
Einstein, 
Brazil

5644, 559 
COVID-19

24 attributes MLP (Multi-layer 
perceptron), 
SVM, DT, NB

95% 96% 93%

[58] Three Open 
access data-
sets

– Many features Machine learning 
and Deep Learn-
ing models

92% 82% 92%

[59] 18 hospitalls 
from Zheji-
ang, China

914 patients 10 features LR, 
SVM,DT,RF,RL

95% 87% 97%

[60] Tongji Hospi-
tal, China

413 patients 21- categorical, 
21- continu-
ous

Xgboost 92.5% 97.5%

[61] West China 
Hospital,m 
China

620 samples 9 features Multi variate logis-
tic regression

– – – –

[62] 11 regions in 
China

659 patients Many bio-
chemical 
and clinical 
features

Decision trees 89% – – 88%

[63] SMART hos-
pitals

– – NB, RF, SVM 93.33% – – –

[33] Hospital Isra-
elita Albert 
Einstein Hos-
pital, Brazil

5644, 559 
COVID-19 
patients

Many blood 
parameters

ERLX, an ensem-
ble learning 
model

99.60% 98.72% 98.99% 99.38%

[64] UK Biobank 4510 patients – Linear discrimi-
nant analysis

– – – 97%

[65] Hospital Isra-
elita Albert 
Einstein Hos-
pital, Brazil

5644 patients
598 COVID-19 

patients

Many blood 
parameters

RF, Shallow 
learning, flexible 
ANN

– – – 95%

[66] Hospital Isra-
elita Albert 
Einstein Hos-
pital, Brazil

5644 patients
598 COVID-19 

patients

Many blood 
parameters

Er-CoV – 70% 85% 86%

[67] Kepler Univer-
sity Hospital

1357 patients 28 unique 
features

Random forest 86% – – 74%

[68] Three Brazilian 
Hospitals

815 (442 
COVID-19)

19 features ADA boost, Gradi-
ent boosting, 
Random forest, 
extreme gradient 
boosting, SVM, 
partial least 
square

– 96% 93% –

[69] – 1521 patients 130 clinical 
features

HUST-19 (CNN 
based frame-
work)

94% – – –

[70] Oxford Univer-
sity hospitals

1,14,957—
negative

437—COVID-
19

– Various ML clas-
sifiers

77% 95% 93%

[71] Five hospitals 
in New York

4098 COVID-
19 patients

Many blood 
parameters

XGBoost – – – 89%

[72] – 279 cases 13 features KNN, DT, RF, 
SVM, RF

– – – 91%



456 Interdisciplinary Sciences: Computational Life Sciences (2022) 14:452–470

1 3

Kukar et al. [50] utilized ML models to predict the pres-
ence of coronavirus using the laboratory and clinical mark-
ers of 160 COVID-19 patients hospitalised in the University 
Medical Centre Ljubljana in Slovenia. The sample size also 
included 5333 COVID-19 negative patients. The classifi-
ers utilised were Random Forest (RF), DNN (Deep Neural 
Network), and XGBoost (Extreme Gradient Boosting), with 
XGBoost producing the best results. The average sensitivity 
and AUC (Area Under Curve) achieved by the various meth-
ods were 88.9% and 97% respectively. Hypoalbuminemia 
(low levels of albumin) was observed in patients.

Fernandes et al. [51] investigated the blood laboratory 
markers of 235 COVID-19 patients admitted in Israelita 
Albert Einstein Hospital, Brazil. Fifteen distinct blood 
parameters were utilised as features, and the Support Vec-
tor Machine (SVM) produced the optimal prediction. The 
AUC, sensitivity, and specificity obtained were 85%, 68%, 
and 85%, respectively. According to the study, the most 
critical blood indicators were lymphocytes, leukocytes, and 
eosinophils. Alves et al. [34] used three ML algorithms to 
diagnose coronavirus from routine blood parameters. The 
sample consisted of 84 COVID-19 patients along with 608 
other patients. The Local Decision Tree Explainer (DTX), 
criteria graphs and the random forest were the models used 
for classification. The random forest algorithm achieved 
optimal predictions with an accuracy, f1-score, sensitivity, 
specificity and AUROC of 88%, 76%, 66%, 96% and 86% 
respectively.

Plante et al. [52] used ML models to rule out SARS-
CoV-2 using various clinical tests. 2183 PCR confirmed 
patients from 43 hospitals from the United States of America 
were included in this research. These models generate a risk 
score out of 10 (0 being minimal risk and 10 being maxi-
mum risk). The XGBoost model was the best performing 
model that achieved a sensitivity and an AUROC score of 
95.9% and 91% respectively. Arpaci et al. [53] utilized 14 
clinical characteristics to predict COVID-19 infection and 
the dataset included 114 confirmed COVID-19 cases from 
Taizhou hospital in China's Zhejiang province. Six distinct 
classifiers were employed and logistic regression produced 
the best results with 84.21% accuracy. Sobrinho et al. [54] 
used ML models to prioritize patients for testing based 
on various blood markers. The dataset consists of 55,676 
patients along with 12 features. Eight different models were 
used for training/testing. Out of these, six models achieved 
high performance with the decision tree achieving the opti-
mal results with an accuracy of 89.12%. LDH and CRP were 
the most distinctive features that could diagnose COVID-
19, according to [55]. 15 features were used for the seven 
deployed ML models that were combined together. They 
achieved an AUROC and sensitivity of 91% and 93% respec-
tively. However, the specificity obtained was poor (64%). 
In another study, Logistic regression (LR), neural network 

models and random forest (RF) were utilized in COVID-19 
diagnosis [56]. Twenty-three clinical feature variables were 
utilised in the models described above. The dataset consisted 
of 536 (106 COVID-19) patients from Rennes-Academic 
Hospital, France. The LR model obtained the best results 
with an AUROC of 93%.

3  Materials and Methods

3.1  Dataset Description

The case data for this research was procured from 5644 
patients who were hospitalized in the Albert Einstein Isra-
elita Hospital, Brazil. To totally anonymize the data, best 
practises and standards were employed. The clinical data 
had already been standardised to get the best normal dis-
tribution possible (standard deviation = 1, mean = 0). This 
dataset was made available publicly and is often updated for 
collaborative research [73]. It includes the blood test reports 
of all in-patients who have been tested for Sars-CoV-2 virus 
(both positive and negative). 111 features that include vari-
ous urine, blood and other medical tests of 5644 patients are 
included in this publicly available data. However, the data-
set is extremely unbalanced, with very few positive cases 
(558) compared to a large number of negative cases. The 
various blood parameters include haemoglobin, haematocrit, 
platelets, red blood cells, leukocytes, lymphocytes, basophils 
and many more. Urine tests and tests for other contagious 
diseases were also included. RT-PCR results were used to 
confirm the patients’ diagnosis and were represented as 
dichotomous ground truth values (positive/negative).

Fig. 2  Null values present in attributes
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3.2  Data Pre‑processing and Co‑relation Analysis

Missing values imputation, elimination of outliers and bal-
ancing the data are the three major phases in data prepara-
tion. Our dataset contained a lot of null values and Fig. 2 
shows that over 90% of the blood parameters had a lot of 
missing values.

Imputing those values with statistical parameters (mean, 
median, mode) would render the model useless. Therefore, 
all the columns that contained at least 90% of the null val-
ues were removed. After the removal, there were 39 attrib-
utes left. The parameter "parainfluenza 2" had only one 
value (variance = 0) and was dropped. 3596 rows of 5644 
cases had null values above 80%. The dataset was trimmed 
further and all patient records were deleted that had more 
than 26 null values and all attributes and tests not related 
to COVID-19 were removed. The presence of antigens was 
mentioned in at least nineteen columns and the values were 
binary. These columns were used to confirm whether the 
patient tested positive for other viral infections such as Ade-
novirus, Parainfluenza, Metapneumovirus, etc. The results 
of these tests were combined together to form an attribute 
called “has-disease” and this attribute suggested if at least 
one of the respiratory infections were present. The dataset 
was already normalized except for a single column named 

"patient age quantile" and the values ranged from 1 to 19. 
The magnitude of the features can affect the results drasti-
cally in some AI algorithms. Hence, the age parameter was 
normalized in the range [−3,3] to prevent the impact of 
attributes with various scales.

After data pre-processing, 18 columns and 602 rows 
remained. The final set of features that were chosen are 
described in Table 2. The dataset contained 84 positive and 
518 negative cases confirmed by RT-PCR tests. Thus, the 
dataset still had the problem of severe data imbalance (1:6 
ratio). The proposed model uses the SMOTE technique that 
is available in the “imblearn” python library. This innovative 
technique balances the dataset by oversampling the minor-
ity-class instances.

After completing the process of feature engineering, we 
proceed to feature selection. Pearson’s co-relation coeffi-
cient (PCC) was used to evaluate the co-relation between 
the attributes to remove the non-essential and redundant 
blood markers as shown in Fig. 3. Features that showed 
strong co-relations that indicated COVID-19 were also 
observed. It was seen that eosinophils, platelets, leuko-
cytes and the has_disease attribute showed a negative co-
relation (The values of these blood parameters decreased 
for COVID-19 patients), while monocytes, haemoglobin, 
red blood cells and age showed a slight positive co-relation 

Table 2  Feature description of the final selected parameters

Sl.no Abbreviation Feature Description References

1 AGE Patient age quantile Specifies the age of the individual –
2 MPV Mean platelet volume Mean size of platelets presents in blood. It is known to increase in the 

presence of COVID-19
[74]

3 RBC Red blood cells The bone marrow produces fresh red blood cells. The red blood cell car-
ries oxygen and removes carbon dioxide from the body

[75]

4 LYM Lymphocytes These are part of the person's immune system and are created by the lymph 
nodes and bone marrow. They tend to decrease for severe COVID-19 
patients

[76]

5 MCHC Mean Corpuscular haemoglobin 
concentration

Average quantity of haemoglobin present in each of the red blood cells [77]

6 WBC Leukocytes They are also called white blood cells. They defend the body against 
various infections and threats. The count has increased in COVID-19 
patients according to numerous studies

[78]

7 BAY Basophils They are a part of white blood cells [79]
8 EOS Eosinophils They help in promoting inflammation that controls the infection. Eosino-

phil count is reduced for COVID-19 patients
[79]

9 MCV Mean Corpuscular volume Average volume of red blood cells. They increase or decrease depending 
on the average red cell size

[74]

10 MON Monocytes They are white blood cells that focus on healing and repair [80]
11 PLT Platelets They form clots and prevent bleeding. COVID-19 patients often have mild 

thrombocytopenia
[81]

12 RBCDW Red blood cell distribution width The range of volume and size of red blood cells [75]
13 - Has_disease A variable that has been created by combining all the other disease col-

umns for this research. It specifies whether the patient suffers from other 
viral diseases

–
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(The values of these blood parameters increased for 
COVID-19 patients) as described in Table 3. Some charac-
teristic parameters had a very high degree of interdepend-
ence. To reduce noise, we must remove parameters with a 
high degree of co-linearity between them. Haematocrit and 
haemoglobin had a co-relation factor of 0.97 between them 
and also had a strong positive relationship with red blood 
cells (0.87 and 0.84). We decided to retain red blood cells 
since they had the highest co-relationship with the target 
variable. MCV (Mean Corpuscular volume) and MCH 
(Mean Corpuscular Height) were the other two highly 
associated variables. MCV was retained since it was more 
co-related to the target label (−0.055 vs −0.028).

3.3  Methodology

Since they are highly efficient with imbalanced data, 
xgboost, random forest and logistic regression were used 
as cutting-edge prediction models in this research. The 
KNN algorithm was also tested.

Random forest (RF) is a decision tree agglomeration 
approach that constructs many trees using a resampling 
procedure known as bagging (bootstrap aggregation) [82]. 
Resampling with replacement is used to create a huge 
number of decision trees. Every tree's node is divided 
using a subset of the tree's characteristics that are chosen 
at random. A simple unweighted majority vote is used to 

Fig. 3  Pearson co-relation matrix

Table 3  Correlation coefficient 
and r value of the final blood 
parameters

Dependent features Result Label r value Relationship co-relation

Age RT-PCR test 0.15 Weak positive correlation
MPV RT-PCR test 0.11 Weak positive correlation
RBC RT-PCR test 0.12 Weak positive correlation
LYM RT-PCR test − 0.015 Very weak negative correlation
MCHC RT-PCR test 0.046 Very weak positive correlation
WBC RT-PCR test − 0.29 Weak negative co-relation
BAY RT-PCR test − 0.063 Very weak negative correlation
EOS RT-PCR test − 0.19 Weak negative co-relation
MCV RT-PCR test − 0.055 Very weak negative correlation
MON RT-PCR test 0.2 Weak positive correlation
PLT RT-PCR test − 0.28 Weak negative co-relation
RBCDW RT-PCR test − 0.04 Very weak negative correlation
Has_Disease RT-PCR test − 0.25 Weak negative co-relation
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determine the most often predicted class for new data from 
the (aggregated) decision trees. When more trees are intro-
duced, random forests do not overfit. Instead they provide 
a limiting value of the generalisation error, as indicated 
in Eq. 1. The number of trees used for classification was 
varied with the following values (10, 50, 100, 200, 500), 
split ratio of (1,2,4,8,16,24) and minimum leaf nodes of 
(1,2,5,10,15,30).

By trying to compare an unlabelled data point to the 
training dataset, the K-nearest-neighbour (KNN) clas-
sifier improves considerably. It finds the K most related 
data-points, which are termed as KNNs [83]. A metric that 
measures distance such as Euclidean or Manhattan dis-
tance is widely utilized to determine proximity. This tech-
nique then assigns the given data point to the KNN's most 
familiar class. The number of potential nearest neighbours 
for KNN chosen were (2,3,5,8,10,12,15,20). XGBoost is 
an ensemble approach to build a series of trees succes-
sively [84]. A tree's performance is enhanced in each 
iteration based on the preceding iteration's results. The 
three components involved in any boosting algorithm are 
a loss function, an additive model and a weak learner (e.g., 
a decision tree). XGBoost used the same parameters as 
random forests with an additional learning rate parameter 
that was varied with the following values (0.01, 0.05,0.1). 
LR algorithm estimates the maximum probability of data-
points pertaining to a particular label based on the values 
of the laboratory markers that are independent in nature 
[85, 86]. The model can then be used to make predictions 
that a data-point belongs to a particular label. The sigmoid 
function is commonly utilized to generate a logistic regres-
sion model. The data points are expected to follow a linear 
function. The following is a description of LR.

(1)Px , y (Pg(h(X, 0) = Y) max
j=Y

Pg(h(X , 0 ) = j) < 0)

where P is the maximum probability that X is a member to 
class C and β0 and β1 are the parameters of the model. Test-
ing was done using a ridge regression penalty of (11,12) and 
a sparsity of (100,10,1,0.1,0.01,0,001).

The SMOTE [87] algorithm was then utilized to train 
every classifier. This approach synthetically oversamples 
minority-class data, producing the same occurrences in the 
training data for the positive and negative classes. As dem-
onstrated in Fig. 4, this strategy resamples by producing an 
optimal synthetic sample from the k neighbours adjacent to 
the model. For this research, we used a set of k = 3 neigh-
bours. We then selected the optimal of the five models pro-
duced for each classifier and retrained them in five separate 
iterations using their hyperparameters to assess their gener-
alizability. We divided the dataset into 80 per cent for model 
training and 20 percent for model testing. With the imbal-
anced data in mind, we reran the SMOTE algorithm, but this 
time only for the training data, synthetically super sampling 
the minority-class data for each of the iterations. The overall 
proposed methodology is pictorially shown in Fig. 5.

4  Results and Discussions

This section assesses the proposed machine-learning models 
and examines the outcomes. The first subsection discusses 
about the significance of various metrics used in our research, 
the second section compares the performances of various mod-
els using the above metrics. Feature importance using SHAP 
and random forest are examined in subsection three. Discus-
sions on the important blood parameters that can diagnose 
COVID-19 are portrayed in the last subsection.

(2)log(P(X)∕1 − P(X)) = �0 + �1X

Fig. 4  An example of synthetic sampling by SMOTE overall flow diagram is given below [34]
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4.1  Performance Metrics

Our prediction models are evaluated using a variety of perfor-
mance indicators. The reliability of these models was assessed 
using the following performance indicators: AUC, accuracy, 
sensitivity, specificity, f1-score, and brier score. The confu-
sion matrix is used to determine true positives’ (TP), false 

positives’ (FP), false negatives’ (FN) and true negatives’ (TN) 
as indicated in Table 4. The cases of TP occur when COVID-
19 patients are correctly predicted and the cases of TN occur 
when COVID-19 negative patients are correctly predicted. The 
number of cases that are predicted incorrectly are determined 
by false positives and false negatives.

Fig. 5  Block diagram describ-
ing the proposed method for 
the classification of COVID-19 
based on blood sample data

Table 4  Classification results

Model Accuracy Specificity Sensitivity F1-score AUC Brier score Best parameters

Simple random forest 0.60 0.71 0.33 0.66 0.69 0.23 –
Random forest after feature selection 0.89 0.97 0.35 0.84 0.90 0.115 –
Random forest after hyper parameter 

tuning (Randomized searchCV)
0.88 0.96 0.41 0.84 0.92 0.115 {‘n_estimators’: 10, ‘min_samples_

split’: 2, ‘min_samples_leaf’: 2, 
‘max_features’: 10, ‘max_depth’: 
128}

Optimal random forest (After 
SMOTE)

0.92 0.96 0.71 0.85 0.92 0.082 {‘n_estimators’: 500, ‘min_samples_
split’: 4, ‘min_samples_leaf’: 1, 
‘max_features’: ‘8’, ‘max_depth’: 
32}

 Optimal LR 0.85 0.87 0.70 0.81 0.89 0.157 {‘penalty’: ‘l2’, ‘C’: 100}
 Optimal KNN 0.75 0.77 0.59 0.73 0.68 0.25 {‘weights’: ‘distance’, ‘p’: 1, ‘n_

neighbors’: 2}
Optimal XGBoost 0.88 0.93 0.65 0.83 0.88 0.123 {‘n_estimators’: 100, ‘max_depth’: 

8, ‘gamma’: 0, ‘colsample_bytree’: 
0.8}
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Accuracy The fraction of accurately predicted cases (Both 
COVID-19 negative and positive) in the entire data. The accu-
racy of a model in percentage is calculated using the following 
formula:

Specificity It defines the percentage of genuine negatives 
correctly predicted by a model. In our research, the total pro-
portion of patients who were not infected with COVID-19 and 
were correctly predicted as negative cases by the classifier. 
A classification model with good specificity has a high TN 
and less FP rates. The formula for calculating specificity is 
presented in Eq. (2):

Sensitivity (Recall) It is the total percentage of true positives 
for the dataset. In our research, the percentage of actual coro-
navirus patients who were accurately identified as COVID-
19 patients by the classifiers. A model with good sensitivity 
always has a high number of TP and less FN values. Equa-
tion (3) is used to calculate sensitivity.

F1-Score It is a metric that measures model perfor-
mance based on precision and sensitivity. It's used to 

(3)Accuracy =
TP + TN

TP + TN + FP + FN

(4)Specificity =
TN

TN + FP

(5)Sensitivity =
TP

TP + FN

assess binary classification algorithms that categorise 
examples as either "positive" or "negative." The F1-score 
is also the harmonic mean of the model's recall and preci-
sion. It is calculated using the formula:

ROC Curve The receiver operating characteristic (ROC) 
curve portrays the relationship between true positive rate 
(TPR) and the false positive rates (FPR). The area under 
curve (AUC) represents the area within the ROC curve and 
indicates how well the classifier distinguishes between its 
two categories. The higher the AUC, the better the predic-
tions of the models.

Brier Score Brier score is a metric for assessing the qual-
ity of a probability score that has been forecasted. This is 
identical to the mean squared error. However, it only applies 
to prediction probability scores with values ranging from 0 
to 1. A perfect accurate sample will have a brier score of 0 
and 1 represents perfect inaccuracy. It is calculated using 
the formula:

where N = number of samples, ft = forecast probability, 
Ot = is the actual outcome.

(6)F1 − score = 2 ×
(Precision × Recall)

Precision + Recall

(7)BS =
1

N

N
∑

t=1

(

ft − Ot

)2

Table 5  Normalized confusion matrices for test data set

For each actual class, the corresponding row sum is 1.0

(a) Random forest Actual

Negative Positive

Predicted Negative 0.94 0.06
Positive 0.41 0.59

(b) Logistic regression Actual

Negative Positive

Predicted Negative 0.87 0.13
Positive 0.30 0.70

(c) KNN Actual

Negative Positive

Predicted Negative 0.70 0.30
Positive 0.41 0.59

(d) XGBoost Actual

Negative Positive

Predicted Negative 0.93 0.07
Positive 0.47 0.53
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4.2  Evaluation of Predictive Models

Early COVID-19 prediction can help decrease the signifi-
cant load on health care facilities by assisting in the diag-
nosis of infected patients. In this research, RF, LR, KNN 
and XGBoost supervised classifiers were utilized for the 
prediction of the deadly virus. The performances of the 
above models are depicted in Table 5. Randomized search 
technique was utilized to obtain the optimal parameters for 
the evaluation of the classifiers. The SMOTE technique was 
then applied on each of the above five models. COVID-19 
positive patients(minority-class) were synthetically over-
sampled using this strategy. This resulted in more balance in 
the training data between the positive and negative classes. 
A total of k = 3 neighbours were chosen for this specific task. 
We built final models using the fivefold cross validation, 
which specified the number of external splits. As a result, we 
selected the perfect four models and retrained them in five 
iterations using the given hyperparameters to assess their 
generalizability. We split the data in half for each cycle, 
using 80% for training and the rest as testing.

In comparison to other models, the random forest model 
produced good results. After data pre-processing and 
SMOTE analysis, the best model had a 92% accuracy. The 
accuracy of KNN, logistic regression and XGBoost were 
75%, 85% and 88% respectively. The percentage of COVID-
19 positive patients properly predicted is revealed by sensi-
tivity (recall). Our models, however, did not do well in terms 
of sensitivity. A maximum sensitivity of 71% was achieved 
using the random forest technique. Although the sensitivity 
attained was not particularly impressive, it was neverthe-
less adequate given the dataset's complexity. The number 
of COVID-19 negative patients correctly detected is calcu-
lated using specificity. Random forest obtained the highest 

specificity of 96%. KNN, LR and XGBoost obtained a speci-
ficity of 77%, 87% and 93% respectively. Specificity define 
the number of coronavirus negative patients identified cor-
rectly. A maximum specificity of 96% was obtained by the 
RF classifier. The specificity of the LR, KNN and XGBoost 
algorithms were 87%, 77% and 93% respectively. F1-score is 
a measure of recall and precision as suggested by Eq. 1 and it 
considers both false negative and false positive results. Ran-
dom forest model obtained the maximum F1-score of 85%. 
LR, KNN and XGBoost obtained 81%, 73% and 83% respec-
tively. The Receiver Operator Characteristic (ROC) curve is 
a binary classification evaluation metric as shown in Fig. 6. 
It is a probability curve that represents the true positive rate 
(sensitivity) against the false positive rate (1—specificity) 
at distinctive threshold values. These plots are created by 
changing the decision threshold and examining the TPR and 
FPR for each value. The better the model’s discrimination 
power in the diagnostic test, the closer the area is to 1. Ran-
dom forest model obtained the optimal AUC of 91%. The 
AUC obtained by LR, KNN and XGBoost were 89%,68% 
and 88% respectively. Brier score is a metric for assessing 
the quality of a probability score that has been forecasted. 
This is identical to the mean squared error. However, it only 
applies to the prediction probability scores with the values 
ranging from 0 to 1. Random forest achieved the best brier 
score of 0.09. The LR, KNN and XGBoost obtained a brier 
score of 0.15, 0.25 and 0.123 respectively.

The best random forest model used 500 decision trees 
(n-estimators), the maximum number of attributes while 
splitting the node was eight (max_features), the mini-
mum number of samples required for internal node split 
(min_samples_leaf) was 1. The maximum depth of 
each tree identified was 32 (max_depth). These features 
were identified after various iterations performed by the 

Fig. 6  AUROC curves of the various ML algorithms as follows: a Initial RF model; b RF model after pre-processing; c RF model after hyperpa-
rameter tuning; d Model after SMOTE Analysis; e Optimized RF model; f Logistic Regression; g KNN; h XGBoost
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randomizedSearchCV algorithm. The logistic regression 
model was also able to deliver good results. Penalty and 
sparsity(c) are important parameters in a logistic regression 
model. Generally large values of c give more freedom to the 
classifier. For our model, 100 was the optimal sparsity value 
along with a regularization(penalty) of l2 (Ridge regression). 
Ridge regression forces the weights towards zero and adds 
“squared magnitude” of co efficient as penalty term to the 
loss function. This algorithm was similar to random forest, 
but was slightly less able to correctly classify COVID-19 
positive patients.

The KNN algorithm achieved average results. The num-
ber of nearest neighbours (k) were varied and the optimal 
value of k was 2. The distance was calculated using the 
Minkowski distance (p = 1). This distance is equivalent to 
Manhattan distance (If p was 2, Euclidean distance would 
have been chosen). The XGBoost classifier also achieved 
excellent results. The best XGBoost model used 100 deci-
sion trees(n-estimators). The maximum depth of each tree 
identified was eight. This boosting algorithm also uses a 
unique regularization parameter called “gamma”. Unlike the 
parameters “max_depth” and “min_child_weight” that eval-
uates using “within tree” information, gamma uses “across 
trees”. Hence, nodes are added only if the gain associated is 
large than the gamma value.

Coronavirus can be predicted using ML models as a retro-
spective evaluation procedure. This research identifies how 
ML infection models can be constructed, confirmed and uti-
lised to quickly identify COVID-19 cases. The research also 
highlights the crucial significance of ML classifiers in the 
diagnosis and prevention of COVID-19. This helps in reduc-
ing the significant load on front line health workers and also 
in poor countries that suffer from lack of technology and 
healthcare resources.

4.3  Feature Importance

Glit-edge clinical judgments made using machine-learn-
ing models in healthcare settings will have an impact on 
patients' lives regardless of numerous legal and ethical 
implications. As a result, diagnostic models that are both 
interpretable and precise are in great demand [88], 89. 
Model interpretability in the medical field refers to the 
ability of healthcare practitioners to comprehend how the 
algorithm utilizes input information to make predictions 
and to check the classifier’s outputs before taking deci-
sions and to defend treatment decisions based on the ML 
models [90]. As a result, feature relevance estimations 
based on causality are crucial for predictive model inter-
pretability and robustness. The Shapley Additive exPla-
nations (SHAP) technique [91] and random forest algo-
rithm were used to analyse each feature's value in deciding 
the anticipated prediction to comprehend the suggested 
AI models. SHAP examines a model using Shapley val-
ues that describes how each attribute contributes to the 
COVID-19 prediction. Figure 7 shows a density scatter 
plot that reveals shapley values and combines feature rel-
evance with effect of various features in both Sars-CoV-2 
positive and negative patients. On the left, features are 
arranged in order of their significance. The colour on the 
right defines the feature value, the colour blue signifies a 
lower value and red signifies a higher value. Low value of 
leukocytes contributes the highest to the prediction model 
in diagnosing coronavirus positive cases, as seen in Fig. 7. 
Low value for eosinophils and platelets found using labo-
ratory results in positive individuals in clinical settings 
are also important for our predictive model. The presence 
of other diseases also indicates COVID-19 negativity. In 
addition to this, the dots on the chart are coloured accord-
ing to the normalised values of the patient's blood mark-
ers, such as the number of leukocytes. The value of a trait 
decreases as it gets closer to blue, and increases as it gets 

Fig. 7  Feature importance using 
SHAP
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closer to pink. As a result, a low value of eosinophils, as 
well as the platelet count, as seen in blue, has a beneficial 
influence on the COVID–19 output.

In random forest, each predictor feature is randomly shuf-
fled and these methods determine the importance of each 
attribute by monitoring the impact on model accuracy. The 
value of features is shown in Fig. 8 using random forest. It 
confirms and validates the most important features obtained 
from the SHAP Analysis. Figure 9 illustrates the marginal 
effect plot of blood markers on the target output that may be 
used to visualise the distribution of RT-PCR results across 
the sample. There is a central trend around normalised val-
ues for leukocytes and platelet levels, which are the low-
est of these variables. This is in line with other researches, 
which suggests that platelet count can represent pathological 
alterations in COVID–19 cases [51]. This pattern is also 
observed in monocytes and appears to be linked to illness 
severity [52].

4.4  Discussion on the Obtained Results

We identified a set of routine blood test values strongly 
linked with SARS-CoV-2 positivity in the retrospective 
research of coronavirus patients along with other patients 
with same symptoms but verified as COVID-19 negative. 
These characteristics may aid doctors in identifying poten-
tial infected patients before formal diagnostic test results 
are available.

It has been discussed by researches that the leukocyte 
count tends to decrease for COVID-19 patients [78]. Our 
research agrees with the same and leukopenia generally 
occurs with lymphopenia, even when there is a normal white 
blood count and this condition was also associated with dis-
ease severity. The part of eosinopenia in the diagnosis of 
COVID-19 was discussed in many researches. Eosinophil 
levels were lower in patients infected with coronavirus and 
was also associated with patient prognosis and mortality 
[79]. It also has a link to coagulation disorder biomarkers as 
well as tissue disorder biomarkers in the kidney, liver and 
other tissues. Thrombocytopenia is also a common obser-
vation in COVID-19 patients. According to many studies, 

Fig. 8  Feature importance using random forest

Fig. 9  Marginal effect of Leukocytes, Monocytes and Platelets on COVID-19 outcome
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COVID-19 may trigger platelet destruction [81]. Although 
the cause is uncertain, it has been linked to platelet mem-
brane components in circulating immune complexes as well 
as anti-platelet member GPIIa49-66 Igh antibodies. Since 
the current COVID-19 outbreak, multiple investigations 
have provided a co-relation between the infection and lym-
phopenia, a condition marked by abnormally low lympho-
cyte levels. However, it is more common in the elderly, who 
have a greater death risk, especially in severe cases. Lym-
phopenia and elevated levels of specific cytokines such as 
IL-6, have been linked to this devastating disease in general 
[76]. Monocytes are innate immune cells that participate 
in inflammatory reactions, phagocytosis, antigen presenta-
tion and a range of other immune function process. In our 
research, monocytes count increase for COVID-19 patients 
and agree with other conducted researches [80].

The extraordinary health catastrophe caused by the pan-
demic has prompted several groups of researches to create 
AI applications with the goal of automation in COVID-19 
diagnosis and screening. Despite this, only a few AI models 
have been designed which is solely based on routine blood 
tests. Formica et al. [92] designed an AI model based on 
clinical and laboratory parameters with 83% sensitivity and 
82% specificity. However, only a small sample was included 
(171). Banerjee et al. [65] used AI models on a public dataset 
containing 600 cases (39 positive COVID-19 patients). They 
found high specificity (91%) but extremely low sensitivity 
(43%) rendering it inappropriate for early detection. Avila 
et al. [93] designed a model that used a Bayesian approach 
with 76.7% sensitivity and specificity using the same dataset 
as [65]. Joshi et al. [94] used a CBC dataset for training a 
logistic regression model on a dataset that achieved higher 
sensitivity (93%) and lower specificity (63%). Finally, Yang 
et al., [45] in a recent study, constructed a gradient boosting 
model using 27 parameters (42% were COVID-19) includ-
ing both blood count and biochemical analysis. An AUC of 
0.85 was reported. The summary of comparisons is given 
in Table 6.

To overcome the constraints of the previous models, we 
used machine learning to analyse the result of routine blood 
examinations, which are typically available for inpatients 
in lesser time interval and at a cheaper cost than molecular 

and radiographic tests. For the dataset, we used four models 
that are commonly deployed and adapted in medical ML. 
There are numerous benefits of utilizing electronic medical 
records, including patient information availability and secu-
rity, data integration/standardization and procedural auto-
mation. Coronavirus is known to be highly contagious and 
quick assays to diagnose the disease are currently available. 
As a result, we underline that the proposed approach aimed 
at assisting physicians in their decision-making by offer-
ing more information. Furthermore, a significant difference 
of the proposed procedure is the display of model explain-
ability, making the resources understandable to the medical 
personnel and thus assisting them in the final diagnosis.

5  Key Issues and Future Directions

This section discusses about the various challenges and the 
clear directions for future researches.

5.1  Key Issues

• Diagnosing COVID-19 from other viral infections Blood 
parameters such as eosinophils, platelets, leukocytes and 
monocytes and others vary for other viral infections too. 
Extensive research is required to find the parameters that 
can be used to distinguish coronavirus from other viral 
diseases. Other tests might be required to confirm the 
highly infectious virus.

• Single centric data The models lacked from external vali-
dation since the data belonged to a single hospital. It is 
very important to consider data from different geographi-
cal territories to validate the effectiveness of the models.

• Data Imbalance The data obtained is extremely imbal-
anced. The number of COVID-19 cases are extremely 
few compared to the non-COVID-19 cases. For any ML 
algorithm, it is very important for the data to be bal-
anced, since balanced datasets are known to give good 
performance.

• Data Consistency The original values of the blood param-
eters are not known since the dataset was already normal-
ized (z-normalization) by the hospital. It is extremely 

Table 6  Comparison between 
the related studies and the 
proposed work

Reference Accuracy of 
best model

Sensitivity of 
best model

Specificity of 
best model

AUC of 
best model

ML models used

[92] – 83% 82% – Only Statistical analysis
[65] 85% 91% 43% 80% ANN, RF, glmnet
[93] – 76% 76% 84% Naïve Bayes
[94] – 93% 63% 95% Many models
[45] – – – 85% XGBoost
Proposed 91% 94% 71% 91% RF, XGBoost, LR, KNN, SVM
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important to know the exact values for various statistical 
analysis.

• Lack of availability of important markers From various 
researches, it has been proved that various markers such 
as CRP, D-Dimer, LDH and ferritin are very important 
in diagnosing and predicting the severity of coronavirus. 
However, the results of those tests were not available in 
the dataset.

5.2  Future Directions

• Getting a better dataset For subsequent researches, we 
aim to collect a more balanced dataset. Various important 
blood parameters (D-dimer, LDH, CRP) should also be 
included. The severity of COVID-19 could also be pre-
dicted.

• Usage of Multimodal ML algorithms Ensemble algo-
rithms are a combination of more than one base ML 
model that is used to improve the accuracy. Rather than 
creating a single model, ensemble methods consider a 
large number of models and combines them to produce 
a single final reliable classifier.

• Deep learning Unlike ML, deep learning models can per-
form feature engineering without external intervention. 
Using GPU’s and TPU’s will also enable a faster and 
efficient learning. The neural network models also work 
efficiently with unstructured data.

• Medical Validation After validation of the ML models 
by clinical experts, the models can be deployed in vari-
ous health care facilities in the near future to reduce the 
burden on health care workers.

• Combining multiple diagnostic methods to improve accu-
racy These models can be used with other AI deployed 
models that use CT- Scans and X-ray data to improve the 
model performance. Integration of these models has the 
potential to yield optimal results.

6  Conclusion

COVID-19 must be identified early for patients to receive 
appropriate treatments and prevent the pandemic from 
spreading. Recent research has revealed the use of labora-
tory testing for preliminary patient screening, which is sup-
ported by the factuality that clinical exams are relatively 
less expensive, expensive and readily accessible in most 
treatment centres. We initially conducted an overview of 
current SARS-CoV-2 detection strategies utilising regu-
lar laboratory and clinical data in this article to encourage 
researchers to develop efficient prediction models to tackle 
this infectious disease. Later, multiple ML models for diag-
nosing COVID-19 using several clinical and laboratory 

markers were developed. Since four separate classifiers were 
utilised, structural diversity was achieved. By comparing the 
positive outcomes and results to the previous researches, the 
classifiers' effectiveness and reliability for diagnosis were 
also established. We used the SHAP method to assess the 
value of each attribute in impacting the expected result to 
comprehend the suggested findings better.

However, some issues must be overcome in order for ML 
to advance in accurate and automated COVID-19 diagnosis, 
especially in professional healthcare settings. High quality 
datasets, external validation and rigorous testing with the 
guidance from various doctors and healthcare personnel 
must be performed in the future.
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