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Abstract: Diagnostic and screening tests may have risks such as misdiagnosis, as well as the potential
benefits of correct diagnosis. Effective communication of this risk to both clinicians and patients
can be problematic. The purpose of this study was to develop a metric called the “efficiency
index” (EI), defined as the ratio of test accuracy and inaccuracy, to evaluate screening tests for
dementia. This measure was compared with a previously described “likelihood to be diagnosed
or misdiagnosed” (LDM), also based on “numbers needed” metrics. Datasets from prospective
pragmatic test accuracy studies examining four brief cognitive screening instruments (Mini-Mental
State Examination; Montreal Cognitive Assessment; Mini-Addenbrooke’s Cognitive Examination
(MACE); and Free-Cog) were analysed to calculate values for EI and LDM, and to examine their
variation with test cut-off for MACE and dementia prevalence. EI values were also calculated using a
modification of McGee’s heuristic for the simplification of likelihood ratios to estimate percentage
change in diagnostic probability. The findings indicate that EI is easier to calculate than LDM and,
unlike LDM, may be classified either qualitatively or quantitatively in a manner similar to likelihood
ratios. EI shows the utility or inutility of diagnostic and screening tests, illustrating the inevitable
trade-off between diagnosis and misdiagnosis. It may be a useful metric to communicate risk in a
way that is easily intelligible for both clinicians and patients.
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1. Introduction

No medical treatment or test is without potential harms as well as benefits, and hence
associated with risk. Communicating such risk to patients for the purpose of shared
decision making has attracted much attention and research in recent times, for example
into the most appropriate methods by which to achieve such communication effectively.
Guidance on both verbal and numerical qualifiers of risk has appeared [1,2]. As regards
numerical qualifiers, options often used in the context of therapeutic interventions include
absolute risk (AR), relative risk (RR), and the number needed to treat (NNT) [3], but no
consensus on the optimum method has been established.

Considering diagnostic or screening tests, performance is typically described by
comparison with a reference standard, such as a criterion diagnosis or a reference test, by
constructing a 2 x 2 contingency table, such that all (N) index test results may be cross-
tabulated as true positive (TP), false positive (FP), false negative (FN), or true negative
(TN). From this standard 2 x 2 contingency table (Figure 1), various parameters of test
discrimination may be calculated, many of which are familiar to clinicians as descriptors
of test performance, such as sensitivity (Sens; or true positive rate) and specificity (Spec;
or true negative rate), positive and negative predictive values, and positive and negative
likelihood ratios (LR+, LR—) [4].
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Figure 1. Standard 2 x 2 contingency table for diagnostic or screening test accuracy studies and
formulae for paired measures.

Sensitivity (Sens) = TP /(TP + FN)

Specificity (Spec) = TN/(FP + TN)

Positive predictive value (PPV) = TP /(TP + FP)

Negative predictive value (NPV) = TN/(FN + TN)

Positive likelihood ratio (LR+) = TP /(TP + FN)/FP/(FP + TN)
Negative likelihood ratio (LR—) = FN/(TP + FN)/TN/(FP + TN)
Accuracy (Acc) = (TP + TN) /(TP + FP + EN + TN)

Inaccuracy (Inacc) = (FP + FN) /(TP + FP + FN + TN)

One may thus distinguish from the 2 x 2 contingency table two conditions or re-
lations between the index test and the reference standard: consistency, or matching, of
outcomes (+/+ or TP, and —/— or TN); and contradiction, or mismatching (+/— or FP,
and — /+ or FN). From these two conditions, the paired complementary parameters of
accuracy (Acc = TP + TN/N) and inaccuracy or error rate (Inacc = FP + FN/N) may be
derived. As negations, these may also be described using the Boolean NOT operator, since
Acc =1 — Inaccand Inacc =1 — Acc.

How might these various test measures be effectively communicated to patients who
are unfamiliar with the principles and nomenclature of binary classicism, but worried that
they might have a dementia disorder because of memory symptoms? A metric called the
“likelihood to be diagnosed or misdiagnosed” (LDM) has been developed [5,6] which may
be useful for the purpose of communicating risk, specifically the risk of testing leading to
misdiagnosis as opposed to correct diagnosis.

LDM was conceptualised as analogous to the “likelihood to be helped or harmed”
(LHH) metric which was developed to communicate the results of therapeutic (randomised
controlled) trials. LHH is based on “number needed to” metrics, specifically the number
needed to treat (NNT) for a specified treatment outcome (e.g., cure, remission, 50% reduc-
tion in symptoms) [7] and the number needed to harm (NNH) [8]. LHH is the ratio of NNH
to NNT, which is desirably as large as possible (high NNH, low NNT), thus summarising
treatment benefits and risks [9].

LDM for diagnostic and screening tests is the ratio of number needed to misdiagnose
(NNM) to number needed to diagnose (NND), where NNM is 1/Inacc (as defined by
Habibzadeh and Yadollahie [10]) and NND is 1/(Sens + Spec — 1) or 1/Youden index (Y)
(as defined by Linn and Grunau [11]). LDM is desirably as large as possible (high NNM,
low NND) [5,6], thus summarising testing benefits and risks.

The LDM metric has proved serviceable in evaluating a wide range of neurological
signs and cognitive screening instruments (CSIs) used in the evaluation of disorders of
cognition [5,6,12]. Nevertheless, LDM has some limitations and shortcomings. Consistent
with its ad hoc development, based on existing metrics, LDM combined rates with different
denominators which are not easily reconciled. Calculation of several parameters from the
2 x 2 table is required to reach LDM (Sens, Spec, Y, NND, Inacc, NNM), although ad hoc
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calculators exist [13]. Furthermore, the “number needed to diagnose” based on the Youden
index incorporates considerations not only of diagnosis but also of misdiagnosis, since
Sens =1 — false negative rate, and Spec = 1 — false positive rate. The resulting LDM has
boundary values of — 1 (useless test: Sens = Spec =0, NND = — 1; Inacc =1, NNM = 1)
and oo (perfect test: Sens = Spec = 1, NND = 1; Inacc = 0, NNM = o0), and so the LDM
values cannot be perfectly equated with the qualitative classification scheme developed
for likelihood ratios (LR) [14] which has been used for making recommendations on tests
suitable for dementia by the UK National Institute for Health and Care Excellence [15].
Unlike LDM, LR has boundary values of 0 and oo, although LDM shares with LR an
inflection point at 1 (LDM < 1 favours misdiagnosis, LDM > 1 favours diagnosis) [5,6].

A simple method to overcome these shortcomings of LDM may be proposed. The
NND may be redefined, as NND*, using Acc, rather than Sens and Spec, such that
NND* =1/Acc. This formulation is analogous to the previous definition of NNM [10],
where NNM = 1/Inacc. Both these measures now share the same denominator from the
2 x 2 contingency table, N, and calculation is thus simplified, such that:

NNM/NND* = (1/Inacc)/(1/Acc)

Whilst this ratio might justifiably be termed a “likelihood to be diagnosed or misdiag-
nosed”, an alternative name would be preferable to avoid confusion with the previously
defined LDM. Kraemer denoted TP + TN as “efficiency” [16], so FP + FN might be termed
“inefficiency”, and hence the ratio of efficiency/inefficiency may be denoted as the “effi-
ciency index” (EI). Hence:

EI = Acc/Inacc D)

= (TP + TN)/(FP + EN) 2)

The boundary values of EI are 0 (useless test: Acc = 0; Inacc = 1) and oo (perfect test:
Acc =1, Inacc = 0), as for likelihood ratios.

The primary aim of this study was to examine the utility of EI and compare it to
the previously defined LDM parameter when applied to test accuracy studies of several
brief CSIs, namely Mini-Mental State Examination (MMSE) [17], Montreal Cognitive As-
sessment (MoCA) [18], Mini-Addenbrooke’s Cognitive Examination (MACE) [19], and
Free-Cog [20]. Secondary aims were: to examine other methods to calculate EI and to
compare performance with LRs, particularly with McGee’s method of simplifying LR
values as percentage changes in diagnostic probability [21]; and to compare EI with a
previously described measure based on Acc and Inacc, the identification index (II) [22],
defined as II = (Acc — Inacc) =2 Acc — 1.

2. Methods

Data from pragmatic prospective screening test accuracy studies using a standardised
methodology were re-analysed. The studies were undertaken in a dedicated cognitive
disorders clinic located in a secondary care setting (regional neuroscience centre) and
examined four brief cognitive screening instruments (administration time ca. 5-10 min),
all with a denominator of 30 points: Mini-Mental State Examination (MMSE) [23,24],
Montreal Cognitive Assessment (MoCA) [25], Mini-Addenbrooke’s Cognitive Examination
(MACE) [26], and Free-Cog [27].

In each study, criterion diagnosis of dementia followed standard diagnostic criteria
(DSM-1V) and was made independent of scores on index CSIs to avoid review bias. For
each study, prevalence of dementia was calculated as the sum of TP and FN divided by the
total number of patients (IN) assessed. All studies followed either the STAndards for the
Reporting of Diagnostic accuracy studies (STARD) [28] or the derived guidelines specific
for dementia studies, STARDdem [29], dependent on the exact date at which each study
was undertaken. In all studies, subjects gave informed consent and study protocols were
approved by the institute’s committee on human research (Walton Centre for Neurology
and Neurosurgery Approval: N 310).
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For each CSI, the following parameters were calculated: Acc, Inacc, Y, LDM, II; and EI
by using the values of Acc and Inacc (Equation (1)).

The variation of EI with test cut-off was examined using data from the test accuracy
study of MACE [26] and compared with the variation in LDM. The variation of EI with
prevalence of dementia (P) was also examined and compared to values for LDM [12].

El was also calculated from values of test Sens and Spec in the MACE study. Since:

Acc =Sens-P + Spec-(1 — P)

and
Inacc = (1 — Sens) P + (1 — Spec)-(1 — P)

Hence:
EI = Sens P + Spec-(1 — P)/ (1 — Sens) P + (1 — Spec) (1 — P) 3)

The performance of EI was also compared to that of LRs which may be used to
calculate difference in pre- and post-test odds, since post-test odds = pre-test odds x LR.
McGee showed that LR+ values of 2, 5, and 10 increased the probability of diagnosis by
approximately 15%, 30%, and 45%, respectively, whereas LR— values of 0.5, 0.2, and 0.1
decreased the probability of diagnosis by approximately 15%, 30% and 45%, respectively.
These figures derive from the almost linear relationship of probability and the natural
logarithm of odds over the range 0.1-0.9, such that the percentage change in probability
may be calculated independent of pre-test probability as:

Change in probability = 0.19 x loge(LR)

This simple heuristic obviates calculations between pre- and post-test odds and proba-
bilities [21]. As the boundary values of EI (0, o) correspond to those of LRs, calculations
were undertaken to assess whether or not the heuristic described for LR values also holds
for EI values. These calculations used data from the studies of MACE [26] and MoCA [25].
As both of these studies had a similar (low) pre-test probability of dementia, the issue was
further examined using data from a test accuracy study of the Test Your Memory (TYM)
test [30], this being the study with the highest pre-test probability of dementia reported
from this clinic [31] (because an informant is generally required to assist with TYM, and
many patients without dementia attend the clinic alone [32]).

3. Results

A summary of the studies of MMSE, MoCA, MACE, and Free-Cog (Table 1) showed
broadly similar prevalence of dementia, median age, and gender ratio in each patient cohort.

Table 1. Study demographics and test thresholds for dementia.

CSI N P= lfrevalence of Age, Median Gender Test Thresho.ld Ref(s)
Dementia = (TP + FN)/N (years) (F:M; %F) for Dementia
MMSE 244 0.18 60 117:127; 48 <26/30 [23,24]
MoCA 260 0.17 59 118:142; 45 <26/30 [25]
MACE 755 0.15 60 352:403; 47 <20/30 [26]
Free-Cog 141 0.11 62 61:80; 43 <22/30 [27]

Abbreviations: CSI = cognitive screening instrument; TP = true positive; FN = false negative; MMSE = Mini-Mental State Examination;
MoCA = Montreal Cognitive Assessment; MACE = Mini-Addenbrooke’s Cognitive Examination.

Comparing the various metrics for the diagnosis of dementia versus no dementia for
each of these CSIs (Table 2) showed a similar ranking (best to worst) for Acc, Y, LDM, II,
and EL
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Table 2. Comparing metrics for diagnosis of dementia vs. no dementia by CSI (using cut-offs in Table 1).

CSI Acc Inacc Y (=Sens + Spec — 1) LDM (=NNM/NND) II (=2.Acc — 1) EI (=Acc/Inacc)
MMSE 0.676 0.324 0.497 1.536 0.352 2.089
MoCA 0.427 0.573 0.313 0.547 —0.146 0.745
MACE 0.738 0.262 0.619 2.360 0.475 2.817

Free-Cog 0.709 0.291 0.670 2.320 0.418 2.439

Abbreviations: CSI = cognitive screening instrument; Acc = correct classification accuracy; Inacc = inaccuracy; Y = Youden index;
LDM = likelihood to be diagnosed or misdiagnosed; NNM = number needed to misdiagnosis; NND = number needed to diagnose;
II = identification index; EI = efficiency index; MMSE = Mini-Mental State Examination; MoCA = Montreal Cognitive Assessment;
MACE = Mini-Addenbrooke’s Cognitive Examination.

Comparing the El and LDM metrics across a range of MACE cut-offs (Table 3, Figure 2)
showed that, as for the other CSIs (Table 2), EI was a more optimistic score than LDM and
that, unlike II, EI nowhere had a negative value. The maxima for EI and LDM almost
coincided (LDM < 15/30; EI < 14/30). Values for EIl and LDM were approximately equal at
higher test cut-offs but diverged at lower cut-offs in this dataset, which may be a reflection
of high sensitivity and low specificity of MACE for the diagnosis of dementia [26].

Table 3. Diagnosis of dementia: comparing metrics at various MACE cut-offs.

Cut-Off Acc Inacc Y LDM II EI
<29/30 0.170 0.830 0.02 0.02 —0.66 0.204
<28/30 0.197 0.803 0.05 0.06 —0.61 0.246
<27/30 0.262 0.738 0.12 0.16 —0.48 0.355
<26/30 0.336 0.664 0.21 0.33 —0.33 0.507
<25/30 0.417 0.583 0.31 0.53 -0.17 0.716
<24/30 0.495 0.505 0.39 0.76 —0.01 0.982
<23/30 0.560 0.440 0.47 1.07 0.12 1.27
<22/30 0.625 0.375 0.53 1.43 0.25 1.67
<21/30 0.687 0.313 0.59 1.90 0.37 2.20
<20/30 0.738 0.262 0.62 2.36 0.48 2.82
<19/30 0.771 0.229 0.61 2.67 0.54 3.36
<18/30 0.801 0.199 0.60 3.00 0.60 4.03
<17/30 0.808 0.192 0.56 2.95 0.62 421
<16/30 0.841 0.159 0.58 3.63 0.68 5.29
<15/30 0.860 0.140 0.56 4.00 0.72 6.12
<14/30 0.868 0.132 0.51 3.92 0.74 6.55
<13/30 0.866 0.134 0.41 3.15 0.73 6.48
<12/30 0.866 0.134 0.37 2.79 0.73 6.48

Abbreviations: Acc = correct classification accuracy; Inacc = inaccuracy; Y = Youden index; LDM = likelihood to
be diagnosed or misdiagnosed; II = identification index; EI = efficiency index.
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Figure 2. Plot of efficiency index (EI; upper line, triangles) and of likelihood to be diagnosed or
misdiagnosed (LDM; lower line, diamonds) values (y axis) vs. MACE cut-off score (x-axis).

Comparing the EI and LDM metrics across a range of P (Table 4, Figure 3) showed
that values increasingly diverge at higher prevalence in this dataset.

Table 4. EI and LDM values of MACE for dementia diagnosis at various prevalence levels at fixed
test cut-off (<20/30).

PP Acc Inacc LDM (=NNM/NND EI (NNM/NND*
! =Y/Inacc) =Acc/Inacc)
0.1,0.9 0.728 0.272 2.70 2.68
0.2,0.8 0.748 0.252 2.45 2.97
0.3,0.7 0.768 0.232 2.67 3.33
0.4,0.6 0.789 0.211 2.93 3.74
0.5,0.5 0.809 0.191 3.25 4.24
0.6,0.4 0.830 0.170 3.64 4.88
0.7,0.3 0.851 0.149 414 5.71
0.8,0.2 0.871 0.129 4.80 6.75
0.9,0.1 0.892 0.108 5.72 8.26
El and LDM
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Figure 3. Plot of efficiency index (EL upper line, triangles) and of likelihood to be diagnosed or
misdiagnosed (LDM; lower line, diamonds) values (y axis) vs. prevalence of dementia (x-axis).
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Using Equation (1), the value of EI for MACE was 2.817 (Table 2). This value was
checked by using Equation (3), substituting the values for dementia prevalence (P = 0.151)
and Sens and Spec at the test threshold for MACE (<20/30; Table 1), respectively 0.912 and
0.707. Hence,

El = (0.912 x 0.151) + (0.707 x 0.849) /(0.088 x 0.151) + (0.293 x 0.849)
= 0.738/0.262
— 2817

The same value of EI was thus obtained using two different methods.

To examine whether or not McGee’s simple rules obviating calculations between pre-
and post-test odds and probabilities for LRs [21] are also applicable to Els, data from the
MACE study were used [26], wherein:

Dementia prevalence = 114/755 = 0.151 = pre-test probability

Pre-test odds = pre-test probability /(1 — pre-test probability) = 0.1778

It is known that:
Post-test odds = pre-test odds x LR

Substituting EI for LR, let:
Post-test odds = pre-test odds x EI
In the MACE study, EI = 2.817, favouring correct diagnosis. Hence:
Post-test odds = 0.1778 x 2.817 = 0.500

Post-test probability = post-test odds/(1 + post-test odds) = 0.33

So, using calculations based on the observed pre-test probability, MACE increased
diagnostic probability of dementia in this patient cohort from approximately 15% to ap-
proximately 33%, an 18% increase.

Using the equation derived by McGee to calculate change in diagnostic probability
independent of pre-test probability [21], and substituting LR with EI:

Change in probability = 0.19 x log, (EI)
= 0.19 x log, (2.817)
= 0.197

Thus similar values for percentage change in probability were obtained using two
different methods (18% vs. 19.7%).

Calculations of change in diagnostic probability were performed assuming EI values
of 2.0, 5.0, 10.0, 0.5, 0.2, and 0.1 using both the methods, i.e., dependent and independent
of observed pre-test probability. Similar calculations were also performed using the MoCA
test accuracy study data [25], in which pre-test probability was similar to MACE but EI
was 0.745 (i.e., favouring misdiagnosis). The results (Table 5) show that for EI values > 1,
favouring correct diagnosis, the percentage changes in diagnostic probability were similar
when calculated independent of pre-test probability (column 1) and when calculated using
observed pre-test probabilities (columns 2 and 3), approximating McGee’s 15, 30, and
45% increases for EI = 2, 5 and 10. However, for EI values < 1, favouring misdiagnosis,
McGee’s 15, 30, and 45% decreases for EI 0.5, 0.2 and 0.1 were not observed, presumably
because of the low pre-test probabilities (ca. 15%) in these patient cohorts. In the S-shaped
curve which describes the relationship between probability and loge odds [21], this may
correspond to the part of the plot away from the nearly linear portion which runs from
approximately 0.1 to approximately 0.9.
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Table 5. EI values calculated independent of pre-test probability and for selected cognitive screening instruments based on

pre-test probability observed in test accuracy studies.

% Change in Diagnostic MACE: % Change in MoCA: % Change in TYM: % Change in
EI Probability Calculated Diagnostic Probability Diagnostic Probability Diagnostic Probability
Independent of Pre-Test Based on Pre-Test Based on Pre-Test Based on Pre-Test
Probability as 0.19 x log.(EI) = Probability (0.15) [26] = Probability (0.17) [25] = Probability (0.35) [31]
10.0 +43.7 +49 +54 +49
5.0 +30.5 +32 +34 +38
4.882 (TYM) +30.1 - - +37
2.817 (MACE) +19.7 +18 - -
2.0 +13.2 +11 +12 +17
1.0 0 0 0 0
0.745 (MoCA) -5.6 - —4 -
0.5 —13.2 -7 -8 —14
0.2 -30.5 -12 —13 —25
0.1 —43.7 —13 —15 —30

To further examine this point, data from a test accuracy study of the Test Your Memory
(TYM) test [31] were reanalysed, wherein the pre-test probability of dementia was 0.35, the
highest reported in studies from this clinic. The change in probability based on the observed
pre-test probability (Table 5, column 4) approximated the values calculated independent of
pre-test probability (column 1) more closely than for MACE and MoCA for EI values < 1.

4. Discussion

This paper defines a new parameter, EI, which may be of use not only for the evaluation
of diagnostic and screening tests but also for the communication of risk to both clinicians
and patients. The examples presented illustrate how EI may be used in a clinical setting.
EI may be applied in any test accuracy study which permits construction of a 2 x 2
contingency table.

EI may be conceptualised, like a previously defined LDM parameter, as a ratio of test
harms (misdiagnosis) and benefits (diagnosis), and hence a measure of what has previously
been termed the “fragility” of screening and diagnostic tests [33]. Indeed, it might have
been named the “fragility index”, understood as a propensity to break or fail. However,
“efficiency index” emphasises its relation to efficiency, understood as the ability to do
things well, and conceptualised as a ratio of useful output to total input, or product per
cost. However, EI differs from efficiency in that efficiency always has a value < 1, whereas
the upper bound of the EI, for a perfect diagnostic or screening test, is co.

Comparing EI to LDM, EI has kinship with, but advantages over, LDM. It is more
easily explicable (and, hence, more elegant) than the makeshift (although not arbitrary)
derivation of LDM. El is easier to calculate than LDM, requiring at its simplest only the
four values from the cells of the 2 x 2 contingency table (Equation (2)), whilst retaining the
inflection point at the value of 1 (EI > 1 indicates greater likelihood of correct diagnosis;
EI < 1 indicates greater likelihood of misdiagnosis).

EI and LDM share the same denominator, Inacc, but differ in numerator, Acc and
Y, respectively, these numerators being the multiplicative inverse of NND* vs. NND,
respectively. Interpreting the results (Table 3, Figure 2), the differences in EI and LDM
values thus relate to the higher values of Acc compared to Y (lower values of NND*
compared to NND), especially at lower cut-off values.

Comparing EI to LRs, whilst both can be calculated from the values of Sens and Spec,
and share boundary values (0, o), El is dependent on prevalence (Equation (3)) whereas LRs
are not (at least algebraically, although in practice there may be variation [34]). Based on the
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calculations (Table 5) it seems appropriate to use the same qualitative classification scheme
for EI values as proposed by Jaeschke et al. for LRs [14] (Table 6, column 1). Furthermore,
McGee's simplification of LRs, as percentage change in diagnostic probability [21], also
appears to be applicable to EI values (Table 5), and hence this numerical classification might
also be used (Table 6, column 2). Interpreting the EI results is therefore straightforward for
clinicians evaluating diagnostic or screening tests, requiring no new classificatory system.

Table 6. Suggested classification of EI values.

EI Value

Qualitative Classification of Change in Probability of Approximate % Change in Probability

Diagnosis (after Jaeschke et al. [14]) of Diagnosis (after McGee [21])

<0.1 Very large decrease -

0.1 Large decrease —45

0.2 Large decrease -30

0.5 Moderate decrease -15

1.0 0

2.0 Moderate increase +15

5.0 Moderate increase +30

10.0 Large increase +45
>10.0 Very large increase -

EI may be compared to other unitary measures which have been used to summarise
diagnostic or screening test performance, for example II [22]. Unlike this simple subtraction
of Inacc from Acc, EI does not produce negative values which have been previously noted
to occur with II (if Inacc > Acc; Table 3) and whose meaning is difficult to comprehend
(indeed may be meaningless) [26]. Part of the reason for this may be that, unlike II, EI is
developed from “number needed to” metrics (NND*, NNM), whereas II was used as the
basis for a “number needed to” metric, the “number needed to screen” [22]. EI therefore
has advantages over II.

Comparing El to Y, El is dependent on disease prevalence (Table 4, Figure 3), since Acc
and Inacc are calculated using values from both columns of the 2 x 2 contingency table,
whereas Y is independent of P since Sens and Spec are strict columnar ratios (although
these values may of course vary with the heterogeneity of clinical populations, or spectrum
bias [34]). The maximal value of Y arbitrarily assumes disease prevalence to be 50%,
which is not often the case in clinical practice. Both El and Y treat FN and FP as equally
undesirable, an assumption which is often not the case in clinical practice where FN may be
considered more costly. Y can be negative (boundary values —1, +1), with negative values
occurring if the test result is negatively associated with the correct diagnosis (although Y
can be normalised, as the balanced accuracy). This is unlike EI (boundary values 0, o),
which makes risk of misdiagnosis more explicit (values < 1), although this does not directly
indicate whether FP or EN is the principal cause of inaccuracy and hence misdiagnosis.

Comparing EI to the diagnostic odds ratio, DOR (=TP x TN/FP x FN), both treat FN
and FP as equally undesirable. DOR is independent of P, at least notionally, since it may
be expressed solely in terms of Sens and Spec (=(Sens x Spec)/[(1 — Sens) x (1 — Spec)]).
Both DOR and EI give optimistic results, DOR by choosing the best quality of a test and
ignoring its weaknesses, particularly in populations with very high or very low risk. Ratios
of DOR become unstable and inflated as the denominator approaches zero, which is also
true of EI, although because the classes from the 2 x 2 contingency table are treated
additively in EI rather than multiplicatively as in DOR the chance of denominator being
zero is less. Hence, EI may have advantages over DOR.

EI may also be compared to other unitary measures, including the critical success
index, F measure, area under the receiver operating characteristic curve (AUC ROC), and



Brain Sci. 2021, 11, 1473 10 of 11

Matthews’ correlation coefficient (MCC) [4,33,35]. Critical success index and F measure
ignore TN values, unlike EI. AUC ROC combines test accuracy over a range of thresholds
which may be both clinically relevant and clinically nonsensical, and hence gives a very
optimistic measure of test accuracy. MCC takes into account the size of all four classes
in the 2 x 2 contingency table and is widely regarded as being a very informative score
for establishing the quality of a binary classifier, but the calculation (geometric mean of Y
and the predictive summary index) is less straightforward than for EI, and values can be
negative (boundary values —1, +1). Hence, EI may have advantages over these measures,
none of which readily conveys risk of misdiagnosis.

For the communication of risk to patients, use of qualitative information is generally
discouraged because of the potential ambiguity of such terms [1,2]. Hence, the suggested
qualitative classification of EI values (Table 6, column 1) may not be of use in this situation.
However, unlike other quantitative measures, EI involves no fractions, frequencies, or per-
centages, which may be advantageous when discussing risk with those with low numeracy
skills [1,2]. El is based on “number needed” metrics which were originally deemed more
intuitive for patients as well as clinicians [7], but empirical studies have suggested that
NNT is more difficult for patients to understand than AR and RR [3,36].

El is a dimensionless number, like RR and DOR, and a value of >1 suggests diagnostic
value, just as a value of >1 suggests association for RR and better than random classification
for DOR. As a consequence of the coronavirus pandemic, there may be a general awareness
of another metric which has an inflection point at 1, namely Ry, the reproduction number,
used to denote the spread of infectious disease in a population, where infection is spreading
if Ry > 1, but not so if <1.

In summary, the proposed EI may prove an acceptable unitary measure of diagnostic
and screening test utility for clinicians as it is easy to calculate and interpret. It may also be
useful for communicating risk of diagnosis and misdiagnosis, in the specific example of
dementia, to patients, but further empirical studies will be required specifically to address
this question.
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