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Abstract

Crystal structure prediction has been one of the fundamental and challenging problems in

materials science. It is computationally exhaustive to identify molecular conformations and

arrangements in organic molecular crystals due to complexity in intra- and inter-molecular

interactions. From a geometrical viewpoint, specific types of organic crystal structures can

be characterized by ellipsoid packing. In particular, we focus on aromatic systems which are

important for organic semiconductor materials. In this study, we aim to estimate the ellipsoi-

dal molecular shapes of such crystals and predict them from single molecular descriptors.

First, we identify the molecular crystals with molecular centroid arrangements that corre-

spond to affine transformations of four basic cubic lattices, through topological analysis of

the dataset of crystalline polycyclic aromatic molecules. The novelty of our method is that

the topological data analysis is applied to arrangements of molecular centroids intead of

those of atoms. For each of the identified crystals, we estimate the intracrystalline molecular

shape based on the ellipsoid packing assumption. Then, we show that the ellipsoidal shape

can be predicted from single molecular descriptors using a machine learning method. The

results suggest that topological characterization of molecular arrangements is useful for

structure prediction of organic semiconductor materials.

Introduction

Finding novel materials with desired properties often requires exhaustive search. In computa-

tional materials science, ab initio calculations based on density functional theory (DFT) have

played a central role in analyzing physical properties of materials and testing the validity of

experimental results. Although ab initio calculations are powerful, versatile, and efficient, they

are still computationally expensive for several important classes of problems [1]. An alternative

approach is materials informatics which exploits data science and informatics for reducing

computational cost in material research [2, 3]. In particular, machine learning techniques have

been increasingly leveraged to identify the hidden rules governing the structure-property-
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function relationship in materials from data. These methods have been successful in predicting

material properties from atomistic and molecular information [4–12].

One of the challenging problems in materials science is crystal structure prediction (CSP).

The goal of CSP is to accurately predict plausible crystal structures from atomistic and/or

molecular information. The properties of molecular crystalline materials, such as energies and

electronic characteristics, are highly sensitive to the arrangement of molecules due to complex

intra- and inter-molecular interactions [13]. Therefore, CSP for molecular crystals is a signifi-

cant step for materials property prediction [14]. Developing new effective computational

methodologies for CSP is imperative for crystal engineering [15, 16], which aims to design

crystalline materials with target structures leading to desired physical properties. However,

even state-of-the-art computational methods for CSP require high computational cost for

identifying plausible molecular arrangements which correspond to minimum energy structure

[17].

From a geometrical viewpoint, some organic crystal structures are characterized by molecu-

lar packing [18, 19]. The structures of organic compounds with low-symmetry molecules have

been analyzed under the close packing principle which implies that the minimum energies of

compounds correspond to the packing structures of 3D molecular bodies with the least occu-

pied volume [20–22]. The close packing principle and its modifications work well for many

classes of organic crystals [23]. Whereas inorganic crystal structures composed of highly

symmetric atomic bodies are often explained by close packing of spheres, organic crystal struc-

tures consisting of low-symmetry molecular bodies are linked to dense packing of ellipsoids

[24, 25].

Many organic semiconductor materials are involved in aromatic systems. Motivated by this

fact, we focus on the dataset of polycyclic aromatic molecules which are used to assess the

effectiveness of our method. We first employ topological data analysis to identify the organic

molecular crystals where the arrangement of molecular centroids coincides with affine trans-

formations of basic cubic lattices. Then, we estimate the shapes of ellipsoids packed in the

identified organic crystals under the ellipsoid packing assumption. Moreover, we show that

the ellipsoidal shapes can be predicted from single molecular descriptors using a machine

learning method for the dataset of polycyclic aromatic molecules. The ellipsoid radii can corre-

spond to the approximate intracrystalline molecular shape, and therefore, our method is useful

for predicting partial information of crystal structures.

Methods

Overview

An overview of our method for estimating ellipsoidal molecular shapes is shown in Fig 1. Our

method relies on the concept of ellipsoid packing for organic crystal structures. We generate a

persistence diagram from an arrangement of molecular centroids. If the generated persistence

diagram coincides with a theoretically derived diagram for a basic cubic lattice, then we can

estimate the ellipsoidal shapes from the identified lattice type and the specified affine transfor-

mation. The estimated ellipsoidal shape can be an approximate representation of an intracrys-

talline molecular shape, which is predicted from single molecular descriptors using a machine

learning technique.

Ellipsoid packing

Crystal structures have been interpreted in terms of packing of atoms and molecules in crystal-

lography. Some inorganic crystal structures have been explained as close packing of spheres
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which approximate atomic bodies with high symmetry. The two models that achieve dense

packing of identical spheres are known to be cubic closest packing (ccp) and hexagonal

closest packing (hcp) [21, 22]. The structure of ccp is also known as a face-centered cubic

(fcc) lattice in the cubic crystal system. For both ccp and hcp, the packing fraction is given by

r ¼ p=
ffiffiffiffiffi
18
p

� 0:74048. Sphere packing itself has a long history in mathematics [26]. As for

organic crystals, the constituent units are molecules with less symmetry and their bodies are

suitably approximated by ellipsoids rather than spheres. Ellipsoid packing is an extended prob-

lem of sphere packing [27]. It was reported that densest packing structures of identical ellip-

soids are limited to affine transformations of closest packing structures of identical spheres

[24].

In this study, we deal with organic crystal structures from the viewpoint of ellipsoid packing

following the above report, although an unusual case of densest crystal ellipsoid packing was

later found in the glassy phases [28] and also in crystal packing. Molecular arrangements are

determined by arrangements of centroids of molecules. We limit our focus to the crystals with

molecular arrangements that are obtained by affine transformations of the cubic lattices illus-

trated in Fig 2. Fig 2(a)–2(d) correspond to the basic lattices, called Primitive (type-P), Base-

centered (type-C), Body-centered (type-I), and Face-centered (type-F), respectively, in crystal

systems. Affine transformations of these cubic lattices cover all the crystal families except for

the hexagonal family. The hexagonal family is not considered in this study because the targeted

crystal structure dataset does not contain crystal structures corresponding to its affine transfor-

mations. We first convert a unit cell of a molecular crystal to a cube by an affine transforma-

tion and then analyze it using persistent homology.

Fig 1. Methodology overview. An overview of the method to estimate the shapes of ellipsoids packed in molecular crystals is illustrated. This is an example for

an organic molecular crystal where the molecular arrangement corresponds to the primitive (type-P) lattice (see Figs 2(a) and 4(a) for details).

https://doi.org/10.1371/journal.pone.0239933.g001
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Topological data analysis

Topological data analysis is an emerging mathematical technology to analyze topological prop-

erties of structural data using applied algebraic topology and computational geometry [29–31].

It enables to characterize qualitative features of a set of discrete points in space. Persistent

homology is a powerful framework for topological data analysis [32, 33], which can reveal

topological properties of a point cloud (i.e. a set of data points) at different spatial resolutions

and generate a persistence diagram (i.e. a visualization of persistent homology as a 2D

histogram).

Fig 3(a) illustrates an example of filtration for a point cloud on a 2D space. We consider

disks with radius r> 0, centered at the four data points. As r is increased from 0, the initially

separated disks start to overlap with each other at a certain value of r. The change in the r value

means a change in the resolution. If the union of disks makes a hole at r = b and the hole van-

ishes at r = d as in Fig 3(a), then the birth and death of the hole are recorded as a point at (b, d)

in the persistence diagram as shown in Fig 3(b). Such points are plotted with respect to each

hole that appears when continuously increasing the disk size. Plotted points in a persistence

Fig 2. Basic cubic lattices. (a) Primitive (type-P) lattice. (b) Base-centered (type-C) lattice. (c) Body-centered (type-I)

lattice. (d) Face-centered (type-F) lattice.

https://doi.org/10.1371/journal.pone.0239933.g002

Fig 3. An example of persistent homology. (a) Filtration for a point cloud on a 2D space. (b) Persistence diagram.

https://doi.org/10.1371/journal.pone.0239933.g003
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diagram exist above the diagonal line, because a death of a hole occurs after its birth. Topologi-

cally similar point clouds produce similar persistence diagrams.

The persistence diagram for a point cloud P ¼ fpi 2 R
3
j i ¼ 1; . . . ; Ig consisting of I dis-

crete points in a 3D space is defined as follows:

DqðPÞ ¼ fðbj; djÞ 2 R
2 j j ¼ 1; . . . ; Jg; ð1Þ

where J is the number of holes and q is the dimensionality of holes, e.g. q = 0 for connected

components, q = 1 for rings, and q = 2 for cavities. We use the multi-set {Dq(P) | q = 0, 1, 2} to

characterize a topological feature of the point cloud P.

We analytically derived the persistence diagrams for the four cubic lattices shown in Fig 2,

where the length of each side is given by α. Denoting the point clouds for type-P, type-C, type-

I, and type-F lattices by PP, PC, PI, and PF, respectively, we obtain the following results:

• For type-P,

D0ðPPÞ ¼ fð0; a=2Þ; ð0;1Þg;

D1ðPPÞ ¼ fða=2; a=
ffiffiffi
2
p
Þg;

D2ðPPÞ ¼ fða=
ffiffiffi
2
p

;
ffiffiffi
3
p

a=2Þg:

ð2Þ

• For type-C,

D0ðPCÞ ¼ fð0; a=2
ffiffiffi
2
p
Þ; ð0; a=2Þ; ð0;1Þg;

D1ðPCÞ ¼ fða=2
ffiffiffi
2
p

; a=2Þ; ða=2;
ffiffiffi
3
p

a=2
ffiffiffi
2
p
Þg;

D2ðPCÞ ¼ fð
ffiffiffi
3
p

a=2
ffiffiffi
2
p

; a=
ffiffiffi
2
p
Þg:

ð3Þ

• For type-I,

D0ðPIÞ ¼ fð0;
ffiffiffi
3
p

a=4Þ; ð0;1Þg;

D1ðPIÞ ¼ fð
ffiffiffi
3
p

a=4; 3a=4
ffiffiffi
2
p
Þ; ða=2; 3a=4

ffiffiffi
2
p
Þg;

D2ðPIÞ ¼ fð3a=4
ffiffiffi
2
p

;
ffiffiffi
5
p

a=4Þg:

ð4Þ

• For type-F,

D0ðPFÞ ¼ fð0; a=2
ffiffiffi
2
p
Þ; ð0;1Þg;

D1ðPFÞ ¼ fða=2
ffiffiffi
2
p

; a=
ffiffiffi
6
p
Þg;

D2ðPFÞ ¼ fða=
ffiffiffi
6
p

;
ffiffiffi
3
p

a=4Þ; ða=
ffiffiffi
6
p

; a=2Þg:

ð5Þ

The corresponding persistence diagrams are shown in Fig 4(a)–4(d).

The similarity between two persistence diagrams, X and Y, can be measured with the fol-

lowing bottleneck distance [29]:

dBðX;YÞ ¼ inf
Z:X!Y

sup
x2X
jjx � ZðxÞjj

1
; ð6Þ

where η is a bijection between X and Y, and the L1-distance between points u = (u1, u2) and
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v = (v1, v2) is defined as follows:

jju � vjj1 ¼ maxfju1 � v1j; ju2 � v2jg: ð7Þ

In short, the bottleneck distance is the cost of the optimal matching between points of the two

diagrams.

Using this similarity measure, we identify the crystals where the molecular arrangements

correspond to affine transformations of the cubic lattices in Fig 2. First, a unit cell of a crystal,

Fig 4. Persistent diagrams for the cubic lattices in Fig 2. In each panel, the blue pluses, orange crosses, and green dots indicate points for q = 0, 1, 2. In the

right-bottom part of each panel, the corresponding lattice structures are shown. (a) type-P (Eq (2)). (b) type-C (Eq (3)). (c) type-I (Eq (4)). (d) type-F (Eq (5)).

https://doi.org/10.1371/journal.pone.0239933.g004
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represented as a parallelepiped, is converted to a cube with each side α = 0.1 nm by an affine

transformation. This normalization transformation is necessary because a persistence diagram

is robust against a rotation of the targeted point cloud and noise but largely affected by a differ-

ence in the scales. Then, we compute persistence diagrams Dq(PM) (q = 0, 1, 2) for a point

cloud PM in the cube, corresponding to a set of molecular centroids. If the multi-set Dq(PM) is

sufficiently close to one of those in Eqs (2)–(5), then the arrangement of molecular centroids

is categorized into the same affine group. The persistence diagram for PM is considered to be

equivalent to that of PM (Z = P, C, I, or F), if the following inequality is satisfied:

min
q¼0;1;2

dBðDqðPMÞ;DqðPZÞÞ < �; ð8Þ

where � represents the acceptable error. In later numerical experiments, we set � at 0.001 nm.

For numerically generating persistence diagrams for molecular centroids, we used Dionysus 2

which is a library for computing persistent homology [34].

Estimation method of ellipsoidal shapes

Once we identify a crystal that has a structure corresponding to an affine transformation of a

cubic lattice, we can estimate the shape of identical ellipsoids around the molecular centroids

packed in the identified cubic lattice. In general, an ellipsoid is expressed as follows:

x>Rx ¼ 1; ð9Þ

where x = (x1, x2, x3)> is a 3D coordinate. The diagonal matrix R is represented as follows:

R ¼

r� 2
1

0 0

0 r� 2
2

0

0 0 r� 2
3

2

6
6
6
4

3

7
7
7
5
; ð10Þ

where ri denotes the radius in the direction of xi for i = 1, 2, 3.

For ellipsoids (or spheres) packed in the four cubic lattices, the diagonal matrices RZ for

Z = P, C, I, or F are calculated as follows:

RP ¼

ða=2Þ
� 2

0 0

0 ða=2Þ
� 2

0

0 0 ða=2Þ
� 2

2

6
6
6
4

3

7
7
7
5
; ð11Þ

RC ¼

ð
ffiffiffi
2
p

a=4Þ
� 2

0 0

0 ð
ffiffiffi
2
p

a=4Þ
� 2

0

0 0 ða=2Þ
� 2

2

6
6
6
4

3

7
7
7
5
; ð12Þ

RI ¼

ð
ffiffiffi
3
p

a=4Þ
� 2

0 0

0 ð
ffiffiffi
3
p

a=4Þ
� 2

0

0 0 ð
ffiffiffi
3
p

a=4Þ
� 2

2

6
6
6
4

3

7
7
7
5
; ð13Þ
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RF ¼

ð
ffiffiffi
2
p

a=4Þ
� 2

0 0

0 ð
ffiffiffi
2
p

a=4Þ
� 2

0

0 0 ð
ffiffiffi
2
p

a=4Þ
� 2

2

6
6
6
4

3

7
7
7
5
; ð14Þ

where α is the length of each side of the unit cell.

Now we assume that an ellipsoid approximating a molecular shape in a crystal is repre-

sented as follows:

v>Qv ¼ 1 ð15Þ

where v is a 3D coordinate and Q is an unknown diagonal matrix determining the shape of the

ellipsoid. We denote by W the affine transformation used to normalize the unit cell of a crystal

when generating the persistence diagram. Then the coordinate transformation is represented

as x = W v. The ellipsoid in Eq (15) is transformed by W into the ellipsoid x> RZ x = 1 with a

known diagonal matrix RZ (Z = P, C, I, or F). By substituting x = W v into x> RZ x = 1, we

obtain

v>ðW>RZWÞv ¼ 1; ð16Þ

where W> RZ W is a symmetric matrix. The radii ri (i = 1, 2, 3) of the ellipsoid approximating

the intracrystalline molecular shape are computed as ri ¼ 1=
ffiffiffiffi
li

p
, where λi (i = 1, 2, 3) repre-

sent the eigenvalues of W> RZ W.

Prediction method of ellipsoidal shapes

The above-mentioned method gives approximate ellipsoidal molecular shapes represented as

ellipsoid radii. We test whether these ellipsoidal shapes can be predicted from single molecular

descriptors using a machine learning method. Molecular descriptors represent a set of features

of single molecules, which have many possible representations. Molecular fingerprint is one

of the widely used descriptors to determine the similarity of chemical structures [35, 36].

A molecular fingerprint is represented as a binary feature vector where each component

expresses whether an attribute is present or absent in the molecule.

We employ Extended Connectivity Fingerprint (ECFP) [37] which is one of the data-driven

circular fingerprints unlike those based on predefined substructural keys. A molecule is repre-

sented as a graph where the vertices are atoms and the edges are bonds. Subgraphs included

in the neighborhood of each vertex up to a fixed diameter are examined and quantified with

the atomic features using the Morgan algorithm [38]. Then these substructural features are

mapped into integer codes using a hashing procedure to keep the length of the feature vector

fixed. The ECFP is obtained as a binary feature vector from the resulting identifiers. For con-

verting molecular information into ECFPs, we used Chainer Chemistry which is an open-

source library for deep learning in biology and chemistry [39].

The ellipsoidal shape prediction is performed with a feedforward neural network with one

hidden layer in a supervised learning framework. The hidden layer has 64 units. Each node has

the hyperbolic tangent (tanh) activation function. The number of training data is denoted by

N. The nth teacher data is given by a pair of input and output, where the input is an ECFP for

the molecule and the output is the estimated ellipsoid radii rðnÞ1 , rðnÞ2 , and rðnÞ3 for the correspond-

ing molecular crystal. We train a neural network model so as to minimize the mean squared
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error between the network output r̂ ðnÞi and the teacher output rðnÞi , described as follows:

E ¼
1

2N

XN

n¼1

X3

i¼1

�
r̂ ðnÞi � rðnÞi

�2

: ð17Þ

Using a test dataset, we evaluate the prediction accuracy in predicting the ellipsoidal shape.

Results

Dataset

Molecular crystals are versatile materials which can be found in pharmaceuticals, organic

semiconductors, solid-state reactions, and plastic materials [40]. For instance, polycyclic aro-

matic hydrocarbons (PAHs) and their derivatives have been widely explored for organic semi-

conductors [41]. Such organic molecular crystals are important targets of CSP because their

molecular arrangements are deeply involved in electron mobility in the crystals [42]. We

selected polyaromatic crystals that consist of only one type of molecule from the Cambridge

Structural Database (CSD) provided by Cambridge Crystallographic Data Centre (CCDC)

[43]. We made the following three crystal datasets:

• Polycyclic aromatic hydrocarbons (PAHs): 75 crystals of polycyclic aromatic hydrocarbons

that contain only hydrogens and carbons.

• Polycyclic aromatics with hetero atoms (PAHAs): 404 crystals of polycyclic aromatic hydro-

carbons that can contain hetero elements (N, S, etc.) in their skeletons but have no substitu-

ents other than halogens.

• Polycyclic aromatics (PAs): 8787 crystals of polycyclic aromatic hydrocarbons that can con-

tain hetero elements in their skeletons and arbitrary substituents.

PAHs are included in PAHAs which are included in PAs, as shown in Fig 5.

Identification of crystals with specific structures

The topological data analysis was applied to molecular centroids of each crystal structure in

the datasets. It was determined whether each crystal structure corresponds to an affine trans-

formation of one of the four cubic lattices shown in Fig 2. Table 1 shows the numbers of

organic crystals that were classified into the four types (i.e. type-P, type-C, type-I, and type-F)

for each dataset. The others were categorized into the class of “Others.” The fraction of crystals

corresponding to the four types to the total number of crystals in the PAHs is about 30%, that

in the PAHAs is about 21%, and that in the PAs is about 7%. The high fraction of simple crystal

structures in the PAHs is related to the fact that some crystals in the PAHs tend to have layered

molecular arrangements and their structures are classified into typical packing motifs [44, 45].

It also implies that the crystal structure is complex when hetero atoms are contained in mole-

cules as in the PAHAs and PAs.

Fig 6 illustrates the examples of molecular centroid arrangements and the corresponding

persistence diagrams for the crystals categorized in the five types (see Table 1). Fig 6(a)–6(d)

show 9,10-bis(2-(4-(n-Decyloxy)phenyl)vinyl)anthracene with type-P structure, Pentacene

with type-C structure, Anthracene with type-I structure, and Benzene with type-F structure,

respectively. In other words, these persistence diagrams are found in Fig 4. Fig 6(e) shows Ace-

naphthobenzopicene which has a lower symmetric structure than the four other crystal struc-

ture types as seen from the dispersion of points in the persistence diagram.
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Ellipsoidal shape estimation

We assume that identical ellipsoids around the molecular centroids are packed in the crystals

that were identified in Table 1. The ellipsoidal shape was estimated from Eq (16). Fig 7 shows

the distribution of the estimated ellipsoidal radii for the PAs that correspond to the affine

transformations of the basic cubic lattices. The three axes indicate r1, r2, and r3, satisfying r1�

r2� r3. The different marks correspond to different types of cubic lattices in Fig 2. To validate

the above assumption, we investigated a correlation between the ellipsoidal volume V = (4/3)

πr1 r2 r3 calculated from the estimated radii and the molecular volume calculated based on the

electron density through Monte-Carlo integration in Gaussian 16 [46]. The results are shown

in Fig 8. The molecular structures and the electron densities were calculated by DFT calcula-

tion at the theoretical level of B3LYP with 6-31G basis set. The result shows a high correlation

(the Pearson’s correlation coefficient: 0.897), indicating that the ellipsoidal volume well

approximates the molecular volume. Similarly, we obtained the estimated ellipsoid radii for

the two other datasets, PAHAs and PAHs (not shown).

The estimated ellipsoid radii for some crystals are listed in Table 2. The structures of the

molecules listed in Table 2(a)–2(g) are shown in Fig 9(a)–9(g). It shows that the ellipsoidal

shapes are affected by the single molecular structures. For example, Benzene (Fig 9(a)),

Anthracene (Fig 9(b)), and Pentacene (Fig 9(c)) have one, three, and five aromatic rings in a

Fig 5. Dataset of organic molecular crystals. The three datasets correspond to polycyclic aromatic hydrocarbons

(PAHs), polycyclic aromatics with hetero atoms (PAHAs), and polycyclic aromatics (PAs).

https://doi.org/10.1371/journal.pone.0239933.g005

Table 1. Identification of crystals corresponding to affine transformed cubic lattices.

PAHs PAHAs PAs

type-P 0 0 160

type-C 9 34 205

type-I 8 34 153

type-F 6 15 104

Others 52 321 8165

Total 75 404 8787

https://doi.org/10.1371/journal.pone.0239933.t001
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series, respectively. As the number of aromatic rings increases, only the estimated radius r1

tends to be elongated. Benzophenanthrene (Fig 9(d)) and Tetrabenzocoronene (Fig 9(e)) have

planar disk-like structures, and thus, the estimated values of r1 and r2 are relatively large com-

pared with that of r3. While the single molecular structure is a major factor affecting the ellip-

soid radii, its chemical structure also influences them. The shapes of Pyrazine (Fig 9(f)) and

2,7-bisacridine (Fig 9(g)) look similar to the shapes of Benzen and Anthracene, respectively,

but r1 is longer due to the influence of terminal hetero atoms.

Ellipsoidal shape prediction

We performed a machine learning prediction of the ellipsoidal radii for PAs from single

molecular information. This is regarded as a simplified task of CSP, because the information

of arrangements of molecular centroids and molecular shapes are useful for identifying

crystal structures. The task is to predict the radii of ellipsoids (r1, r2, and r3) from molecular

Fig 6. Examples of persistence diagrams for organic crystals. Molecular centroids (left) and corresponding persistence diagrams (right). In each persistence diagram,

the blue pluses, orange crosses, and green circles indicate the plots of Dq with q = 0, q = 1, and q = 2, respectively. (a) 9,10-bis(2-(4-(n-Decyloxy)phenyl)vinyl)anthracene

(PAs) with type-P structure. (b) Pentacene (PAHs) with type-C structure. (c) Anthracene (PAHs) with type-I structure. (d) Benzene (PAHs) with type-F structure. (e)

Acenaphthobenzopicene (PAHs) which is categorized into “Others”.

https://doi.org/10.1371/journal.pone.0239933.g006
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fingerprints given by ECFPs. We trained a neural network model by using the Adam (Adaptive

moment estimation) optimizer with learning rate 0.001 and mini-batch size 32 [47]. We used

10% of the training data for early stopping to avoid overfitting and evaluated our model via

four-fold cross validation. The results of the ellipsoid radii prediction are shown in Fig 10. In

each panel, The horizontal axis represents the true radius and the vertical axis represents the

predicted one. The plots for the r1 prediction are close to the diagonal line as shown in Fig

10(a), implying a successful prediction. The mean training error is around 0.04 nm and the

testing error is around 0.094 nm. On the other hand, we can find that the predicted values for

r2 and r3 tend to be smaller than the actual values when their values are large as shown in Fig

10(b) and 10(c). The prediction results for PAHs and PAHAs are shown in S1 Fig. The results

suggest that our method is useful for predicting the length of the main axis of the skeleton in

organic semiconductor materials rather than lengths of the shorter ellipsoid half-axes. As seen

in Table 2, the ellipsoid radii are influenced not only by the single molecular shape but also by

the chemical constitution. Therefore, the molecular fingerprints including such information

worked well in the ellipsoidal shape prediction. We can choose other machine learning models

for the radii prediction and an improvement in the prediction performance is an issue to be

considered.

Fig 7. Estimated radii of ellipsoids. Each plot at (r1, r2, and r3) indicates the radii of ellipsoids packed in a crystal that was

identified in Table 1. The blue pluses, orange crosses, green circles, and red stars correspond to type-P, type-C, type-I, and type-

R, respectively.

https://doi.org/10.1371/journal.pone.0239933.g007
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Conclusion and discussion

We have studied the problem of ellipsoid estimation and prediction in terms of molecular

packing, mainly targeted for polycyclic aromatics found in organic semiconductor materials.

We have identified the organic molecular crystals whose structures are characterized by affine

transformations of the four basic cubic lattices, through the topological analysis of the dataset

of molecular centroids in crystals of aromatic molecules. Then, we have computed the radii of

ellipsoids around the molecular centroids of those crystals from the identified lattice type and

the specified affine transformation under the dense packing assumption. The ellipsoid shape

Fig 8. Correlation between the estimated ellipsoid volume and the molecular volume. The ellipsoid volume [cm3/

mol] (the vertical axis) was calculated from the estimated radii. The molecular volume [cm3/mol] (the horizontal axis)

was calculated using Gaussian 16 which is a general purpose computational chemistry software [46]. The Pearson’s

correlation coefficient for all the points is 0.897.

https://doi.org/10.1371/journal.pone.0239933.g008

Table 2. Examples of estimated ellipsoid radii.

Molecules r1 r2 r3

(a) Benzene 0.3253 nm 0.2576 nm 0.2365 nm

(b) Anthracene 0.5469 nm 0.2699 nm 0.2699 nm

(c) Pentacene 0.7142 nm 0.2707 nm 0.2190 nm

(d) Benzophenanthrene 0.5183 nm 0.5005 nm 0.2045 nm

(e) Tetrabenzocoronene 0.8702 nm 0.6280 nm 0.1630 nm

(f) Pyrazine 0.4041 nm 0.2532 nm 0.1634 nm

(g) 2,7-bisacridine 0.9566 nm 0.2483 nm 0.2144 nm

https://doi.org/10.1371/journal.pone.0239933.t002
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represents an approximate shape of the intracrystalline molecules, which provides partial

information of molecular structures in crystals. In additional experiments, we have shown that

the ellipsoid radii can be predicted from the single molecular descriptors. Our results suggest

that a combination of topological data analysis and machine learning can partly contribute to

CSP.

It has been known that some molecular crystal structures are explained by ellipsoid packing

corresponding to minimum energy structure. However, it was not straightforward to automat-

ically identify such crystals from molecular centroid data because of the difficulty in checking

coincidence of point groups in a 3D space. Thus, we have used the persistent homology to

transform the point arrangement in the 3D space into the 2D persistence diagram. This

method is useful particularly when checking the topological similarity between molecular

arrangements. Our experiments have shown that some molecular arrangements (centroids)

can be classified into basic lattices via affine transformations. This is analogous to the fact that

spatial arrangements of atoms in crystals are characterized by Bravais lattices. A further study

on topological classification of molecular arrangements would be effective for understanding

molecular structures in crystals.

Fig 9. Structures of single isolated molecules in Table 2. (a) Benzene. (b) Anthracene. (c) Pentacene. (d)

Benzophenanthrene. (e) Tetrabenzocoronene. (f) Pyrazine. (g) 2,7-bisacridine.

https://doi.org/10.1371/journal.pone.0239933.g009

Fig 10. Prediction of the ellipsoid radii for PAs from ECFPs. The horizontal axis represents the teacher data and the vertical axis represents the predicted value. (a) r1.

(b) r2. (c) r3.

https://doi.org/10.1371/journal.pone.0239933.g010
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The focus of our study has been limited to the crystals with specific structures obtained by

affine transformations of the basic cubic lattices, which cover triclinic, monoclinic, ortho-

rhombic, tetragonal, and cubic crystal families. The remaining family is the hexagonal crystal

family. We have excluded this family in this study due to the difficulty in analytical derivation

of the corresponding persistence diagram and the ellipsoid radii under the dense packing con-

dition. A future work is to extend our method such that the crystals having structures corre-

sponding to affine transformations of hexagonal lattices are also handled. Another issue is that

the affine transformation restricts the molecular orientations. To distinguish diverse orienta-

tions such as a herringbone motif, it would be necessary to apply other transformations

between molecular centroids and basic lattices.

The proposed method has several limitations. First, it does not give information about the

arrangements of atoms in each crystalline molecule. For a full CSP, a conformational search of

the arrangements of atoms after applying the proposed method would be necessary. Second,

the assumptions in our method are applicable only to a part of crystal structures. For instance,

the approximation of molecules with ellipsoids would be valid for rigid molecules but not for

highly flexible molecules. A possible approach for examining how much molecular flexibility is

permitted is to investigate the effect of the number of dihedral angles, representing the flexibil-

ity level, on the prediction accuracy. The dense packing assumption would also not be applica-

ble to structures with substituents such as -CHO hydrogen bond, because they can be low-

density structures. For such structures, ab initio calculations with force fields and DFT would

be appropriate [48]. Third, the fraction of the number of structures identified based on our

assumption is not large as shown in Table 1 for the dataset used in this study. This might be

caused by the smallness of the acceptable error � in Eq (8), which is a severe condition for

determining identical persistence diagrams. There is a possibility that the fraction is increased

by increasing the value of the acceptable error � in Eq (8), but there would still be remaining

structures that are not identified by our assumption. To extend the applicability of our method,

we need to consider other lattice types in addition to those in Fig 2.

Supporting information

S1 Fig. Prediction of the ellipsoid radii for PAHs and PAHAs from ECFPs. The horizontal

axis represents the teacher data and the vertical axis represents the predicted value. (a)-(c) the

prediction results on r1, r2, and r3 for PAHs. (d)-(f) the prediction results on r1, r2, and r3 for

PAHAs.
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