
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REVIEW ARTICLE
published: 27 August 2014

doi: 10.3389/fimmu.2014.00393

Unbalanced neonatal CD4+T-cell immunity
Isabelle Debock and Véronique Flamand*

Institut d’Immunologie Médicale, Université Libre de Bruxelles, Gosselies, Belgium

Edited by:
Arnaud Marchant, Université Libre de
Bruxelles, Belgium

Reviewed by:
Yasmin Thanavala, Roswell Park
Cancer Institute, USA
Richard Lo-Man, Institut Pasteur,
France

*Correspondence:
Véronique Flamand, Institut
d’Immunologie Médicale, Université
Libre de Bruxelles, Rue Adrienne
Bolland 8, Gosselies 6041, Belgium
e-mail: vflamand@ulb.ac.be

In comparison to adults, newborns display a heightened susceptibility to pathogens and
a propensity to develop allergic diseases. Particular properties of the neonatal immune
system can account for this sensitivity. Indeed, a defect in developing protective Th1-type
responses and a skewing towardTh2 immunity characterize today the neonatalT-cell immu-
nity. Recently, new findings concerning Th17, regulatory helper T-cell, and follicular helper
T-cell subsets in newborns have emerged. In some circumstances, development of effec-
tor inflammatory Th17-type responses can be induced in neonates, while differentiation
in regulatory T-cells appears to be a default program of neonatal CD4+ T-cells. Poor anti-
body production, affinity maturation, and germinal center reaction in vaccinated neonates
are correlated with a limiting expansion of TFH lymphocytes. We review herein the factors
accounting for and the implications of the unbalanced neonatal helper T-cell immunity.

Keywords: vaccine, T helper subsets, Th2-biased response, defective Th1 response, follicular helper T-cells, Th17,
Tregs

Pioneer experiments by Medawar, Billingham, and Brent showed
that mice exposed to allogeneic cells at birth did not reject a graft
expressing the same alloantigens (1). This transplantation toler-
ance or neonatal tolerance was associated with intrathymic clonal
deletion of donor-specific cytotoxic CD8+ T-cells (2, 3). Further
studies actually demonstrated that allospecific CD4+ T-cells dif-
ferentiated into IL-4-producing Th2 cells in mice tolerating the
allogeneic cells and tissues, while IL-2 and IFN-γ production by
Th1 cells was defective (4–6). These discoveries indicated that
neonates were not immunodeficient as first thought, since they
were able to mount effective, while biased, immune responses.
The neonatal stage was therefore considered as a transitory period
characterized by an absence of memory cells and a slow adap-
tive immune response with tolerance features. Furthermore, the
immune deviation to the Th2 subset and the defect in develop-
ing protective Th1-type responses could account for the higher
susceptibility to infectious agents presented by neonates, as well as
their propensity to develop allergic diseases in developed countries
(7). This particular immunological status also led to consider the
neonatal period as a beneficial time window to develop immune
tolerance to specific antigens, like autoantigens.

The precise mechanisms underlying the polarization of
the neonatal CD4+ T-cell compartment were delineated quite
recently. When appropriately stimulated, neonates may achieve
an immune response comparable to adult counterparts. Several
works in mice first established that Th1-type responses could
be induced in neonates with Th1-promoting inflammatory treat-
ments, and brought some clues to explain the unbalanced Th1/Th2
neonatal immunity. This induction of Th1-cell development and,
consequently, the modulation of the Th2-type response could be
achieved by administration of IFN-γ itself (8), antigen-presenting
cells (APCs)-derived IL-12 (9), dendritic cells (DCs) (10), live
virus (11, 12), DNA vaccines (13), CpG nucleotides (14), or by
CD40 triggering (15). These studies all suggested that particular

properties of neonatal CD4+ T-cells and APCs could be involved
in the skewed neonatal adaptive immune system.

Zaghouani and colleagues actually identified a mechanism con-
tributing to the Th2 immune deviation in neonates at the mole-
cular level (16). They demonstrated that mouse neonates could
mount antigen-specific Th1 and Th2-type primary responses fol-
lowing antigenic stimulation. However, upon recall with antigen,
neonatally stimulated Th1 cells died by apoptosis, while neonatally
stimulated Th2 cells were not affected and mounted a secondary
response. The apoptosis of primary Th1 cells was driven by the
Th2 prototypic cytokine IL-4. To mediate this effect, IL-4 signaled
through its alternative heteroreceptor composed of the IL-4Rα

and IL-13Rα1 chains that is only expressed on neonatal IFN-
γ-producing Th1 cells when IL-12p70-producing DCs are not
present, thus favoring the development of neonatal Th2 cells.
In line with this, studies have demonstrated the importance of
age at the time of initial respiratory syncytial virus (RSV) infec-
tion in determining the pathophysiological responses. In human
infants, a Th2-skewed immune response is particularly dominant
in the lung in response to RSV and leads to severe bronchioli-
tis and subsequent asthma development with persisting respira-
tory dysfunction into adulthood. A significant up-regulation of
IL-4Rα expression was recently detected on human cord blood
CD4+ T-cells, in contrast to adult peripheral blood CD4+ T-
cells, following in vitro RSV stimulation (17). Furthermore, the
IL-4Rα-mediated reinforced Th2 response was confirmed in vivo
upon neonatal infection in mice. Indeed, an increased expression
of IL-4Rα on CD4+ T-cells (more pronounced on Th2 than on
Th1 cells) from mice neonatally infected with RSV and reinfected
with RSV as adults was observed. Thus, the neonatal RSV patho-
genesis was associated with the expression of IL-4Rα on CD4+

T-cells that become functional upon RSV reinfection and pos-
itively control the Th2 response, the airway hyper-activity, and
the inflammation. Although, here, the mechanism explaining the
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skewed Th2-dominant response is a selective higher induction of
Th2 proliferation as a selective Th1 apoptosis triggered through the
IL-4Rα/IL-13Rα1 heteroreceptor during reinfection in neonatally
infected mice was not monitored (17).

Moreover, neonatal CD4+ T-cells display intrinsic epigenetic
conformation within the Th2 genomic locus promoting the Th2
cytokines genes expression and the subsequent development of
Th2 cells (18). In mice, the enhancer and regulatory region con-
served non-coding sequence-1 (CNS-1) of the Th2 locus is indeed
hypomethylated in thymic and peripheral neonatal CD4+ T-cells,
allowing a rapid and high production of IL-4 and IL-13. In addi-
tion, as in adults, the transcription factors regulating Th1 and Th2
differentiations, T-bet, and STAT6, respectively, are already func-
tional in early life (19). The neonatal helper T-cell compartment
thus presents unique properties contributing to the unbalanced
Th1/Th2 response in early life. This intrinsic bias was recently con-
firmed in human neonatal CD4+ T-cells. Indeed, a novel subset of
naive CD31+CD4+ T-cells that express and store intracellularly an
unglycosylated isoform of IL-4 was identified in infant adenoids
(20). These IL-4 isoform-expressing cells are not present in adults
and are suspected to be early-age restricted Th2 precursors’ cells
that would spontaneously differentiate in mature IL-4 secreting
Th2 cells. At the level of APCs, in mice, the absence of IL-12p70
(composed of IL-12p35 and IL-12p40 chains) producing neonatal
DCs in the first days of life favors the expression of the alterna-
tive receptor of IL-4 on neonatal Th1 cells, rending them sensitive
to IL-4-induced apoptosis, and promotes Th2-cell development
(21). By day 6 after birth, a particular subset of CD11c+ CD8α+

IL-12-producing DCs that would allow a shift to Th1 immunity
arises in newborn mice (21). These data confirmed the previously
reported adult level of IL-12p70 secretion by 7-day-old splenic
CD11c+ sorted DCs stimulated in vitro with TLR9 ligand (22). A
defect in IL-12p70 secretion by neonatal monocyte derived DCs
is observed in humans, a repressive chromatin state hampering
IL-12p35 gene transcription (23). Furthermore, the promoter of
the IFN-γ gene is hypermethylated in cord blood CD4+ T-cells,
while neonatal CD8+ T-cells do not present this epigenetic mod-
ification. The Ifng promoter hypermethylation is associated with
impaired production of this Th1 cytokine (24). Conversely, the
IL-13 locus is maintained in an accessible chromatin architecture
with the appearance of DNase I hypersensitivity sites and extensive
DNA demethylation (25) that could account for the elevated IL-13
expression by human neonatal CD4+ T-cells upon TCR triggering
(26). An unbalanced Th1/Th2 adaptive immunity might therefore
be also at play in human neonates.

NEONATAL Th17 ADAPTIVE IMMUNITY
With this demonstration of the Th2-skewed immunity and the
possible induction of Th1 immunity under appropriate condi-
tions in newborns, the question about the capacity of neonates to
develop other helper T-cell responses has been raised. In particular,
some attention has been paid to the development of inflamma-
tory Th17-type responses that could compensate for the defective
neonatal Th1 immunity. Th17 cells were initially identified in
mouse models of autoimmunity (27, 28) and established as an
independent CD4+ helper T-cell subset soon after their identifica-
tion (29, 30). Murine studies elucidate their differentiation process

as initiated in the presence of two cytokines, TGF-β and IL-6 (31–
33) or TGF-β and IL-21 (34–36), although the need of TGF-β has
been challenged (37). TGF-β produced by murine Th17 cells is
also necessary for stabilizing in an autocrine manner the commit-
ment of the Th17 cell lineage (38). The Th17 cell development is
sustained in the presence of IL-23, a member of the IL-12 family
composed of the IL-23p19 chain and the IL-12p40 chain that is
shared with IL-12. Th17 cells typically produce IL-17A, IL-17F, and
IL-22, which can recruit neutrophils and confer host protection
against extracellular bacteria and fungi at epithelial barriers (39).
Study of the Th17 cell development in neonates is of particular
interest as preterm infants are at higher risk of developing bacter-
ial and fungal infections. As for every helper T-cell subset (40), the
Th17 cell development is negatively regulated by the key cytokines
of the other subsets. Indeed, the presence of IFN-γ or IL-4 in the
naive CD4+ T-cells environment inhibits their differentiation in
Th17 lymphocytes (41).

In the context of the neonatal Th2-biased immune response,
the inhibitory effect of IL-4 on the development of inflam-
matory Th17-type responses could represent a major regula-
tion mechanism. A first study on experimental autoimmune
encephalomyelitis showed that neonates could mount mixed
Th1 and Th17-type autoantigen-specific immune responses (42).
However, there were fewer IL-17-producing cells in neonates com-
pared to adult mice, which is in agreement with another report
(43). The question of the direct inhibition of neonatal Th17-type
responses by IL-4 was addressed in the neonatal tolerance context
(44). Mouse neonates immunized with allogeneic cells were also
submitted to IL-4 deprivation that inhibited the development of
the allospecific Th2-type response (45) and allowed the mRNA up-
regulation of Th17-type cytokines and the master regulator of the
Th17 pathway RORγt (46), thereby favoring the development of
alloreactive IL-17A-producing Th17 cells (44). Likewise, neutral-
ization of IL-25, a Th2-prone cytokine, following murine neonatal
infection with pneumonia virus, which belongs to the same family
as RSV, reduces some key features of asthma and promotes a Th17-
type response. In the infected lung, IL-25 is expressed locally by
the airway epithelial cells and can initiate the Th2 differentiation
in an IL-4-dependent manner (47). Recently, other works in mice
suggested that neonates could mount IL-17A-associated immu-
nity upon infection with the enteropathogen Yersinia enterolitica
(48) or anti-mycobacterial vaccination with particular adjuvant
(49, 50). In humans, stimulation of cord blood naive T-cells, par-
ticularly CD8+ T-cells, with IL-23 induces the expression of IL-23
receptor and the production of IFN-γ and IL-17 (51). In addition,a
strong production of IL-23 by neonatal DCs, as well as monocytes,
has been reported (52, 53), suggesting that there is no defect in the
expression of the IL-12p40 chain, and that human neonates could
develop effective Th17 immunity. Accordingly, IL-17-producing
cells originated exclusively from cord blood CD161+CD4+ T-cell
progenitors were detected in response to IL-1β and IL-23 (54). In
agreement with this notion, an in vitro study suggested that naive
CD4+ T-cells from preterm and term infants exhibited higher
expression of IL-23R, RORC, and STAT3 mRNA than adult coun-
terparts and were accordingly capable of differentiating in Th17
cells under polarizing conditions (with added IL-1, IL-6, IL-23, and
TGF-β) and stimulation with anti-CD3 and anti-CD28 antibodies
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(55). However, in another culture system with anti-CD3 antibodies
and cord blood monocytes as viable APCs, naive neonatal CD4+

T-cells were defective in Th17 development and addition of IL-1β,
IL-6, and IL-23 only partially restored the IL-17 production. This
defect was correlated with a clear reduced RORC2 mRNA levels
in neonatal CD4+ T-cells. Human neonatal T-cells could there-
fore be considered as having intrinsic mechanism that prevents
Th17 differentiation through the regulation of RORγT expression
(56). Interestingly, a recently described cord blood population of
CD4+ T-cell precursors with an effector memory phenotype was
shown to display features of IFN-γ producing Th1-like cells, IL-4
producing Th2-like cells but IL-17-deficient Th17-like cells unless
they were stimulated with IL-1β and IL-23 (57).

We may therefore consider that under strong TCR/CD28 and
cytokine polarizing signaling with no dominance of Th2-type
immunity, development of effective Th17 cells can be induced
in neonates.

NEONATAL REGULATORY T-CELLS AND MATERNAL
MICROCHIMERISM
Since the Th2 bias impairs Th1 and Th17-type immune responses
in early life, neonatal immunity is typically considered to exhibit an
anti-inflammatory profile. In this context, one may suspect that
regulatory T-cells (Tregs) play an important role in early life to
maintain this anti-inflammatory status. Indeed, it was shown that
the lack of cytotoxic activity by CD8+ T-cells reactive to allogeneic
cells is controlled by CD4+ CD25+ Tregs (58). Additionally, Tregs
and Th17 cells have a reciprocal development pathway. In the pres-
ence of TGF-β, their transcriptional master regulators, i.e., Foxp3
for Tregs and RORγT for Th17 cells, respectively, are upregulated.
In the absence of proinflammatory cytokines like IL-6 (in mice),
or IL-6, IL-1β, and IL-23 (in humans), Foxp3 dominates RORγT
function and prevents Th17 development. Such mechanism could
impair the differentiation of Th17 cells in early life.

More recently, mechanism about the contribution of Tregs in
neonatal immunity was proposed. Murine neonatal CD4+ thymo-
cytes and T-cells actually seem to be prone to intrinsically differen-
tiate into suppressive Foxp3+ Treg cells (59), even though newborn
mice display low frequency of Tregs (60). Strikingly, TCR trigger-
ing alone was shown to be sufficient to induce enhanced Tregs
differentiation in neonates. Exogenous addition of IL-2 or TGF-β,
both required to differentiate adult Tregs, was indeed unnecessary
(59). In humans, activation of naive CD45RO− CD25− CD4+

T-cells in the presence of APCs showed increased numbers of
functional Foxp3+ cells presenting an enhanced expression of
PD-1 molecules in cord blood than in adult peripheral blood
(61). These studies suggest that Tregs are functional in early life.
While neonatal Tregs are thought to be essential for the early life
induction of immune tolerance to self antigens, their presence
can conversely impair neonatal effector and protective responses
to vaccines and pathogens, as proposed by a report on neona-
tal HSV infection in mice (62) and during Plasmodium falciparum
infection in humans. Indeed, CD4+ CD25+ Foxp3+ T-cells down-
regulated IFN-γ production of cord blood monocytes in response
to the parasite through production of IL-10 (63).

Furthermore, development of Tregs seems to occur very early
in life. During pregnancy and weaning, the developing immune

system actually faces allogeneic stimulation. The fetus and neonate
indeed encounter maternal allogeneic cells that present non-
inherited maternal alloantigens (NIMA) and are transferred across
the placenta and through ingestion of breast milk (64, 65), leading
to the establishment of maternal microchimerism. This expo-
sure to maternal alloantigens is associated with the induction
of Foxp3+ Tregs specific of NIMA in newborn mice (66, 67).
Development of tolerogenic Tregs upon NIMA stimulation is also
described in human fetuses (68). However, exposure to NIMA can
also lead to priming of cytotoxic and Th1 T-cell responses when the
dose of NIMA encountered is low (69), high doses being associated
with the development of Tregs (66, 70). Maternal microchimerism
thus influences adaptive immunity in early life. Furthermore,
it was proposed in a model of juvenile diabetes that maternal
microchimeric cells could initiate inflammation to autoantigens
and shape the fetal immune response (71). Besides this, the allo-
geneic stimulation of fetal and neonatal immune system by NIMA-
expressing cells is likely to be the first immunological event of life.

NEONATAL FOLLICULAR T HELPER CELLS
Another important question in neonatal T-cell immunity concerns
the status of follicular helper T-cells (TFH). This CD4+ helper T-
cell subset was first described in human tonsils (72, 73) and is
defined as the specialized provider of help to B-cells (74). Indeed,
TFH cells play a key role in germinal center (GC) reaction, isotype
class switching and antibody affinity maturation through their
interactions with cognate B-cells. The development of effective
TFH cells requests the presence of various molecules, including
Bcl6, CXCR5, PD-1, IL-6, and IL-21 (74). Among these markers,
Bcl6 is the transcriptional master regulator of TFH cells essen-
tial for the expression of the TFH cell genetic program (75–77).
Notably, Bcl6 induces the expression of the chemokine receptor
CXCR5 (78), which is crucial for the positioning of TFH cells
in B-cell follicles and GCs in secondary lymphoid organs. TFH

cells produce IL-21, a cytokine acting on B-cells and on TFH cells
themselves via an autocrine loop (79–81). With regards to the
relationship between TFH cells and other CD4+ T-cell subsets, a
negative regulation exists as Bcl6 represses the expression or func-
tion of the master regulators of other Th-cell lineages, i.e., T-bet
(Th1), GATA3 (Th2), and RORγt (Th17) (75–77). However, this
effect appears to be partial, as TFH cells can produce IFN-γ (82),
IL-4 (83, 84), or IL-17 (85), hallmarks of Th1, Th2, and Th17 cells.

Two recent studies in mice sought to determine if newborns can
mount effective TFH cell responses (86, 87). Both works showed
that CD4+ CXCR5+ PD-1+ TFH cells can be induced in mice
neonates subjected to antigenic immunization, but that their full
development is impaired. Indeed, neonatal TFH cells expressed
lower levels of Bcl6 and IL-21 and were poorly located in GCs,
while they were highly present in interfollicular regions (86). This
localization outside of GCs correlates with the limited expansion
and differentiation in GC TFH cells of newborn TFH cells (87). Cor-
responding to this limited TFH cell response, the humoral immune
response of immunized neonates was defective, as revealed by a
reduced antibody production and maturation and a decreased and
delayed formation of GCs (86).

Both studies also indicated IL-4 expression by neonatal TFH

cells. The role of IL-4 in the emergence of TFH cells in newborns
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FIGURE 1 | CD4+ T-cell differentiation in early life. Defect in Th1, Th17,
and TFH differentiation and enhanced Th2 and Treg differentiation
characterize the neonatal T-cell immunity. At the molecular level, respective

transcriptional factors and cytokines are positively (bold) or negatively
(italic) regulated. Implications of this unbalanced adaptive immunity are
depicted.

was addressed by Debock et al. (86). It was shown that this cytokine
promotes the development of TFH cells in early life. Indeed, the
proportion of TFH cells in immunized IL-4-deficient newborns
was greatly reduced. Moreover, in the absence of IL-4, neonatal
TFH cells highly expressed RORγt and IL-17, features of Th17
cells. This particular phenotype was associated with an enhanced
production of IgG2a in immunized neonates, suggesting that IL-
4 impacts the genetic profile and the B-cell help specificity of
neonatal TFH cells.

The finding that TFH cells are present and functional in early
life, although in a limited extent compared to adults, is of interest to
improve neonatal and pediatric vaccines. Indeed, in the context of
defective follicular DCs and B-cells, the other partners of humoral
immunity, in newborns (88), early priming of neonatal TFH cells
could promote the induction of high-affinity antibody responses
when the other cellular actors become functional. Interestingly,
administration of a CpG-adjuvanted vaccine in mouse neonates
circumvented the limited expansion and development in GC TFH

cells of neonatal TFH cells (87), suggesting that this could represent
a beneficial strategy for efficient vaccination of newborns.

CONCLUDING REMARKS AND FUTURE PROSPECTS
Our understanding of neonatal helper T-cell immunity was greatly
improved in the last years. Precise mechanisms underlying the

profound defect of Th1 immunity and the subsequent Th2-biased
polarization in early life were indeed identified at the molecular
and cellular levels. This imbalance in neonatal T-cell responses
may imprint development of adult T-cell responses as illustrated
in a study showing the higher susceptibility to allergic inflamma-
tion of mice neonatally immunized with a pro-Th2 vaccine and
a protection when pro-Th1 vaccine was used (10). In addition
to this, neonates also appear capable of mounting inflammatory
Th17-type responses when properly stimulated. This could be a
potential target to ensure neonatal protection to pathogens and
to prevent development of allergic diseases, as neonatal Th17
immunity could compensate for the lack of Th1-type immune
responses and oppose the Th2 pathway. However, caution should
be taken as induction of strong Th17-type responses could pos-
sibly break the induction of immune tolerance to self antigens
and favor the development of autoimmunity. The default gener-
ation of Tregs in neonates could furthermore promote the Th17
pathway by producing one of its differentiation cytokine, TGF-
β (31–33), which could lead to an uncontrolled inflammatory
response. Notwithstanding this, Treg cells appear to play a crit-
ical role in the developing immune system, contributing to the
neonatal general anti-inflammatory status and limiting protec-
tive immune responses developed by newborns. The presence and
functionality of TFH cells in neonates were also recently delineated.
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These providers of B-cell help are induced upon vaccination in
early life, but their development is limited compared to adults.
This correlates well with the defective humoral immune responses
observed in newborns. Targeting this particular T-cell population
with appropriate adjuvants could enhance vaccine responses in
newborns and therefore reduce the need of several booster doses
in early life to reach effective IgG responses while increasing their
resistance to vaccine-preventable life-threatening infections like
tuberculosis, malaria, and HIV (Figure 1).

Regarding the aspects that still need to be addressed in neonatal
T-cell immunity, the phenotype and the differentiation pathway of
neonatal Th17 cells require further study. TGF-β-stimulated Th17
cells can indeed produce IL-17 and IL-10, thus displaying a more
regulatory phenotype, while Th17 cells differentiated in the pres-
ence of IL-23 seem to be more pathogenic, these inflammatory
properties being due in part to their production of IFN-γ (37).
Since IL-23 is highly produced in human neonates, the inflam-
matory Th17 cell subpopulation could be more represented in
newborns. However, considering the neonatal regulatory context,
regulatory Th17 cells producing IL-10 and limiting inflammatory
response could arise preferentially. In line with this hypothesis,
neonatal B-cells secreting IL-10 have been shown to control DCs
response upon TLR triggering (89, 90).

More clarification is also needed for the development and func-
tion of TFH cells in early life, notably with regards to their potential
link with the other Th-cell subsets. While there are now some
insights in the relationship between the newborn TFH cells and
the Th2 and Th17 populations (86), the potential link of neonatal
TFH cells with Tregs is also of interest since follicular Tregs express-
ing CXCR5, PD-1, and CTLA-4 or GITR have been described
(91). Also, the role in early life of recently described TFH cell
regulators like the transcription factor achaete-scute homolog 2
(92) or the Notch signaling (93), as well as of molecules involved
in the TFH cell/B-cell interactions such as the SAP/SLAM fam-
ily of molecules (74) or BLyS (94), requests further attention.
In addition, better phenotypical characterization of neonatal TFH

cells could lead to the identification of potential new targets for
vaccination.

Another intriguing question is the potential development of
IL-9-producing Th9 cells in neonates, since they are induced in
the presence of IL-4 and TGF-β (95). Considering the heightened
production of IL-4 and the default generation of Tregs displayed
by neonates, Th9 cells could represent an important Th-cell subset
in newborns.

Finally, epigenetic modifications hampering the Th1 pathway
and favoring the Th2 response have been described in neonates.
It would be interesting to determine, which transcription factors
and histones and DNA modifying enzymes are responsible for the
Il12p35 and Ifng genes repressive chromatin state, and if a par-
ticular chromatin conformation is also present in the Il17a, Il10,
and Foxp3 genes. This could provide therapeutic targets to induce
protective immunity in early life.
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