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INTRODUCTION 
 

Cataract is one of the most common eye diseases which 

result in visual impairment and reversible blindness  

[1, 2]. There are more than 20 million people with 

cataract-associated blindness worldwide [3]. Age-related 

cataract (ARC), a major type of cataracts, often starts at 

45 to 50 years, and its incidence increases with age [4]. 

Currently, surgery intervention is the most effective 

therapy for cataracts [5], while a series of complications 

may affect vision quality [6]. Therefore, sustained efforts 

are needed to discover better solutions for prevention 

and treatment of cataracts. 

In previous studies on the pathogenesis of ARC, 

oxidative stress was demonstrated to directly cause lens 

opacity and assumed to be a key factor during the 

development of cataracts [7, 8]. From the mechanism 

perspective, oxidative stress can induce the peroxidation 

of nucleic acids, lipids, crystalline proteins, and 

polysaccharides in cells, and activate signal transduction 

pathways and transcription factors, resulting in lens 

opacity of the eye [9–11]. Moreover, lens epithelial cells 

(LECs) are essential for maintaining metabolic stability 

and transparency of the whole lens [1, 12]. Apoptosis of 

LECs is a dominant cytological basis for the formation 

of cataracts except congenital cataract [13]. 
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ABSTRACT 
 

Age-related cataract (ARC) is one of the major causes of visual impairment and reversible blindness worldwide. 
Accumulating evidence has revealed that circular RNAs (circRNAs) are involved in multiple regulatory processes 
in various ocular diseases. However, the expression profile, regulatory roles, and underlying mechanisms of 
circRNAs in ARC remain largely unknown. Herein we deep-sequenced circRNAs of anterior lens capsules from 
normal and ARC lenses, and detected 23,787 candidate circRNAs. Of these, 466 were significantly differentially 
expressed, and a higher correlation in down-regulated circRNAs between ARC and diabetic cataract was 
observed compared with up-regulated ones. Subsequent bioinformatics analysis disclosed that certain 
differentially expressed circRNAs participated in oxidative stress and apoptosis-related signaling pathways in 
ARC. Notably, the level of circZNF292 was significantly decreased, while miR-23b-3p was significantly increased 
in ARC. The target region prediction and dual-luciferase reporter assays proved that circZNF292 acted as a 
competitive endogenous RNA to regulate the expression of anti-oxidative genes through competing with miR-
23b-3p. Our results indicate that circZNF292, a down-regulated circRNA in the anterior lens capsule of ARC 
patients, may be involved in resistance to oxidative damage and apoptosis of lens epithelial cells by sponging 
miR-23b-3p, providing a potential target for prevention and treatment of ARC. 
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With the rapid advance of high-throughput sequencing 

technology, the role of circular RNAs (circRNAs), 

which emerge as vital regulators in various diseases, has 

drawn increasing attentions [14–17]. Unlike linear 

RNAs, circRNAs can form a covalently closed loop 

structure connecting the 3' and 5' ends, obtaining higher 

stability and more properties [18–21]. Conserved across 

species, they can express in a developmental stage- or 

tissue-specific manner, and be involved in multiple 

physiological processes and diseases [18, 20, 22–24]. 

CircRNAs are rich in miRNA response elements 

(MREs), which can communicate with target genes or 

co-regulate each other through competing to bind the 

shared miRNAs, thereby up-regulating the expression 

level of their target genes [25–27]. Therefore, as one of 

the non-coding RNAs with regulatory functions, 

circRNAs could antagonize microRNAs (miRNAs) 

through silencing target genes as miRNA sponges, and 

thus participate in the post-transcriptional regulation of 

host genes [25, 28, 29]. As reported in previous studies, 

gene regulatory networks such as circRNAs/miRNAs/ 

mRNAs have provided us with a deeper understanding 

of the development of cataracts. For example, Liu et al. 

[30] proposed that the down-regulated expression of 

circHIPK3 could regulate the apoptosis of human LECs 

through the miR-193a/CRYAA axis in ARC. Our group 

disclosed that circKMT2E may play a role in the 

pathogenesis of diabetic cataract (DC) [31]. 

 

Moreover, numerous non-coding RNAs participate in 

oxidative damage during the cataract formation [32–

34]. Cheng et al. [34] experimentally revealed that 

significantly up-regulated lncRNA H19 can repair 

oxidative damage to the lens of early ARC by 

regulating the miR-29a/TDG axis. However, it remains 

incompletely known whether circRNAs, members of 

the non-coding RNA family, have such a role in ARC. 

 

In the current research, we explored the underlying 

mechanisms of circRNAs in the process of resisting 

oxidative damage by characterizing the interactions 

among circRNAs, miRNAs, and mRNAs in ARC for 

the first time. Among the differentially expressed 

circRNAs, circZNF292 was disclosed to act as a 

competitive endogenous RNA (ceRNA) of miR-23b-3p 

and be involved in reducing the oxidative damage to 

LECs by binding to anti-oxidative genes, thereby 

delaying the occurrence and development of ARC. 

 

RESULTS 
 

The landscape of circRNAs in ARC and normal 

tissues 

 

To understand the regulatory roles of circRNAs in ARC, 

we first characterized the expression profile of circRNAs 

in anterior lens capsules. Briefly, we performed RNA 

sequencing (RNA-Seq) of ribosomal RNA (rRNA)-

deleted total RNAs from normal (control group, 3 

replicates) and ARC anterior lens capsules (ARC group, 

6 replicates) (Figure 1A) on an Illumina HiSeq4000 

platform, yielding about 100 million reads, which were 

mapped to the human reference genome (UCSC hg19) 

with STAR software [35]. A computational pipeline 

based on DCC software was used to identify circRNAs 

according to Ensembl transcriptome GTF file  

(Figure 1B). In total, 23,787 circRNA candidates were 

detected across all samples (unique junction reads ≥ 1) 

(Figure 2A, 2B), consisting of 17,345 circRNAs in the 

ARC group and 14,491 circRNAs in the control group 

(Table 1). Among them, 15,050 (63.3%) were 

overlapped with published ones obtained from circBase, 

while 8,737 (36.8%) circRNA candidates were newly 

identified (Figure 2A). For the functional annotation in 

the genome of circRNAs, 76.7% of them were located 

on protein-coding exons, but other circRNAs were 

aligned to introns, intergenic, antisense, and sense 

overlapping regions (Figure 2C). The length distribution 

of exonic circRNAs was shown with a median length of 

560 nt (Figure 2D). Hierarchical clustering was then 

performed, demonstrating significant difference in the 

circRNA expression patterns between normal and ARC 

tissues (Figure 2E). 

 

Differentially expressed circRNAs in human ARC 

tissues 

 

The expression profiling of these circRNA transcripts 

revealed that numerous circRNAs were specifically 

expressed between ARC and normal tissues (Figure 

2E). Therefore, we further analyzed the differentially 

expressed circRNAs in the samples. In this study, 

thresholds and criteria (fold-change ≥ 2, P < 0.05) were 

set to elect differentially expressed circRNAs (Figure 

3A). Compared to the normal tissues, 466 significantly 

differentially expressed circRNAs were identified in the 

ARC tissues, among which 266 were down-regulated,  

and 200 were up-regulated. Since aging and 

hyperglycemia are key risk factors for cataract 

formation due to the deposition of reactive oxygen 

species (ROS) in LECs, causing cellular oxidative 

damage and even apoptosis [36–40], we carried out a 

further analysis of the significantly differential 

circRNAs in ARC and DC to narrow the scope for 

identifying circRNAs that play dominant roles in 

cataracts. As shown in Figure 3B, we surveyed the 

overlaps among up- and down-regulated circRNAs in 

ARC and DC, after which we characterized the 

chromosomal distributions of all circRNAs in ARC and 

normal samples, as well as differential circRNAs in 

ARC and DC, respectively. Furthermore, we calculated 

the correlation of differential fold changes between 
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ARC and DC, finding a higher correlation in down-

regulated circRNAs compared with up-regulated ones 

(Figure 3D). Hence we investigated the down-regulated 

circRNAs to hunt for circRNAs with regulatory roles in 

ARC formation. 

Functional analysis of the host genes of down-

regulated circRNAs 

 

CircRNAs can act as miRNA sponges to regulate  

the expression of their host genes [41–43]. To better 

 

 
 

Figure 1. A basic schematic diagram of our study. This flowchart details the process of RNA-seq data acquisition and verification of the 

functional circRNAs in age-related cataract (ARC). 
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speculate the potential functions of down-regulated 

circRNAs in ARC, Gene Ontology (GO) and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) enrichment 

analyses of their host genes were performed (Figure 4). In 

general, we focused on the enrichment terms and special 

functions which were related to the pathogenesis of ARC. 

In the biological process, metabolism was one of the main 

functions identified. The host gene functions were 

involved in many aspects of cell physiological functions 

such as growth regulation, stress response, and apoptosis. 

“protein binding”, “binding, bridging”, and “GTPase 

activator activity” in molecular functions of the GO 

enrichment analysis suggested that differentially expressed 

circRNAs may regulate cell proliferation or apoptosis by 

participating in cell signaling pathways. The KEGG 

pathway analysis showed that these parental genes of 

differentially expressed circRNAs were associated with the 

mTOR signaling pathway, AMPK signaling pathway, and 

longevity regulating pathway, which played a part in the 

oxidative stress and apoptosis process of cells [44–46]. 

These results provided some clues that down-regulated 

circRNAs may participate in the formation and 

development of ARC through various channels. 

Interaction network of circRNAs involved in 

oxidation resistance 

 

MiRNAs participate in the pathophysiological 

progression of various diseases, including cataracts [32]. 

However, the upstream regulations of miRNAs vary 

across tissues and diseases. CircRNAs can also serve as 

ceRNAs to prevent miRNAs from silencing their target 

genes [19, 25]. Many miRNAs, such as miR-34a-5p, 

miR-15a, and miR-23b-3p, have been reported to be 

significantly up-regulated in ARC lens tissues compared 

to normal tissues and exert important effects on cataract 

formation [47–51]. Based on the interaction between 

circRNAs and miRNAs, we identified candidate 

circRNAs which were down-regulated in ARC and 

interacted with miRNAs involved in oxidative stress 

and apoptosis for subsequent studies. General 

information of selected circRNAs is shown in Table 2. 

Then we used qRT-PCR to verify expression levels of the 

circRNAs, which showed a strong agreement to the 

patterns detected by RNA-Seq (Figure 5A, 5B). 

Coincidentally, we found that all candidate circRNAs 

were capable of interacting with miR-23b-3p, and thus we  

 

 
 

Figure 2. Total circRNAs detected by RNA-seq in ARC and normal tissues. (A) Overlaps of circRNAs identified in this study (ARC and 

the normal group) and CircBase. (B) The number of circRNAs and junction reads identified in ARC and normal tissues. (C) The genomic 
location of circRNAs. (D) The length distribution of exonic circRNAs. (E) The hierarchical clustering of circRNAs differentially expressed in ARC 
and normal tissues. Each row corresponds to a circRNA, and each column corresponds to a sample. The expression value is represented by a 
color scale. Intensity increases from green (relatively low expression) to red (relatively high expression). 
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Table 1. Mapping statistics of total circRNAs. 

Sample Raw reads Q30 Clean reads Clean ratio Mapped reads Mapped ratio CircRNA number 

ARC1 100,528,824 92.99% 99,765,114 99.24% 91,788,422 92.00% 5,053 

ARC 2 115,303,856 93.75% 114,395,206 99.21% 107,286,738 93.79% 6,029 

ARC3 106,959,578 93.28% 106,220,576 99.31% 99,682,800 93.85% 6,124 

ARC4 103,548,196 92.83% 102,057,780 98.56% 94,322,058 92.42% 5,489 

ARC5 111,099,790 93.94% 110,795,950 99.73% 103,596,282 93.50% 7,381 

ARC6 100,882,158 93.96% 99,826,302 98.95% 93,372,024 93.53% 6,708 

Control1 80,127,844 93.74% 79,872,536 99.68% 73,434,472 91.94% 8,579 

Control2 89,129,854 93.29% 88,683,664 99.50% 83,691,556 94.37% 4,934 

Control3 111,189,984 92.20% 110,820,938 99.67% 100,434,050 90.63% 6,709 

 

 
 

Figure 3. Comparative analysis of differentially expressed circRNAs in ARC and diabetic cataract (DC) samples. (A) A volcano 

plot of differential circRNAs in ARC. The vertical lines represent two-fold (log2 scaled) increased and decreased expression. The horizontal line 
shows P = 0.05 (-log10 scaled). Blue and red dots indicate circRNAs with statistically significant differential expression. (B) A Venn diagram 
shows differentially expressed circRNAs in ARC and DC samples. (C) Chromosomal distribution of expressed circRNAs. The outermost layer 
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displays the location of the circRNAs in the human chromosomes. The inner circles from the outside to the inside show the expression 
distribution of all circRNAs in ARC and normal samples, differentially expressed circRNAs in ARC, and differentially expressed circRNAs in DC 
in turn. (D) Correlation of up- and down-regulated circRNAs in differential fold changes between ARC and DC samples (compared with normal 
tissues), and Pearson’s correlation coefficient R is presented. 

 

verified the expression of miR-23b-3p using qRT-PCR 

(Figure 5C). We also further predicted the target genes of 

miRNAs using TargetScan [52] and StarBase [53]. The 

antioxidative genes [54] were selected to construct a 

potential circRNA-miRNA-mRNA interaction network in 

the oxidative stress process of ARC (Figure 5D), 

representing the possible antioxidant effects of candidate 

circRNAs in detail. 

 

Functional validation of circZNF292 via sponging 

miR-23b-3p in ARC 

 

Circulating circRNAs are mostly fragments of apoptotic 

and necrotic cells released into the blood from different 

tissues. Among them, plasma circRNAs are considered as 

an ideal biomarker for disease detection due to their long-

term stability even under extreme conditions [55]. 

Aqueous humor, transparent and colorless, is frequently 

used for fluid sampling in ocular examinations. It is 

derived from plasma, which can provide nutrients for the 

lens and clear metabolic wastes [56]. Our high-

throughput sequencing results showed that circZNF292 

was also dramatically down-regulated in the plasma of 

ARC patients (Figure 6A), so we selected circZNF292 as 

a functional biomarker for further research. The 

application of CLIP-Seq methods offers a reliable way to 

identify Argonaute (AGO) binding sites. From the 

database based on CLIP-Seq experimental techniques 

(StarBase), we found that circZNF292 can bind to miR-

23b-3p via AGO proteins. CircZNF292 significantly 

decreased in patients with ARC compared with the 

controls, while hsa-miR-23b-3p significantly increased in 

patients with DC compared with the controls (Figure 5A, 

5C). Accordingly, hsa-miR-23b-3p tended to negatively 

correlate with circZNF292 (Figure 6B). The interaction 

between circZNF292 and miR-23b-3p was then validated 

by dual-luciferase reporter assay, verifying the 

relationship between circRNAs and miRNAs. As shown 

in Figure 6D, the luciferase activity was significantly 

down-regulated by miR-23b-3p in the circZNF292-WT 

group compared with the control group, but was almost 

unchanged in the circZNF292-MUT group compared 

with its controls. Since circZNF292 proved to directly 

bind to miR-23b-3p, we hypothesized that circZNF292 

can serve as a ceRNA by sponging miR-23b-3p and 

influence the progression of ARC. 

 

DISCUSSION 
 

Multiple risk factors, like exposure to ultraviolet 

radiation, smoking, aging, metabolic disorders, and 

malnutrition, are linked to ARC creation [4]. 

Epidemiologic and experimental studies have indicated 

that the key contributors to ARC formation are exposure 

of the lens to oxidative stress [9–11] and LEC death 

[13]. Recent reports have shown that circRNAs are 

widely expressed in cataracts and play a part in the 

development of this eye disease [30, 31], but the role of 

 

 
 

Figure 4. GO and KEGG enrichment analysis of parental genes of differential circRNAs. GO and KEGG enriched terms related to the 

ARC pathological process in an order based on the enrichment score [-log10 (P-value)] (A), and KEGG pathway analysis (B) of parental genes 
of differential down-regulated circRNAs in ARC tissues.  
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Table 2. General characteristics of selected circRNAs. 

circBaseID CircRNAID logFC P Value regulation source 
Best 

transcript 

Gene 

Name 
Catalog 

predicted_sequence 

length 

hsa_circ_0060144 chr20:34389413- 

34459751+ 

-7.27035 0.000163 down circBase NM_016436 PHF20 exonic 1314 bp 

hsa_circ_0122396 chr3:150903117- 

150911453+ 

-6.33003 0.003452 down circBase NM_053002 MED12L exonic 651 bp 

hsa_circ_0004058 chr6:87925621- 

87928449+ 

-2.52878 0.023552 down circBase NM_015021 ZNF292 exonic 370 bp 

 

 
 

Figure 5. Verification and the interaction network of selected circRNAs in ARC. (A) qRT-PCR validation of candidate circRNAs in the 

control and ARC groups (*, P < 0.05). (B) The log2FC (fold change) of candidate circRNAs with significant difference by RNA-Seq and qRT-PCR. 
(C) Validation of miR-23b-3p in the normal and ARC groups. (D) A circRNA-miRNA-mRNA interaction map. The purplish red arrowheads 
represent circRNAs, the green ovals represent cataract-related miRNAs, and the blue hexagons represent the target genes related to 
oxidative stress. StarBase and TargetScan were used to predict the target mRNAs of these miRNAs, among which the oxidative stress related 
genes of miR-23b-3p are GPX3, SIRT1, PRDX6, ALDH6A1, and SOD1. 
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circRNAs in oxidative stress remains unclear. The 

current study focused on the possible function of 

circRNAs in the repair mechanism of oxidative damage 

during cataract development. 

 

In our study, we detected circRNA expression profiles 

in ARC in detail using second generation sequencing 

technology to explore their potential clinical value. A 

total of 466 significantly different circRNAs were 

detected, 92 of which were newly detected molecules. 

Similarly, in our sequencing data, circHIPK3 

(chr11:33307959-33309057+, hsa_circ_0000284; 

logFC = -2.197, P < 0.05) was found to be significantly 

down-regulated in the ARC sample tissues [30]. 

Afterwards we analyzed significantly down-regulated 

circRNAs, as the correlation analysis results clearly 

indicated that they were more important for the study of 

cataracts. 

 

Although the functions of most circRNAs in ARC are 

still not completely explored, it is possible to measure 

their molecular function and regulatory pathways by 

 

 
 

Figure 6. General characteristics of circZNF292. (A) RNA-Seq results of circZNF292 in the plasma from ARC patients. LogCPM by edgeR is 

the CPM value normalized by edgeR software and scaled by log2 (***, P<0.001). (B) The negative correlation of relative expression between 
circZNF292 and miR-23b-3p detected by qPCR (Pearson’s correlation coefficient R is presented and P < 0.05). (C) CircZNF292 was located 
between the second and fourth exons of its host gene. (D) Dual-luciferase reporter assay between circZNF292 and miR-23b-3p. 
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performing functional enrichment analysis of their 

parental genes. The expression changes in circRNAs 

and linear variants from the same genes have been 

reported to be largely correlated [18, 20, 29]. The 

possible functions of circRNAs are in line with their 

regulated and widespread expression. GO enrichment 

analysis indicated that different ARC circRNAs-derived 

genes could act by participating in signaling pathways. 

The KEGG pathway was enriched in ARC samples, 

after which several important pathways were identified, 

including AMPK and MTOR signaling pathways. 

AMP-activated protein kinase (AMPK), which is 

widely presented in eukaryotes, can be activated by 

lower intracellular ATP levels to regulate growth and 

metabolism, and has of late been disclosed to be 

associated with cellular processes [46]. By using 

melanoma mouse models, Kfoury et al. [45] 

demonstrated that the AMPK signaling pathway could 

suppress oxidative stress to promote survival of 

melanoma cells. Mammalian target of rapamycin 

(mTOR) is a serine/threonine protein kinase. Its signal 

pathway is closely related to cell proliferation and 

survival. P53 target genes (Sestrin1 and Sestrin2) have 

been reported to provide an important link among 

stress, p53, and the mTOR signaling pathway [44]. 

Therefore, we speculate that differential circRNAs may 

contribute to the formation of cataracts by participating 

in the apoptosis of LECs under oxidative stress. 

 

CircRNAs, which have many binding sites with 

miRNAs, usually work as miRNA sponges to regulate 

the growth and development of organisms [18, 25, 29]. 

MiRNAs, a group of small non-coding regulatory RNAs 

of 21-23 nucleotides in length, can regulate gene 

expression through base-pairing with 3' untranslated 

regions (3’UTR) of their target mRNAs [57]. Involved in 

the intracellular processes of cataracts, including 

apoptosis, proliferation, activity, and oxidative damage 

[50], several miRNAs, like miR-34a-5p [47, 48], miR-

15a [49], miR-23b-3p [51], and miR-211-5p [58, 59], 

could be specifically up-expressed in the lens and 

regulate the apoptosis or oxidative stress of LECs in the 

formation of ARC in experimental studies. Naturally, we 

selected circRNAs which were capable of binding these 

miRNAs based on databases (TargetScan, miRanda, and 

StarBase). Subsequently, qRT-PCR was conducted to 

verify expression of candidate circRNAs, presenting 

similar results with the verification. 

 

To further explore the role of circRNAs in the 

pathogenesis of ARC, significantly down-regulated 

circZNF292 in the plasma and lens tissues of ARC was 

detected. CircZNF292 silencing has been reported to 

significantly decrease cell viability and increase 

apoptosis in Eca-109 cells [60]. Analogously, we 

hypothesize that circZNF292 may also fulfill such 

functions in LECs. Figure 7 briefly displays the process 

of exploring the function of circZNF292. 

 

In this study, we observed that all the candidate 

circRNAs bound to miR-23b-3p, which seems to be an 

abnormal expression in cataractous human lenses and 

confirms the involvement of miR-23b-3p in the 

development of ARC. Zhou et al. [51] verified that 

 

 
 

Figure 7. General function pattern of circZNF292. This pattern outlines the process in which circZNF292 acts through the 
ceRNA network in ARC. 
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miR-23b-3p can increase lens cell apoptosis by binding 

to Sirtuin 1 (SIRT1) under oxidative stress. Liu et al. 

[61] also indicated that miR-23b-3p can promote 

epithelial–mesenchymal transition of LECs by targeting 

sprouty2. We evaluated the significant up-expression of 

miR-23b-3p in the anterior lens capsules of ARC 

patients with its ceRNA network as the center, 

disclosing the expression levels of circZNF292 and 

miR-23b-3p were negatively correlated in human lens 

tissues. Our dual-luciferase reporter assay then 

supported that circZNF292 directly bound to miR-23b-

3p and acted as a miR-23b-3p sponge to relieve the 

suppressive effect of miR-23b-3p target genes such as 

GPX3, SIRT1, PRDX6, ALDH6A1, and SOD1. 

 

ROS-mediated oxidative stress is an important reason of 

LEC injury and apoptosis [11]. The physiological lens 

protective system decreases along with age. Long-term 

exposure of crystalline lens cells to oxidative stress can 

cause reduction in the lens repair mechanism and 

accumulation of oxidative damage, leading to cataract 

formation [7]. MiR-23b-3p plays a vital role in the 

occurrence of ARC. Among the predicted targets of 

miR-23b-3p, we found that many antioxidant genes 

interacted with miR-23b-3p. Subsequently, the 

interaction between miR-23b-3p and SIRT1 was 

verified in the SRA01/04(LEC) oxidative stress model, 

and miR-23b-3p was demonstrated to directly bind 

SIRT1 3'UTR to repress its expression [51]. 

 

SIRT1 is a special member of the sirtuin family and an 

important III NAD+-dependent protein deacetylase, 

which can regulate DNA stability and promote cell 

survival [62, 63]. Lin et al. [64] reported that the level 

of SIRT1 expression was negatively associated with 

patient age. Zheng et al. [63] also proved that SIRT1 

can protect LECs from oxidative damage via the 

inhibition of the p53 pathway. SIRT1 helps maintain 

cellular homeostasis and has association with various 

ocular and other age-related diseases [63, 65]. To sum 

up, we propose that circZNF292 may resist oxidative 

damage and reduce apoptosis by sponging miR-23b-3p 

in human LECs. However, our study was only based 

on a comparison of transparent and clouded lenses. 

The specific role of circZNF292 in the pathogenesis of 

different types of cataracts remains unclear. Further 

studies on the relationship between circZNF292 

changes and ARC formation are needed with age-

matched human lenses in various cataracts and models 

in varying degrees of oxidative damage. 

 

In conclusion, circRNAs had a certain correlation with 

the occurrence and development of ARC for their 

involvement in the oxidative stress and apoptosis of 

human LECs. After the differential expression analysis 

and function prediction of circRNAs in anterior lens 

capsules from ARC, down-regulated circRNAs 

associated with miR-23b-3p were selected for evaluation 

of the biological function and mechanism of circRNAs. 

CircZNF292, a significantly down-regulated circRNA 

involved in the oxidative stress-induced apoptosis 

process in LECs, was revealed as a potential antioxidant 

molecule in the pathogenesis of ARC. 

 

MATERIALS AND METHODS 
 

Sample collection 

 

Anterior lens capsules were obtained from 18 patients 

(9 males and 9 females), aged 54 to 81 years (average, 

67 years), who underwent ARC surgery at our 

institution. All these patients had no diabetes, 

hypertension or other ocular diseases. The capsules 

were removed by the same experienced surgeon (YH) 

during continuous curvilinear anterior capsulorhexis of 

cataract surgery. Moreover, nine transparent anterior 

lens capsules from healthy donor eyes were used as 

normal controls. All samples were immediately flash-

frozen in liquid nitrogen before stored at -80 °C. 

Because the content of RNAs of a single lens anterior 

capsule was not adequate for RNA sequencing, three 

samples were combined for RNA extraction. Hence 

there were six replicates in the ARC group and three 

replicates in the control group (Figure 1A). For 

subsequent verification experiments, we collected the 

anterior capsule tissues from 15 patients with ARC and 

6 normal donor eyes. The clinical characteristics of the 

study subjects are listed in Supplementary Table 1. The 

Lens Opacities Classification System III (LOCS III) 

was used for the assessment of lens opacity [66]. 

 

RNA extraction, library preparation, and RNA 

sequencing 

 

Total RNAs were extracted from frozen anterior lens 

capsule tissues using TRIzol reagent (Life 

Technologies, Carlsbad, CA, USA) in accordance with 

the instructions. The concentration of total RNAs was 

measured by a NanoDrop instrument (Thermo Fisher 

Scientific, Waltham, MA, USA), and the ratio of 

OD260/OD280 (between 1.8 and 2.1) was used as an 

indicator of RNA purity. The integrity of RNAs was 

also detected on the denaturing agarose gel 

electrophoresis according to the morphology of the 28S 

and 18S rRNA bands. Then library construction for 

sequencing was performed. Briefly, rRNAs in total 

RNAs were removed, and the purified RNAs were 

reverse-transcribed into complementary DNAs 

(cDNAs), adaptor ligated, and PCR amplified following 

the instructions of the TruSeq Stranded Total RNA 

Library Prep Kit (Illumina). RNA libraries were quality-

controlled and quantified using the BioAnalyzer 2100 
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system (Agilent Technologies, Richardson, TX, USA) 

before sequenced on the Illumina HiSeq4000 Platform 

with a read length of paired-end 150 bp. 

 

NGS data processing and circRNA identification 

 

The 3' adaptor sequences were trimmed with cutadapt 

software (v1.9.3) [67]. Clean reads were aligned to the 

reference genome of humans (UCSC hg19) with STAR 

(v2.5.1b) [35], after which circRNAs were detected and 

identified with DCC software (v0.4.4) according  

to Ensembl transcriptome (v75) GTF file. CircBase  

[68] (http://www.circbase.org) and circ2Trait [69] 

(http://gyanxet-beta.com/circdb/) were used to annotate 

the identified circRNAs. 

 

Differential gene expression analysis 

 

The edgeR software (v3.16.5) [70] was used for RNA-

seq data normalization and screening of differentially 

expressed circRNAs. Quasi-likelihood F test was 

performed to compare the difference in circRNA 

abundance between the ARC group and the control 

group. Significantly differentially expressed circRNAs 

were screened out at the cutoff of fold-change ≥ 2.0 

with a P value < 0.05. 

 

Correlation analysis of differentially expressed 

circRNAs 

 

Compared with the same control group, we performed 

RNA-seq on the human anterior capsule tissues of 

patients with ARC and DC [31]. R packets were used to 

analyze the correlation of significantly differentially 

expressed circRNAs between these two types of 

cataracts, with a correlation coefficient presented. 

 

GO and KEGG enrichment analyses 

 

We performed GO (http://www.geneontology.org)  

and KEGG (http://www.genome.jp/kegg) enrichment 

analyses on the host genes of differentially expressed 

circRNAs. GO developed a structured, controlled 

vocabulary to describe genes and gene product attributes 

in organisms. The ontology covered molecular function, 

biological process, and cell component. Through the 

KEGG pathway analysis of host genes, we inferred the 

signaling pathways involved in circRNAs and their 

biological functions. The P value was obtained using 

fisher’s exact test, with a recommended cut-off at 0.05. 

 

Interaction network analysis of differentially 

expressed circRNAs 

 

To clarify the role of differential circRNAs in 

cataracts, miRNA targets for circRNAs were predicted 

using target prediction software based on miRanda and 

TargetScan (Cloud-seq, Biotech, Shanghai, China). 

StarBase (https://web.archive.org/web/20110222111721/ 

http://starbase.sysu.edu.cn/), which provides miRNA-

target interaction prediction based on high-throughput 

CLIP-Seq data [53], was used to further screen 

circRNAs-miRNA pairs. Subsequently, we obtained 

circRNAs that interacted with ARC-related miRNAs. 

Then three significantly differential circRNAs with miR-

23b-3p response elements were selected for further 

analysis. 

 

qRT-PCR verification of differential circRNAs and 

miRNAs 

 

We used qRT-PCR to verify expression levels of 

differentially expressed circRNAs containing miR-23b-

3p response elements. Total RNAs were extracted from 

lens tissues as described above, before cDNAs were 

synthesized using the SuperScriptIII Reverse 

Transcriptase Kit (Invitrogen). qRT-PCR was performed 

on the ViiA 7 Real-time PCR System (Applied 

Biosystems) using the qPCR SYBR Green Master Mix 

(Applied Biosystems). Specific primers for circRNAs 

were designed by primer 5.0 according to the sequence of 

the linear transcripts. Primer sequences of selected 

circRNAs and miRNA are shown in Table 3. 

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 

and U6 were used as internal references, and the relative 

expression of circRNAs and miRNAs was calculated 

using the 2-ΔΔCT method. Student’s t-test was used to 

determine significance for differences in circRNA 

expression with GraphPad Prism 8.0. 

 

ARC-related candidate circRNA analysis 

 

To further elucidate the functional role of circRNAs, 

we selected circZNF292, which was markedly  

down-regulated in ARC plasma tissues, for further 

analysis. TargetScan and StarBase were applied to 

predict the mRNA targets of miRNAs. Based  

on a previous report [54], oxidative stress/apoptosis-

related genes were selected. Then a map of the 

circRNA-miRNA-mRNA network was constructed 

using Cytoscape (3.7.1) software to demonstrate  

their interactions in ARC. UCSC Genome Browser 

(http://genome.ucsc.edu/cgi-bin/hgGateway) and 

circPrimer1.2 (http://www.bioinf.com.cn/) provided a 

visual representation of the circZNF292 composition 

and its location on the parental genes. 

 

Dual-luciferase reporter assay 

 

A dual-luciferase reporter assay was performed to 

confirm the direct binding of miR-23b-3p and 

circZNF292. The wild-type and mutant sequences of 

http://www.circbase.org/
http://gyanxet-beta.com/circdb/
http://www.geneontology.org/
http://www.genome.jp/kegg
https://web.archive.org/web/20110222111721/http:/starbase.sysu.edu.cn/
https://web.archive.org/web/20110222111721/http:/starbase.sysu.edu.cn/
http://genome.ucsc.edu/cgi-bin/hgGateway
http://www.bioinf.com.cn/
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Table 3. Primer sequences of selected circRNAs and miRNAs. 

circRNA ID primer type gene sequence 

chr20:34389413-34459751+ Forward GAACCGACTTCTCCCCTTGT 

Reverse TCGTCTGTTAGGTGGATGCTT 

chr3:150903117-150911453+ Forward TGACCTCCTTCGCCACTTAC 

Reverse CATAACAGCGTCACCACAGC 

chr6:87925621-87928449+ Forward AAGAGACTGGGGTGTGGAAA 

Reverse TCTGAAGTTTTCCATTTCTCTGC 

miR-23b-3p Forward GGGATCACATTGCCAGGGAT 

Reverse CAGTGCGTGTCGTGGAGT 

GAPDH Forward GGCCTCCAAGGAGTAAGACC 

Reverse AGGGGAGATTCAGTGTGGTG 

U6 Forward CTCGCTTCGGCAGCACA 

Reverse AACGCTTCACGAATTTGCGT 

 

circZNF292 were subcloned into multiple cloning 

regions (1640–1674 bp) of psiCHECK-2 luciferase 

reporter vectors (Progema). Then target-site containing 

plasmids, together with miR-23b-3p mimics or miRNA 

negative controls, were co-transfected into cells with 

Lipofectamine 2000 transfection reagent (Thermo 

Fisher). The fluorescence activities of firefly and 

Renilla were detected 48 hours after transfection 

according to the manual of the Dual-Luciferase 

Reporter Assay System (Progema), and the relative 

fluorescence value was calculated. 

 

Ethics statement 

 

Anterior lens capsules used in this study were 

collected from patients undergoing surgery for ARC 

and healthy donor eyes provided by the eye bank of 

our institution. The study was performed in accordance 

with the tenets of the Declaration of Helsinki. The 

protocol was reviewed and approved by the Ethics 

Committee of Shandong Eye Institute. We informed 

the patients of the use of their specimens and obtained 

their consent. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Table 
 

Supplementary Table 1. The clinical characteristics of the age-related cataract patients involved in this study. 

Patient NO. Age (y) Gender LOCS III Grade Sample use 

1 54 male NO4C4P1, NC4 RNA-Seq  

2 54 male NO3C5P2, NC3 RNA-Seq 

3 54 male NO3C4P1, NC3 RNA-Seq 

4 56 female NO3C5P1, NC3 RNA-Seq 

5 60 female NO4C3P1, NC4 RNA-Seq 

6 63 female NO3C3P1, NC3 RNA-Seq 

7 64 female NO4C4P1, NC4 RNA-Seq 

8 64 male NO3C3P1, NC3 RNA-Seq 

9 65 male NO3C3P1, NC3 RNA-Seq 

10 66 female NO3C3P1, NC3 RNA-Seq 

11 71 female NO5C4P2, NC5 RNA-Seq 

12 71 female NO5C4P1, NC5 RNA-Seq 

13 72 male NO3C5P1, NC3 RNA-Seq 

14 74 female NO5C5P2, NC5 RNA-Seq 

15 79 male NO4C5P1, NC4 RNA-Seq 

16 79 female NO5C5P2, NC5 RNA-Seq 

17 81 male NO6C5P1, NC6 RNA-Seq 

18 81 male NO4C4P1, NC4 RNA-Seq 

19 79 female NO4C3P1, NC4 qRT-PCR 

20 77 male NO4C3P1, NC4 qRT-PCR 

21 74 female NO4C4P1, NC4/ 

NO4C4P1, NC4 

qRT-PCR 

22 70 male NO3C3P3, NC3 qRT-PCR 

23 68 male NO5C4P1, NC5 qRT-PCR 

24 67 female NO3C3P1, NC3 qRT-PCR 

25 67 male NO4C3P1, NC4 qRT-PCR 

26 65 female NO3C2P1, NC3 qRT-PCR 

27 65 female NO3C3P1, NC3/ 

NO3C3P1, NC3 

qRT-PCR 

28 64 female NO3C3P1, NC3/ 

NO3C3P1, NC3 

qRT-PCR 

29 63 male NO3C5P1, NC3 qRT-PCR 

30 63 male NO5C4P1, NC5 qRT-PCR 

31 62 female NO5C3P1, NC5 qRT-PCR 

32 59 male NO3C4P1, NC3 qRT-PCR 

33 57 male NO5C3P1, NC5 qRT-PCR 

Note: A total of 33 age-related cataract patients (36 eyes) in this study. 
NC: nuclear color; NO: nuclear opalescence; C: cortical cataract; P: posterior subcapsular cataract. 


