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Abstract

Prevention of unintended duplication is one of the ongoing challenges many databases

have to address. Working with high-throughput sequencing data, the complexity of that

challenge increases with the complexity of the definition of a duplicate. In a computa-

tional data model, a data object represents a real entity like a reagent or a biosample.

This representation is similar to how a card represents a book in a paper library catalog.

Duplicated data objects not only waste storage, they can mislead users into assuming

the model represents more than the single entity. Even if it is clear that two objects repre-

sent a single entity, data duplication opens the door to potential inconsistencies between

the objects since the content of the duplicated objects can be updated independently,

allowing divergence of the metadata associated with the objects. Analogously to a situ-

ation in which a catalog in a paper library would contain by mistake two cards for a single

copy of a book. If these cards are listing simultaneously two different individuals as cur-

rent book borrowers, it would be difficult to determine which borrower (out of the two

listed) actually has the book. Unfortunately, in a large database with multiple submitters,

unintended duplication is to be expected. In this article, we present three principal guide-

lines the Encyclopedia of DNA Elements (ENCODE) Portal follows in order to prevent un-

intended duplication of both actual files and data objects: definition of identifiable data

objects (I), object uniqueness validation (II) and de-duplication mechanism (III). In add-

ition to explaining our modus operandi, we elaborate on the methods used for identifica-

tion of sequencing data files. Comparison of the approach taken by the ENCODE Portal

vs other widely used biological data repositories is provided.
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Introduction

Authors of scientific publications are commonly required by

journals to deposit their published data in public repositories

[i.e. GEO and SRA at the NCBI (1)], allowing access for the

wider scientific community and ensuring data preservation.

These repositories have to handle an exponentially growing

amount of sequencing data (https://www.nature.com/scit

able/topicpage/genomic-data-resources-challenges-and-promi

ses-743721) produced by different research laboratories.

Information submitted to these repositories is subjected

to data validation processes that include syntactic valid-

ation of the submitted components, file integrity checks

and manual curation [e.g. see GEO (2) or GDC https://gdc.

cancer.gov/submit-data/gdc-data-submission-portal sub-

mission practices]. The large volume of submitted data

makes it impossible to extensively curate each submitted

data set manually (https://www.nature.com/scitable/topic

page/genomic-data-resources-challenges-and-promises-

743721) and while file formats can be readily validated

computationally in an automated fashion, evaluation of

the actual file content is considerably more difficult and

computationally expensive.

The Encyclopedia of DNA Elements (ENCODE) Portal

(https://www.encodeproject.org) is a database that is funded

by the NIH to organize, curate and share ENCODE data (3).

It also hosts related projects like Genomics of Gene

Regulation (GGRhttps://www.genome.gov/27561317/gen

omics-of-gene-regulation/) and modERN (modERN Project:

https://grants.nih.gov/grants/guide/pa-files/PAR-11-095.html),

as well as the imported REMC (4) and modENCODE (5)

data. As of October 2017, the ENCODE Portal houses data

from >50 assays and >600 different cell and tissue types.

The data and metadata are submitted to the ENCODE Data

Coordination Center (DCC) whose role is to validate, de-

scribe, organize and provide access to these diverse data sets

(6). High quality and easily accessible data, tools and ana-

lyses are provided to the scientific community via the

ENCODE Portal. Additionally, these data are deposited to

external repositories (e.g. GEO and SRA repositories, which

belong to the list of official NIH Data Repositories and

Trusted Partners https://osp.od.nih.gov/scientific-sharing/

data-repositories-and-trusted-partners/).

The process of collection, representation and distribu-

tion of an extensive and exponentially growing amount of

high-throughput genomic data is challenging. To face these

challenges, the ENCODE DCC has developed metadata

organization principles and standards that were described

by Hong et al. (3). One of the challenges scientific data

repositories in general and ENCODE DCC in particular

face is unintended data duplication. The duplication can

occur in the data itself or in the object’s metadata, akin to

a presence of multiple copies of the same book in the li-

brary in the former case and presence of multiple cards in

the library catalog in the latter. The distinction between

data (file content) duplication and metadata (objects) du-

plication is significant for many reasons. For Next-gener-

ation Sequencing (NGS), the data files can reach the size of

10 s to 100 s of gigabytes, therefore, the wasted storage

capacity from the duplication of data can be substantial,

approaching thousands of US dollars per annum for a large

project (based on approximate cloud storage price of

$22.50/TB/month). Duplication of data can have the more

scientifically relevant consequence of confounding down-

stream integrative analyses. If for example, the same

sequencing run is submitted multiple times, incorrect as-

sumptions might be made about the overall read depth of

the experiment. Similarly, and perhaps even more import-

antly, analysis of experimental replicates associated with

duplicated data files would result in erroneous and mis-

leading high correlation scores between the replicates. If

in the library analogy, the downstream analysis was based

on words per title, duplicate copies of a book would

confound the analysis. Additionally, prevention of data

duplication is another quality check on the data. Just as

the same set of sentences showing up in two different

books is a sign of potential plagiarism, when the same set

of sequencing reads appears in a heart experiment and in a

liver experiment, there has been an error in submission.

Fortunately, much thought has been put into prevention of

data duplication (e.g. the Groveler process from https://

www.microsoft.com/en-us/research/wp-content/uploads/2

000/01/WSS2000.pdf) and those methods can be built

upon for the specifics of sequencing data. Unlike for data

duplication, the wasted storage from metadata duplication

can be insignificant. However, metadata duplication can

have a profound impact on interpretation and integrative

analysis. For example, the conclusions of analyses per-

formed on samples taken from two different donors would

differ from the conclusions one would reach if the samples

were coming from the same donor. Additionally, the dupli-

cation of records creates a maintenance burden by creating

a situation in which any update to the data record is an op-

portunity to create inconsistencies between duplicated re-

cords. The larger the number of inconsistencies between

the duplicated and initially identical records, the harder it

is to automatically consolidate. Finally, whereas there are

established methods for determining data uniqueness,

metadata uniqueness rules are individual to the data type

and model. This makes duplication prevention in metadata

more elusive.

Here, we describe in detail ENCODE DCC metadata

organization guidelines and validation approaches prevent-

ing unintended data duplication.
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Guidelines

Identifiable data objects definition

A well-defined object in the data model should reflect an ac-

tual experimental/physical entity, rather than an abstract

concept. The object should contain properties that could be

used in maintenance of a one-to-one correspondence be-

tween an object and the entity it represents. Abstract con-

cept elements often lack such properties that would allow

their uniqueness to be checked. For example, a definition of

an object representing a library book in a data model allows

check for uniqueness, because we can collect book identify-

ing properties (such as a library catalog number) and require

uniqueness of these properties in the system. But, a defin-

ition of an object representing a classification system (like

Dewey Decimal) would be difficult to check for uniqueness

since the only identifying characteristic is its name.

Object uniqueness validation

Prevention of duplication and preservation of one-to-one

correspondence between the data objects and the entities

represented by these objects can be achieved by defining a

set of properties that make the data object unique and

enforcing that each object be unique for those properties.

Using our library analogy, a set of properties that would

allow uniqueness validation for a book would include au-

thor name, book title, publisher name, publication date

and book copy number. The unique combination of these

properties defines book object uniqueness in the system.

De-duplication mechanism

For cases in which violation of one-to-one correspondence

between the data object and the represented entity is de-

tected, the system should have a mechanism in place that

would allow resolution of the duplication event. In full

agreement with McMurry et al. (7), we think that publicly

exposed identifiers should not be deleted or reassigned.

Therefore, duplication events should be resolved using merg-

ing and redirection mechanisms that preserve both existing

identifiers. Situations in which two library catalog cards are

found to be for the same book should be resolved by leaving

only one functional card, marking the rest of the cards as

deprecated and forwarding to the single functional card.

Implementation according to encode DCC
guidelines

Definition of identifiable data objects

The metadata used at the ENCODE portal is organized in

a set of major categories that expands the properties

collected during previous phases of the ENCODE project

(3, 8). The current set includes donors, biosamples, genetic

modifications, DNA libraries, antibodies, experiments,

data files and analysis pipelines. For more detailed descrip-

tion of the data model objects, see (3) and https://www.

encodeproject.org/help/getting-started/. Wherever possible,

the objects correspond to simply defined ‘real-world’ enti-

ties. For example, an antibody lot can be defined as corres-

ponding to a specific monoclonal antibody clone. A donor

is an individual human. A biosample is a particular harvest

of a cell line or a tissue. A library specifies the DNA library

generated from an individual assay. Just like the book in

the traditional library, there should be a tube in the lab

that corresponds to the created record. For more concep-

tual entities, like experiment and analysis pipeline, the sub-

mitters need as much educational material as possible on

the definition of that object. Ideally, there is a collection of

properties that can uniquely identify that object. For ex-

ample, cell-type, harvest date, donor and source could de-

fine a biosample. If two biosamples are harvested together,

introducing collection time would allow unique identifica-

tion. Our approach for data modeling is exemplified by a

subset of metadata objects included in Figure 1.

Object uniqueness validation

Creation of each new object in our site generates a new

unique identifier. However, generation of a new unique

identifier by itself cannot prevent an element’s duplication,

as it is possible to violate the one-to-one correspondence

by the creation of multiple objects with different identifiers

that correspond to a single entity. For this reason, we are

always looking to add uniquely identifying properties to an

object definition.

Whenever possible, the ENCODE DCC leverages exist-

ing unique and uniformly assigned identifiers for an entity.

For example, if a cell line is defined in Cellosoaurus (http://

web.expasy.org/cellosaurus/) or a mouse strain is defined

by The Jackson Laboratory (https://www.jax.org/), the

schemas accept those identifiers as uniquely identifying ali-

ases in our system. Even if the identifier is only unique to

the submitting lab, our schema allows for the addition of

these unique identifiers. When creating a new object in our

system, the DCC encourages submission of as many of

these identifiers as possible, allowing both for uniqueness

check based on the uniqueness of external identifier and

interoperability between different data resources. As it is

noted in (7), use of external identifiers allows for preserva-

tion of a one-to-one correspondence between an identifier

and an entity, preventing future costly mapping problems.

Additionally, we recommend where possible using a com-

bination of multiple properties that would result in a
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unique object. For instance, one could use biosample, pro-

ducer, assay and date to define a particular library.

An example in our system of using multiple properties

to ensure uniqueness is our antibody-lot object. For this

object, we require that the combination of source, product

ID and lot number be unique (Figure 2). If a submitter tries

to create a new object with the same values for those three

properties as an existing object, they will get an error mes-

sage regarding the duplication. This allows them to refer-

ence the existing antibody-lot object as referring to their

actual entity. However, the definition of lot varies from

company to company. In some cases, it was discovered

that the same antibody clone was being sold with differing

product numbers based on the volume of the purchased

tube. For this reason, the ability to merge those two entries

later is essential. As a further attempt to clearly and

uniquely identify antibody lots, we work with antibodype-

dia (9) to provide external identifiers for cross-referencing.

The ENCODE Portal is the only repository for the ma-

jority of ENCODE-generated files, and thus these files lack

an external identifier, such as a SRR identifier that would

come from an initial submission of primary data to SRA.

In addition to a unique accession the file objects receive on

the portal [for details see (3)], we calculate file metadata

values in an effort to mitigate cases of unintended file du-

plication, which are highly probable when the repository

hosts >380 000 files. For example, the current set of prop-

erties calculated for verification of a FASTQ file unique-

ness is a result of an ongoing iterative trial and error

process. Initially, we used a MD5 hash function (10) as a

way to generate a compact digital fingerprint of a file for

fast and reliable file comparisons. However, calculation of

MD5 hash function of compressed (gzipped) files turned

out to be unreliable source for the file comparison due to

the introduction of the timestamp in the header of the com-

pressed version of the file by gzip compression algorithm.

Unless default settings are explicitly over-ridden, a file

compressed (gzipped) at different time points will have dif-

ferent timestamps in the header, leading to different MD5

hash function results, obscuring the fact that the original

content was identical. To overcome this difficulty, we first

un-compress FASTQ files and calculate the MD5 hash

function using the uncompressed file, forcing creation of a

digital file fingerprint reflecting the actual file content ra-

ther than the compressed file content (for numerical details

see Figure 3).

Unfortunately, although comparison of content MD5

hash function results ensures the uniqueness of the digital

file, it still does not ensure uniqueness of the content.

Specifically, two FASTQ files could contain identical reads

but in a different sort order. In this case, the file’s MD5

hash function results would be different, but the content

(defined as a unique collection of sequencing reads) would

be the same and should be considered a duplication of a

sequencing event. Additionally, the reads could be the

same and in the same order, but the read names could have

some minor modification made by the submitting lab. The

lack of an enforced standard sequencing read naming con-

vention paired with the diversity of technologies used to

produce those reads leaves a substantial chance for vari-

ation in read names.

To further complicate the issue, non-identical FASTQ

files may contain partial duplication, which would not be

detectable even in cases in which both of the files in ques-

tion contain sequencing reads in the same order and the

read names were not altered. For instance, content MD5

hash function would not be useful in cases when some of

the reads were omitted from one of the files for reasons of

Figure 1. The metadata captured for ENCODE can be grouped into the

following main object types: donors/strains, biosamples, genetic modi-

fications, sequencing libraries, antibodies, data files and pipelines.

Experiment objects (representing replicates of an assay) are con-

structed from these object types. Each object type represents a category

of experimental entities and is used to store information about entities

from that category. For example, the library object represents sequenc-

ing library and would include information such as nucleic acid type or

the fragmentation method used to construct the library. In a similar

fashion the file object (that is different from the actual data file) stores

information about the data file submitted to the portal. Examples of the

properties that would be stored in a file object would be: information

about the sequencing platform used to produce this FASTQ file or infor-

mation about the reference genome assembly that was used for align-

ment producing this BAM file. Some of the objects are unique per

experiment (e.g. sequencing library, or raw data file) while others could

be shared between different experiment objects (e.g. the donor or the

biosample objects). The figure includes both types of objects, the li-

brary (blue color header) and the files (yellow color header) are unique

and are associated with a single experiment (amber header), while the

biosample (green color header) and the pipeline (pink color header) ob-

jects could be shared between multiple experiments. Potential experi-

ments the biosample and the pipeline objects could be shared with are

depicted by the rectangles with the dashed borderline. Only a subset of

object types is listed in the figure to provide an overview of the breadth

and depth of metadata collected. The full set of metadata can be viewed

at https://github.com/ENCODE-DCC/encoded/tree/master/src/encoded/

schemas.
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filtration or truncation (examples of the different types of

FASTQ duplication detectable using FASTQ signature

heuristic are presented in Figure 4).

Theoretically, read uniqueness could be checked on an

all-by-all basis, but this is not practical due to the large

quantity of reads in each file (millions of reads) and the

quantity of FASTQ files stored in the system (>51 000). In

order to make the comparison feasible, we use a heuristic

allowing us to produce a value we call ‘FASTQ signature’

that can be compared against other FASTQ files’ signa-

tures in a timely fashion and in most cases, would ensure

file uniqueness.

Description of the FASTQ signature calculation

heuristic

According to the specification of the FASTQ format (https://

support.illumina.com/content/dam/illumina-support/docum

ents/documentation/software_documentation/bcl2fastq/bcl2

fastq_letterbooklet_15038058brpmi.pdf), each sequencing

read in the FASTQ file has an identifier, called also a read

Figure 2. Example of an antibody page for antibody lot (ENCAB823XVS). Various aspects of metadata are displayed on the antibody page, including

the properties that are used for antibody uniqueness validation. The set includes the lot identifier, product identifier and the source (vendor) name.

Figure 3. The chart presents the breakdown of the total number (2941

as of 10/13/2017) of FASTQ file duplication events detected in our data-

base using different methods. Each successive bar shows the split be-

tween the number of files that could be detected with the methods from

the previous bar (depicted in a green color) as well as those that could

only be detected with the additional method (depicted in an orange

color). The final 285 FASTQ files were considered duplicates based on

manual curation.
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name. Starting from Illumina CASAVA 1.8 software identi-

fier in FASTQ file will appear in the following format:

@<instrument>:<run number>:<flowcell ID>:<lane>:

<tile>:<xpos>:<y-pos> <read>:<is filtered>:<con-

trol number>:<barcode sequence>

Some of the read name parts listed in Table 1 would be

unique for every sequencing read (like the combination of

the tile and cluster coordinates), while other parts would

be common to multiple reads in the FASTQ file created for

a sequencing run on a specific Illumina instrument (like the

machine name, flow cell id, lane number). For every

FASTQ file, we retain sets of read name properties that are

common for multiple reads in the file, but are unique for

the file in question. This process allows us to represent a

file containing millions of sequencing reads by a short list

of unique strings constructed from the retained sets of read

name parts (see Figure 5).

Representation of a FASTQ file containing millions of

reads by a short list of unique FASTQ signatures makes

comparing a new file to all existing files in the repository

feasible, due to the substantial reduction in the number of

comparisons needed to detect file content duplication (full

or partial).

During the application of our approach we encountered

some difficulties:

• A fraction of the files on the ENCODE Portal were pro-

duced by software that is the predecessor of Illumina

CASAVA 1.8 software and have read names that do not

follow the format that could be used to produce FASTQ

signatures.

• As mentioned before, because the read names format is

not enforced, some of the files have their read names

altered by the submitters prior to submission to the

DCC.

Figure 4. Types of FASTQ file duplications detectable using FASTQ signature heuristic. It is important to note that all the cases presented here are not

detectable using MD5 hash or content MD5 hash function approaches, as those functions’ results will be different from the original FASTQ file for all

listed files. File A represents a case where reads from original file are out of order. FASTQ signature heuristic would detect duplication of this type.

File B is identical to the original file, except for a small change in read names making detection of file content duplication challenging. Since FASTQ

signatures are constructed using only parts of the read name, the ability of the heuristic to detect duplication will rely on the exact places the read

names were modified. File C contains subset of the reads from original file and will be detected by FASTQ signature heuristic. File D contains reads

not present in original file; however, it will be reported as a potential duplication because it contains reads identical to the content of original FASTQ

file. File E will be reported as duplication of the original FASTQ file, since Read_1 and Read_2 appear in both files. However, File E contains both in-

ternal duplication and external duplication of the original FASTQ file. The internal duplication is not detectable using our current FASTQ signature

approach.
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• The introduction of libraries constructed using Unique

Molecular Identifiers (UMI) (11) doesn’t allow us to use

the index property as a common property shared be-

tween many read names in a given file.

To overcome these difficulties, we are constantly

upgrading and updating the FASTQ signature calculation

algorithm and encouraging production laboratories to sub-

mit raw FASTQ files containing unaltered read names,

which are produced by the CASAVA software and have

read names constructed according to the FASTQ format

specifications by default. The code that is used for FASTQ

signature calculation is freely accessible at https://github.

com/ENCODE-DCC/checkfiles.

Figure 5. Representation of FASTQ file content by FASTQ signature. FASTQ signature is constructed using read name parts that are common for mul-

tiple reads within a single FASTQ file. Read name parts that are used for signature construction are color coded in the figure: flowcell identifier (yel-

low), flowcell lane number (green), read 1 or read 2 (turquoise) and index sequence (grey). Our condensation approach allows representation of

multiple reads in FASTQ file by a single FASTQ signature, as it is exemplified in the figure.

Table 1. Read name (sequence identifier) elements

Element Requirement Description

@ @ Each sequence identifier line starts with @

<instrument> Characters allowed: a–z, A–Z, 0–9 and underscore Instrument ID

<run number> Numerical Run number on instrument

<flowcell ID> Characters allowed: a–z, A–Z, 0–9 Flowcell identifier

<lane> Numerical Lane number

<tile> Numerical Tile number

<x_pos> Numerical X coordinate of cluster

<y_pos> Numerical Y coordinate of cluster

<read> Numerical Read number. 1 can be single read or read 2 of paired-end

<is filtered> Y or N Y if the read is filtered did not pass), N otherwise

<control number> Numerical 0 when none of the control bits are on,

otherwise it is an even number

<barcode sequence> ACTGCA Barcode sequence

The table is from Illumina ‘bcl2fastq User Guide’ documentation https://support.illumina.com/content/dam/illumina-support/documents/documentation/soft

ware_documentation/bcl2fastq/bcl2fastq_letterbooklet_15038058brpmi.pdf.
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De-duplication mechanism

Although multiple objects representing a single entity are

problematic for the reasons stated above, we believe that

‘released’ (publicly available) accessions should not be

deleted or reassigned to new objects. The logic is similar to

that of Lesson 7 from (7): publicly exposed identifiers may

be deprecated, but must never be deleted or reassigned to

another object. However, if two identifiers are referring to

the same real-world entity, there needs to be a mechanism

to ‘merge’ the data objects associated with those identi-

fiers. Our system has a mechanism in place to resolve situ-

ations where one-to-one correspondence between an object

and its represented entity is violated. For example, if we

discover two donor objects representing the same human

donor, we would want to resolve this situation and ultim-

ately to have one object representing one human donor. In

these cases, the objects are ‘merged’. All but one of the

duplicated objects are switched into status ‘replaced’ and

their accessions are added as ‘alternate’ accessions to the

single object that remains. These ‘replaced’ objects are no

longer available to the public and can only be seen by data

curators. For all public users, accessions of the ‘replaced’

objects resolve via redirection to the remaining object.

Effectively, all the accessions remain as identifiers to the

one remaining object. In this way, old accessions are still

valid and seamlessly redirect the user to the current

‘unique’ data object. For a detailed example see Figure 6.

Different categories of duplication events on the ENCODE

portal (Table 2 presents an enumeration of the duplication

events, grouped by object type) are analysed, leading to de-

velopment of validation algorithms that could be used to

prevent the duplication from entering the system.

Comparison with other data repositories

The desire to allow wide experimental diversity to be rep-

resented in a single repository along with the pressure from

the scientific community to make the data submission pro-

cess as fast and as easy as possible have taken their toll on

the level of validation and scrutiny data submission under-

goes. Relaxed data integrity checks can cause data duplica-

tion and other types of submission errors, correction of

which would require substantial curation effort.

NIH NCI GDC (12) data model components are defined

by GDC Data Dictionary (https://docs.gdc.cancer.gov/Data_

Dictionary/). All data submissions are validated by GDC

API against the Data Dictionary, detecting potential errors

and invalid entities, which are not further processed until

they are corrected and re-uploaded by the submitters. There

is no automatic file uniqueness validation method in place.

NCBI’s GEO’s (1) submission process (https://www.ncbi.

nlm.nih.gov/books/NBK159736) is described as syntactic

validation followed by manual curation review. Files be-

longing to the same experimental series and submitted under

the same GSE identifier are checked for uniqueness using

MD5 hash function or checksum (UNIX cksum command)

calculation, but they are intentionally not checked against

the whole database to allow for the duplicate submission of

controls. The BAM files submitted to SRA are checked for

uniqueness using the combination of a filename and MD5

hash function calculation result. Although the utilization of

an MD5 hash function is a step in the right direction, we

find that the majority of file content duplication events for

FASTQ files, the de facto standard file format type for high

throughput sequencing experiments, cannot be detected

using this method (see Figure 3).

In cases where multiple distinct records (unique identi-

fiers) are representing a single entity, there is a need for a

mechanism for ambiguity resolution. The HUGO Gene

Nomenclature Committee (http://www.genenames.org/)

handles situations where more than one HGNC ID is asso-

ciated with single genomic locus by turning one of the re-

cords to status ‘symbol withdrawn’ and redirecting any

search for the withdrawn symbol to the ID of the symbol

that remains in status ‘approved’, for example, AGAP8

was merged into AGAP4 (http://www.genenames.org/cgi-

bin/gene_symbol_report? hgnc_id¼23464). NIH NCI

GDC describes handling of erroneous data in the following

way: ‘Erroneous Data – If any available GDC data is dis-

covered to be incorrect, the GDC will in general work with

the submitter to revise and release a corrected version. In

unusual situations, in particular if it is discovered that gen-

omic data is incorrectly mapped to case or biospecimen

data in a way that cannot be resolved by remapping, all af-

fected data may be made indefinitely unavailable. The

GDC will attempt to work with the submitter to resolve

such issues without removing data if possible.’

Erroneous data detected in GEO in most cases would

not be deleted. Instead, a comment indicating the problem

would be added to the record, as stated on the GEO web-

site https://www.ncbi.nlm.nih.gov/geo/info/update.html:

‘Please keep in mind that updating records is preferable to

deleting records. If the accessions in question have been

published in a manuscript, we cannot delete the records.

Rather, a comment will be added to the record indicating

the reason the submitter requested withdrawal of the data,

and the record content adjusted/deleted accordingly.’

The three examples above demonstrate the diversity of

ways different databases handle duplication events among

other types of data errors. Until the scientific community

as a whole adopt and enforce the best practices and com-

mon standards similar to what is described in (7), different

repositories will continue to handle these situation in non-

uniform fashion.
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Discussion

Since the amount of the scientific data submitted to genomic

research databases is growing exponentially (https://www.

nature.com/scitable/topicpage/genomic-data-resources-chal

lenges-and-promises-743721), the fraction of the data that

can be subjected to manual curation will only decrease with

time. In order to ensure high quality of the data being sub-

mitted to the scientific data repositories, the submission pro-

cess has to be automated and depend less on human

intervention. It can be done without sacrificing data quality

only if the scientific community as a whole (including re-

searchers, funding agencies, journal publishers and data

repositories) develops best practices for data handling and

submission and adopts uniform data standards that can be

enforced during the data submission process, without de-

pendence on a specific repository. This would not only

allow automated curation, but would also make submitters’

work easier, because instead of the need to comply with a

repository-specific set of requirements, all of the repositories

would have the same requirements. FAIR data principles

(13), best practices for large-scale data integration (7) and

the duplication prevention approaches described in this art-

icle are all steps in that direction and hopefully will encour-

age others to join the effort to ensure the efficient storage

and re-usability of high quality data in various repositories.
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