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Abstract: Inflammatory diseases include a wide variety of highly prevalent conditions with high
mortality rates in severe cases ranging from cardiovascular disease, to rheumatoid arthritis, to chronic
obstructive pulmonary disease, to graft vs. host disease, to a number of gastrointestinal disorders.
Many diseases that are not considered inflammatory per se are associated with varying levels of
inflammation. Imaging of the immune system and inflammatory response is of interest as it can
give insight into disease progression and severity. Clinical imaging technologies such as computed
tomography (CT) and magnetic resonance imaging (MRI) are traditionally limited to the visualization
of anatomical information; then, the presence or absence of an inflammatory state must be inferred
from the structural abnormalities. Improvement in available contrast agents has made it possible
to obtain functional information as well as anatomical. In vivo imaging of inflammation ultimately
facilitates an improved accuracy of diagnostics and monitoring of patients to allow for better patient
care. Highly specific molecular imaging of inflammatory biomarkers allows for earlier diagnosis to
prevent irreversible damage. Advancements in imaging instruments, targeted tracers, and contrast
agents represent a rapidly growing area of preclinical research with the hopes of quick translation to
the clinic.

Keywords: molecular imaging; inflammation; cardiovascular disease; rheumatoid arthritis; chronic
obstructive pulmonary disease; graft vs. host disease; image analysis; machine learning

1. Introduction

Inflammation can manifest in all areas of the body and is often the common denomina-
tor between a plethora of diseases and infections. There is a current upsurge in preclinical
and translation research to uncover the exact role that inflammation may have in disease
progression to make a more accurate diagnosis. Much of this research focuses on imaging
inflammation by targeting the immune system. When a pathogen elicits an immune re-
sponse, there is an upregulation of immune cells such as macrophages, monocytes, and
lymphocytes [1]. Monocytes and macrophages are recruited to the infection site where
they proliferate and phagocytose the pathogen; it is through this phagocytotic mechanism
that exogenous imaging agents can be internalized and the inflammatory response can be
imaged [2]. Imaging of lymphocytes is mainly done through radiolabeled antibodies [3–6].
Molecular imaging of these cells allows for the non-invasive, in vivo visualization of these
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immune cells to characterize the extent and severity of the disease. Visualization of these
immune cells as inflammatory biomarkers will have significant effects on the fields of
personalized medicine and early diagnostics of inflammatory disease.

Molecular imaging relies on the presence of endogenous or exogenous contrast agents
for the identification of inflamed tissue. While reliance on endogenous contrast is of interest
due to decreased risk to patients, lack of specificity in regard to molecular processes limits
the accuracy and application of such agents such as hemoglobin and deoxyhemoglobin [7,8].
As a result, molecular imaging has traditionally required tracer molecules specific for bio-
logical processes. These tracers consist of a contrast-generating agent, e.g., fluorescent dye,
which is targeted for a molecule/function within the body. Such tracers offer high, control-
lable, and specific contrast, which is unachievable with endogenous contrast alone. Tracers
have been utilized across many modalities; examples include radioactive atoms applied
to sugars for metabolism tracking with positron emission tomography (PET)/SPECT [9],
iodine-labeled tracers for X-ray-based imaging [10], and lanthanides that respond to an
external magnetic field for MRI [11]. However, further development of small molecule
tracers has slowed significantly due to toxicity concerns and poor sensitivity as a result of
weak signal specificity and rapid bodily clearance [1]. The utilization of nanoparticles is a
potentially viable method to add exogenous contrast for the purpose of molecular imaging
in efforts to overcome limitations that often plague fluorescent probes. While many types
of nanoparticles have shown potential, nanoparticles consistently miss expectations in a
clinical setting, owing to poor target specificity. Recent advancements in active targeting
have improved such outlooks [12]. Approaches to functionalize nanoparticles provide
increased specificity through targeting extracellular receptors or key features of the target
environment. Identification and exploitation of the molecular signature of diseases allows
for the development of novel imaging probes to reveal pathological information about the
tissue without the need for invasive biopsies.

Standard clinical imaging techniques such as computed tomography (CT), magnetic
resonance imaging (MRI), and ultrasound (US) are traditionally used to reveal anatomical
information, providing information required for diagnosis but do not yield molecular
information that could be critical for identifying appropriate treatments. For example, the
monitoring of response of tumors to therapy uses the Response Evaluation Criteria in Solid
Tumors (RECIST) score, which is reliant on changes in tumor size [13]. It may take multiple
weeks for a measurable change in tumor size to be observed; however, molecular changes
will precede anatomical changes. Recent advancements in contrast agents allows for the
extraction of functional and molecular information as well as anatomical information from
standard imaging modalities.

The choice of contrast agent for MRI is dependent on the objective of the imaging
session. T1-weighted MRI involves the injection of a paramagnetic metal agent, often
gadolinium based, which shortens the T1 relaxation time resulting in an enhanced sig-
nal [14]. The low sensitivity and limited specificity of gadolinium-based contrast agents
renders T1-weighted MRI suboptimal for molecular imaging [15]. T2-weighted MRI most
often involves the injection of superparamagnetic iron oxide nanoparticles (SPIONs), re-
sulting in negative contrast enhancement. SPIONs usually range in size from 10 to 100 nm
and are often dextran-coated to increase biocompatibility [16,17]. The uptake of SPIONs
by active macrophages at sites of inflammation make T2-weighted MRI an appropriate
choice for molecular imaging of inflammation [16,18]. MR spectroscopy is another MR
technique that acquires the molecular spectra of the tissue of interest in order to reveal
information about the concentration and presence of different metabolites in the tissue [19].
While MR spectroscopy provides more information than standard MRI, it is limited by
poor spatial resolution and low sensitivity, since the agents of interest exist in very low
concentrations [20]. Chemical exchange saturation transfer (CEST) MR imaging involves
the exchange of magnetization from the target agent to the surrounding water molecules so
that the signal reduction through the saturation effect is seen only on the water molecules
and not on the target agent. CEST imaging is dependent on the chemical composition of
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the target metabolite and the radiofrequency pulse that initiates the chemical exchange of
the proton [20]. Then, the sensitivity of CEST imaging is directly related to the chemical
exchange rate of the proton transfer, allowing for molecular imaging of specific metabolites
that are found at low concentrations [21]. While the majority of research investigating CEST
agents is primarily focused on oncology [22], there has been preclinical work investigating
the role of CEST imaging and MR spectroscopy in neuroinflammation [23–25].

As inflammation is a hallmark of many diseases, the ability to image inflammatory
biomarkers on the molecular level will allow for better understanding of disease pathophysiol-
ogy and ultimately better patient care. The purpose of this review is to highlight the existing
molecular imaging techniques used to assess the inflammatory state of cardiovascular disease,
rheumatoid arthritis, chronic obstructive lung disease, and gastrointestinal disorders.

2. Imaging Inflammatory Disease
2.1. Cardiovascular Disease (CVD)

Cardiovascular disease (CVD) is the leading cause of death worldwide [26,27]. CVD
is a broad term that encompasses many heart and circulatory system conditions, most
of which develop gradually and are only diagnosed after the presentation of symptoms,
which often result in fatality, mainly heart attack or stroke [28]. One person will die every
36 s from CVD in the United States alone, and with an increase in the number of smokers
and growing obesity rates—two major risk factors for developing CVD—it is now more
important than ever to focus on the development of early screening tools to identify the
markers of CVD before it is too late [29–31].

Atherosclerosis occurs when plaque builds up inside the artery; over time, this plaque
will harden and the artery will narrow, limiting blood flow, which often results in cardiovas-
cular disease [32]. This plaque buildup is often only detected at the onset of symptoms, such
as myocardial infarction or stroke, which are two of the most common causes of mortality
in the United States and Europe [31]. At present, catheter-based X-ray angiography or
intravascular ultrasound is used to identify coronary atherosclerosis, but this procedure
is extremely invasive and only yields anatomical information about the degree of steno-
sis [26,33,34]. Non-invasive molecular imaging techniques must be utilized to characterize
the plaque activity to determine which patients are extremely high-risk and require immedi-
ate intervention. Coronary CT angiography (CCTA) is a method for identifying the degree
of stenosis and the plaque composition [35]. CCTA is able to score the degree of calcification
of the coronary plaque, which is a strong predictor of a serious cardiovascular event [36,37].
While CCTA does provide functional information about CVD, it falls short of being a true
molecular imaging technique, as it does not visualize changes on molecular level.

An increase in macrophage activity, reflective of inflammation, has been linked to a
higher risk of plaque rupture; therefore, molecular imaging of macrophage activity in the ar-
teries can help identify areas where plaque may be building [38–40]. 18F-Flourodeoxyglucose
(FDG) PET imaging is commonly used to image the inflammatory component of atheroscle-
rosis [41–44]. 18F-FDG is a radiolabeled glucose molecule, which is internalized by cells
through the same mechanism in which glucose is metabolized. Both 18F-FDG and glucose
are phosphorylated by hexokinase, where 18F-FDG becomes 18F-FDG-6-phosphate and
glucose become glucose-6-phosphate. 18F-FDG-6-phosphate cannot be further metabolized
by glucose-6-phosphate isomerase; therefore, it remains inside the cell for PET imaging [45].
In atherosclerosis, the accumulation of macrophages at locations of active plaque buildup
requires a large amount of glucose, thus causing the upregulation of glucose transporters
on the surface of these macrophages. Therefore, increased 18F-FDG uptake will be seen at
locations of increased macrophage density, which is reflective of inflammation and active
plaque buildup (Figure 1) [38,46]. It is unknown what the influence of 18F-FDG uptake from
other cells, such as, neutrophils, endothelial cells, and lymphocytes, has on the observed
signal [33,40]. Once the plaque cells have calcified, 18F-FDG uptake will subside substan-
tially, making this type of PET imaging ineffective. PET imaging of atherosclerosis using
18F-FDG requires a circulation time of 2–3 h to allow for accumulation in the arterial wall
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and the decay or excretion of background levels of 18F-FDG [40]. 18F-FDG PET imaging in
oncology typically needs 1 h of circulation time before imaging can begin.
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Figure 1. 18F-Flourodeoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomog-
raphy (CT) imaging of activated macrophages to visualize vulnerable plaques through increase in
glucose metabolism. Higher 18F-FDG update is seen in the right common carotid artery (arrow) [47].

18F-FDG PET imaging is non-specific; therefore, it is complicated by highly metabolic
neighboring tissues such as myocardial cells and neurons [38,47,48]. The suppression
of myocardial 18F-FDG uptake can be achieved through dietary manipulation (high-fat,
low-carb) to shift the body into beta-oxidation of fatty acids instead of metabolizing
glucose as a primary energy source to try and limit this background activity [49,50]. Other
radiotracers can be utilized that are specific to macrophages, limiting the effects from
other highly metabolic cells. Translocator protein (TSPO)/peripheral benzodiazepine (PBR)
receptors are overexpressed in activated macrophages, which is a great option for active
targeting [51]. 11C-PK11195, (1-(2-Chlorophenyl)-N-(11C)methyl-N- (1-methylpropyl) -
3-isoquinoline carboxamide) is a radiolabeled TSPO ligand that has been used as a PET
tracer to visualize inflammatory plaque in atherosclerosis [51–54]. 11C-PK11195 uptake
in patients with atherosclerosis was higher in patients who had a myocardial infarction
or stroke compared to patients who were asymptomatic [53]. Other radiolabeled TSPO
targeted ligands include 18F-GE-180, which showed a better signal-to-noise ratio and lower
non-specific binding; more work must be done to validate this radiotracer [55].

68Ga-DOTATATE is another radiolabeled tracer that can be used to target inflammatory
plaque in atherosclerosis by targeting the somatostatin receptor subtype 2 (SSR-2), which
is also overexpressed on activated macrophages [56,57]. A copper radiolabel (64Cu) is
frequently substituted for gallium because of the longer half-life and shorter positron
range, which allow for better spatial resolution [47,58]. CXC-motif chemokine receptor
4 (CXCR-4) is also overexpressed on many immune cells, particularly monocytes and
macrophages, making this receptor a good target for imaging inflammatory plaques of
atherosclerosis [59]. Radiolabeled pentixafor, 68Ga-pentixafor, targets this CXCR-4 receptor
for the quantification of arterial inflammation in atherosclerotic plaques [59–61].

As plaque builds up inside the artery, macrophages become active, and the region
often becomes hypoxic due to the reduced oxygen diffusion efficiency from the thickening
of the vessel wall. As active macrophages reflect sites of inflammation, it is suspected
that macrophage activity is partially mediated by hypoxia as atherosclerotic plaques
overexpress hypoxia-inducible factor 1-alpha (HIF-1α) [33,47,62]. There is ongoing research
that focuses on the imaging of hypoxia as a surrogate biomarker of plaque inflammation
and atherosclerosis. Radiolabeled ligands such as 18F-fluoromisonidazole (FMISO) or
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18F-EF5 have been used to detect atherosclerotic plaques through PET imaging of hypoxia
preclinically; more work must be done to advance these findings to the clinic [63–65].

2.2. Rheumatoid Arthritis

Rheumatoid arthritis (RA) is an autoimmune disorder that is characterized by chronic
inflammation of the joints often causing degradation of the cartilage and bone, leading to a
diminished quality of life due to musculoskeletal deficits and chronic pain [66]. For every
1000 adults, five will have RA, making it one of the most prevalent chronic inflammatory
conditions worldwide [67]. RA etiology is not exactly known due to the synergistic
effects of epigenetics [68] and environmental factors (smoking [69,70], obesity [71–73],
and alcohol consumption [74–76]). Autoantibodies such as antibodies to citrullinated
protein antigens (ACPAs) or rheumatoid factor (RF) have well-established roles in RA
as accurate predictors of disease severity [77–79]. The current standard of care for the
diagnosis of RA is through blood work to monitor the erythrocyte sedimentation rate (ESR),
C-reactive protein levels (CRP), RF, and ACPAs [77,80] or anatomical imaging through
MRI and ultrasound [81]. Power Doppler ultrasound (PDUS) is an US technique that is
commonly used in the evaluation of RA, as it can visualize blood flow as well as anatomical
information. The locations of active inflammation will have increased blood flow, making
PDUS a good choice for not only diagnosing RA but also for assessing the severity and
response to treatment [82,83].

Synovial membrane inflammation (synovitis) is a key characteristic of RA that involves
the upregulation of both innate and adaptive immune cells and fibroblast-like synoviocytes
(FLS) [84]. This immune response coupled with FLS results in inflammation and the
activation of osteoclasts that leads to the degradation of cartilage [85,86]. The synovial
fluid contains a variety of activated macrophages, B cells, and T cells, all of which are good
targets for the molecular imaging of RA. The overexpression of inflammatory biomarkers
can damage the existing vasculature, resulting in the enhanced permeability and retention
(EPR) effect [87]. The newly permeable environment allows for the passive targeting of the
immune cells of an inflammatory response. SPION-based contrast agents are small enough
to penetrate the synovial fluid where they are phagocytized by active macrophages and
can be visualized by T2-weighted MRI [18,88,89].

Activated macrophages can also be imaged using 18F-FDG PET imaging in the
same manner described above [90–92]. While 18F-FDG PET imaging targets activated
macrophages through elevated levels of glucose metabolism, there are more specific meth-
ods used to image active macrophages in RA. Folate receptor β (FRβ), a glycosylphos-
phatidyl plasma membrane anchored protein used to internalize folate needed for DNA
synthesis and cell division, is overexpressed on activated macrophages in the synovial fluid,
making it an attractive target for the molecular imaging of RA [93,94]. Radiolabeled folic
acid can be imaged through scintigraphy or PET imaging for the detection of inflammation
in the joints (Table 1) [93,95–97]. Spatial resolution of PET images is poor; a fluorescently
labeled folate probe (NIR2-folate) can be visualized with NIR fluorescence imaging with
greater spatial resolution, but this technique is limited by penetration depth due to light
scattering in tissue [98]. Many other methods exist for targeting activated macrophages
in RA [99].

Due to the abundance of immune cells in the synovial fluid, there is an overexpression
of inflammatory cytokines that elicit certain cellular responses that can then be targeted for
imaging. The presence of interleukin-1 and tumor necrosis factor alpha (TNF-α) stimulate
the transient expression of surface protein E-selectin on vascular endothelial cells and the
overexpression of matrix metalloproteases (MMPs) in the synovial fluid. Anti E-selectin
antibodies and MMP-targeted probes can be either radiolabeled or conjugated to an NIR
dye and visualized through scintillation/PET or NIR fluorescence imaging [100–104].
Biologicals used as therapeutics for RA can also be radiolabeled and used to image RA.
Rituximab, a monoclonal antibody that targets CD20, a cell surface marker that is expressed
on most B cells, can be radiolabeled and used as a probe for the in vivo molecular imaging
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of RA based on B lymphocyte accumulation in the synovial fluid (Figure 2) [4,105,106].
Infliximab, a monoclonal antibody that targets tumor necrosis factor alpha (TNFα), has also
been radiolabeled with 99mTc, which demonstrated a superior sensitivity to inflammation
than MRI and clinical examinations in patients with RA [107–109].
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Figure 2. Confirmation of rheumatoid arthritis (RA) in the wrists/hands of patients using 89Zr-
rituximab PET imaging to target B-cell accumulation [105].

Carbohydrate-binding proteins, L-selection and P-selection, are involved in the move-
ment of immune cells before and during the inflammatory response [110]. Polyanionic
dendritic polyglycerol sulfate (dPGS) targets inflammation through binding with these
selectins. Conjugation with indocyanine green (ICG), an NIR fluorescent dye, allowed for
the in vivo differentiation of RA-positive joints from RA negative joints in a preclinical
rat arthritis model as seen by a 3.5-fold greater fluorescence imaging signal [111]. As the
clinical translation of NIR fluorescence is limited by low penetration depth, multispectral
optoacoustic tomography (MSOT) can overcome those limitations. MSOT imaging is based
on a light-in, sound-out approach, having all the benefits of optical imaging but allowing
for increased depth penetration, since photon scattering is irrelevant to acoustic waves [112].
Then, NIR-labeled dPGS can be imaged at much greater depths using MSOT [113].

2.3. Chronic Obstructive Pulmonary Disease (COPD)

Chronic obstructive pulmonary disease (COPD) is a preventable, but underdiagnosed
inflammatory disease with an extremely high morbidity and mortality rate [114]. Ap-
proximately 90% of all COPD cases are related to smoking, yet only 20% of smokers will
develop COPD, suggesting that other environmental and genetic factors must also play a
role [115,116]. COPD is characterized by airway obstruction due to chronic inflammation
and tissue damage caused by a decrease in alveolar elasticity and gas exchange, which
ultimately leads to an irreversible decrease in lung function [117]. Pulmonary function
testing (PFT) to measure airflow coupled with conventional imaging modalities, CT or MRI,
to visualize morphological changes in the airway, is the current standard for diagnosing
COPD [118]. Since COPD is an inflammatory disease, these imaging modalities must infer
about the inflammatory state through surrogate biomarkers such as airway thickness and
airway wall area [117]. Emphysema and chronic bronchitis are two subtypes of COPD
that have very distinct molecular characteristics. Emphysema is an irreversible condition
induced by smoking or inhaling irritants that destroys the alveoli; this leads to a decrease
in the surface area of the lungs, making it difficult to obtain oxygen, causing inflammation
of the lung parenchyma [119,120]. Chronic bronchitis is the persistent inflammation of the
bronchial tubes due to a chronic cough, which leads to sputum build up in the airways,
restricting airflow [121,122]. Early identification of COPD and proper differentiation of
different phenotypes is imperative for the development of a proper treatment plan.

Molecular imaging techniques have been developed to target the inflammatory re-
sponse of COPD. As the airways become inflamed, there will be changes in the pulmonary
blood flow as well as airflow. These changes often precede morphological changes that can
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be detected by CT. Perfusion scintigraphy through the injection of 99mTc-labeled macroag-
gregated albumin coupled with ventilation scintigraphy through the inhalation of either an
inert radioactive gas (81mKr or 133Xe), an aerosol-based 99mTc-labeled DTPA, or Technegas
(99mTc-labeled carbon particles) will uncover aspects of the heterogeneity of the disease
that cannot be seen using PFT or CT [123]. A great comparative study of these radiolabeled
tracers in ventilation scintigraphy is found here [124]. The Ventilation to Perfusion (V/Q)
ratio obtained will yield important information about regional differences in airflow and in-
flammation, where larger V/Q values indicate emphysema and lower values reflect chronic
bronchitis [125,126]. Similarly, MRI using hyperpolarized noble gas (3He or 129Xe) can also
be used to assess the ventilation status through imaging of the airspaces of the lungs rather
than the tissue [127]. Apparent diffusion coefficient (ADC) maps of the hyperpolarized gas
can be obtained on a voxel-wise basis using diffusion-weighted MRI (DWI-MRI), where
high ADC values reflect areas of severe disease [128,129]. While hyperpolarized MRI is
able to visualize the ventilation deficiencies associated with COPD, it is limited by spatial
resolution and the ability of the patient to hold their breath.

As with other inflammatory diseases, COPD can also be visualized through immune
cells. 18F-FDG PET/CT imaging is commonly used to monitor the metabolic activity of
immune cells to diagnose and identify disease severity [130–133]. Since 18F-FDG is a non-
specific biomarker of immune activity, the addition of 11C-PK11195, a macrophage-targeted
radiotracer, allows for the non-specific visualization of neutrophil activity as well as the
more specific visualization of macrophage accumulation. A study involving six patients
with COPD and five control subjects saw a greater accumulation of 18F-FDG in all COPD
patients compared to control, and greater 11C-PK11195 accumulation in four of six COPD
patients compared to control [134]. Macrophages will secrete matrix metalloproteases
(MMPs) and many other cytokines, which are all attractive options for the molecular
imaging of COPD. Using a mouse model of COPD, a radiofluorinated probe, 18F-IPFP, was
developed and tested to target MMP-9 and MMP-12; the accumulation of 18F-IPFP was
4× higher in the lungs of COPD mice than in normal mice [135]. 99mTc-labeled RP805 is
another MMP targeted radiotracer that saw significantly greater accumulation in IL-13
transgenic mice than control mice using SPECT/CT (Figure 3) [136].
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injected with an amide analog tracer as a control. (D) Quantification of uptake in SPECT images. * p < 0.01 ** p < 0.001 [136].

2.4. Gastrointestinal

Different gastrointestinal (GI) diseases can present with common, non-specific symp-
toms such as diarrhea and abdominal pain, making accurate diagnosis challenging without
molecular information in addition to history and physical exam. [137,138]. Globally, the
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prevalence of inflammatory GI conditions such as inflammatory bowel disease (IBD) has
increased significantly over time [139], particularly in developing countries [140]. Several
causes, including genetic factors, diet, and infection, can result in inflammation of the
GI tract. Identification of GI inflammation can aid in monitoring response to interven-
tions. Subsequently, appropriate treatment can be administered to relieve symptoms or
prevent disease progression. This can be especially critical in lowering patient risk for
colorectal cancers [141].

Historically, tests using blood, stool, or biopsied tissue samples have been paired
with invasive imaging techniques, such as endoscopy, to diagnose and assess patient GI
disease [141]. Currently available invasive and non-invasive imaging techniques such as
endoscopy, CT, MRI, and US, can show the macroscopic structural abnormalities associated
with inflammatory bowel disease such as bowel wall thickening, abscesses, or fistulas to
identify the scope of disease [142]. When combining multiple standard imaging modalities,
the presence of inter-clinician reader variability and the lack of molecular information
contained in the images (Figure 4) often requires a biopsy for an accurate diagnosis. In the
context of Figure 4, the numerous lesions within the colon result in a higher potential of a
biopsy sampling error and the possibility to miss areas of early-stage colon cancer.
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Figure 4. Images of a patient with history of chronic diarrhea that is occasionally bloody. CT ordered
for unrelated reasons incidentally showed non-specific inflammation. Correlation with endoscopy
showed substantial chronic inflammation. (A) CT with arrows showing inflammation of transverse
colon. (B) Endoscopic images of transverse colon with diffuse pseudopolyps. (C) CT with arrows
showing inflammation of sigmoid colon. (D) Endoscopic images of sigmoid colon with diffuse
pseudopolyps. The lack of an inflammation or cancer specific contrast agent for the CT or endoscopic
evaluation required a biopsy to confirm a lack of neoplasia.
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PET imaging is currently the only clinically approved molecular imaging approach for
GI inflammation [143,144]. Specifically, 18F-FDG PET is used to measure the extent and mag-
nitude of GI inflammation, indicating areas of low or high inflammation based on metabolic
differences throughout the GI tract. The high metabolic need of inflamed tissue alongside the
increased presence and activity of immune cells, such as leukocytes, results in increased glucose
metabolism at sites of inflammation [145]. Differences in 18F-FDG consumption highlight areas
of increased inflammation while contrasting against normal healthy tissue. PET alone offers
limited spatial resolution despite its potential for high contrast imaging. Additionally, the
uptake of 18F-FDG occurs in off-target sites, resulting in high background signal. As such,
PET is frequently paired with either CT or MRI imaging to better monitor disease status and
accurately assess disease location, as shown in (Figure 5) [146–148].
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Figure 5. (A) 18F-FDG PET image of human patient with Crohn’s disease. (B) T1-weighted magnetic
resonance imaging (MRI) image of the same patient. (C) Merged PET/MRI. White arrows indicate
locations of acute inflammation while red arrows highlight damage resulting from earlier disease
action. The asterisk (*) shows a site of proliferation of fibrofatty compounds in the mesentery.
SUVmax of 18F-FDG 5.6–9.2 vs. SUVmax of background bowel 1.5–2.8 [147].

Current molecular imaging techniques prove mostly effective for verifying the extent
and magnitude of GI inflammation. Preclinically, there has been investigation into the
manipulation of contrast agents for the molecular imaging of GI inflammation. Wang et al.
quantified inflammation in acute colitis mouse models using ultrasound with a P- and
E-selectin targeted contrast agent and 18F-FDG-PET/CT. Similar results were obtained with
both modalities [149]. P- and E-selectin are overexpressed on endothelial cells at sites of
active inflammation, suggesting the future utility of this work in inflammatory GI disorders.
While not practiced in the clinic at this time, immuno-PET techniques use radiolabeled
proteins to target the upregulated immune cell presence or biochemical activity around
inflamed tissues [150,151]. For example, antibody fragments targeting mouse CD4 cells,
which are increasingly present at sites of GI inflammation, indicated the location and
intensity of colorectal inflammation in mouse models [152]. Another modality undergo-
ing preclinical assessment for the imaging of inflammation is multispectral optoacoustic
tomography (MSOT). MSOT permits accurate, non-invasive imaging of the molecular char-
acteristics of the disease through the visualization of exogenous or endogenous contrast
agents [153,154]. Preclinical MSOT analysis has been shown to accurately detect in vivo
colitis through measuring hypervascularity, which is common in inflamed tissue, and oxy-
hemoglobin levels in inoculated mouse models [155]. Alongside imaging modalities, new
molecular targets are being investigated for improved diagnostic capabilities. α4β7 integrin
is currently under investigation to determine whether it has the potential to increase the
accuracy of IBD imaging. This is based on the increased presence of α4β7 integrin on the
activated lymphocytes found in inflamed tissue [156,157]. Endothelial growth factor recep-
tor (EGFR) may be another target for imaging given its overexpression in inflamed and
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malignant cells. One study demonstrated the ability of radiolabeled anti-EGFR antibody
fragments to successfully detect sites of IBD in mouse models, presenting greater target
specificity and signal intensity relative to 18F-FDG [158]. As new markers, probes, and
imaging modalities are developed or found, accuracy in imaging diagnoses and tracking
of GI inflammation is sure to improve.

Table 1. Summary of the molecular targets and tracers used to identify inflammatory disease that are discussed in this review.

Disease Target Tracer Inflammatory Component Source

Cardiovascular
Disease

Glucose Metabolism 18F-Flourodeoxyglucose (FDG) Activated macrophage accumulation [41–44]

Translocator protein
(TSPO) receptors

11C- PK11195
18F-GE-180 Overexpressed on activated macrophages [51–54]

Somatostatin receptor
subtype-2 (SSR-2)

68Ga-DOTATATE/
64Cu-DOTATATE Overexpressed on activated macrophages [56,57]

Chemokine receptor 4 68Ga-pentixafor Overexpressed on activated macrophages [59–61]

Hypoxia
18F-fluoromisonidazole (FMISO Activated macrophage accumulation→

inflammation and thickening of the vessel wall→
decreased oxygen diffusion efficiency→ Hypoxia

[64]

18F-EF5 [65]

Rheumatoid
Arthritis

Glucose metabolism 18F-Flourodeoxyglucose (FDG) Activated macrophage accumulation [90–92]

Folate receptor β (FRβ)

18F-Fluoro-PEG-folate
111In-folate conjugate Overexpressed on activated macrophages within the

synovial fluid
[93,95–97]

NIR2-Folate [98]

E-selectin

111In-labeled anti-E-selectin MAb

Overexpressed on endothelial cells due to TNFα

[100]

DyLight 750/anti-E-selectin
Mab probe [87]

99mTc-labelled anti-E-selectin FAb [102]

MMPs

18F-pyriminde-2,4,6,-triones
Elevated levels in synovial fluid correlate with

inflammatory response

[104]

NIR fluorescent MMP-3 specific
chitosan nanoparticle [103]

CD20
124I-Rituximab
89Zr-Rituximab

Overexpressed on B lymphocytes as they accumulate
in synovial fluid [105,106]

TNFα 99mTc-Infliximab Overexpressed in synovial fluid [107,109]

L-selectin/P-selectin
NIR Fluorescent Polyanionic

dendritic polyglycerol
sulfate (dPGS)

Movement of immune cells to the
inflammatory location [111,113]

COPD

Pulmonary perfusion
99mTc-labeled

macroaggregated albumin

Ventilation/Perfusion (V/Q) scintigraphy to regional
inflammatory/airflow differences

[123,125]

Pulmonary ventilation

81mKr or 133Xe
99mTc-labeled DTPA

99mTc-labeled carbon particles
(Technegas)

[125]

Glucose metabolism 18F-Flourodeoxyglucose (FDG) Activated macrophage accumulation [130–133]

Translocator protein
(TSPO) receptors

11C-PK11195 Overexpressed on activated macrophages [134]

MMPs
18F-IPFP Produced by active macrophages at the

inflammatory location
[135]

99mTc-labeled RP805 [136]

Gastrointestinal

Glucose metabolism 18F-Flourodeoxyglucose (FDG) Activated macrophage accumulation [143,144]

CXCL8 receptor 99mTc-CXCL8 Overexpression on activated neutrophils [150]

Interleukin 1 β 89Zr-lα-IL-1β Secreted by immune cells indicating an
inflammatory response [151]

CD11b 89Zr-α-CD11b Pan-myeloid innate immune marker [151]

CD4 89Zr-GK1.5 cys diabody (cDb) CD4 positive T-Cells characterize IBD
inflammatory response [152]

EGFR 64Cu-Cetuximab fragment-DOTA Overexpression in inflammatory cells [158]

3. Cancer

The relationship between inflammation, infection, the immune system, and cancer is
complex and still under investigation. As tumor cells proliferate, they secrete many cy-
tokines and chemokines, which recruit leukocytes, often causing an inflammatory response.
These leukocytes, such as tumor-associated macrophages (TAMs), have a key role in the de-
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velopment of the tumor microenvironment [159]. As previously mentioned, 18F-FDG PET
imaging is commonly used to visualize inflammation and cancer through increased glucose
metabolism [160]. This can be problematic when trying to differentiate active cancers from
inflammatory lesions, since both cancer and inflammation have increased perfusion and
metabolic activity. CT imaging of glucose-functionalized gold nanoparticles (GF-GNPs)
was used in preclinical mouse models to differentiate cancer and inflammation based on
differences the vasculature (Figure 6). [161]. Similarly, enhanced MRI imaging of ultra-
small superparamagnetic iron oxide particles (USPIO) was able to differentiate between
inflammatory lesions and tumors [162]. Recent advances in multispectral optoacoustic
tomography (MSOT) provide a single imaging modality that is capable of differentiating
cancer from solely inflammatory lesions by imaging multiple biomarkers simultaneously.
Many different inflammatory biomarkers are described in this paper; the labeling of these
markers with an NIR-sensitive fluorophore will allow for visualization with MSOT. The
development of NIR-sensitive, tumor-targeted imaging probes is currently a main focus
of MSOT research [112,163–165]. MSOT can differentiate between multiple NIR-sensitive
agents through the spectral unmixing of unique spectral shapes. This suggests that as long
as inflammatory and tumor targeted imaging agents are spectrally distinct, then it will
be feasible to visualize cancer and inflammation simultaneously. The ability to identify a
small nidus of cancer in the setting of larger inflammation has significant potential to result
in earlier stage diagnoses for patients with pancreas or colorectal cancers in the setting of
pancreatitis or inflammatory bowel disease.
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Figure 6. (A) Green arrowheads indicate the location of inflammation; red arrowheads indicate
the location of A431 tumors. Images are taken after glucose-functionalized gold nanoparticles
(2GF-GNP) injection. (B) 18F-FDG-PET/CT slice images of a representative mouse at 40–60 min
post-injection. (C) CT surface-rendered images of the same mouse at 3.5 h post IV injection of
2GF-GNP. Quantification of 18F-FDG uptake and 2GF-GNP is shown in figures (D,E), respectively.
18F-FDG cannot differentiate between inflammatory lesions and tumor, while 2GF-GNP can [161].
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4. Imaging of Immunotherapy and Cellular Therapy

Therapeutics in malignancy have recently undergone a paradigm shift, with move-
ment from classic chemotherapeutics focused on the interruption of growth with toxic
metabolites to medications and cellular therapeutics created to upregulate and/or direct
host immune systems. The use of checkpoint inhibitors that activate and enhance T-cell
function is extensively used in both solid tumors and hematologic areas. Recently, cellular
therapeutics have also been approved for the direction of modified T cells to receptor tar-
gets in both leukemia and lymphoma. With this shift of therapy, the diagnostic platforms
of CT and FDG-PET typically employed in cancer imaging are no longer capable of clearly
differentiating an immune response from malignancy progression. For this reason, newer
imaging agents are being studied to track and monitor disease and immune response in an
upregulated immune system.

Recent efforts to improve diagnostics in this arena have focused on labeling T cells
with PET probes to effectively track and identify effects of T-cell activation in cellular
therapy and graft vs. host disease (GVHD). In mouse models, FLT-PET has been used to
identify proliferation in the gut, correlating with immune recognition and response, in the
setting of graft versus host disease [166]. Additionally, human T cells with anti-melanoma
T-cell receptor have been transduced with F-L-MAU plus hdCKEmut PET probes to track
and monitor response to melanoma lesions [167]. HSV1-TK transduced lymphocytes and
CD19 CAR T cells with truncated epithelial growth factor receptors have been used to
provide a platform for both the imaging and tracking of cellular response, as well as
the incorporation of suicide genes for safety in the setting of severe T cell immunologic
response or graft vs. host disease [168,169]. Recently, a rodent model has adopted the use of
89ZrDFO-Inducible T-Cell COStimulator (ICOS)-monoclonal antibody (ICOS-ImmunoPET),
taking advantage of elevated ICOS in activated CAR-T cells and thereby tracking response
and localization [170]. Multiple studies using novel PET isotopes incorporated with either
MRI or CT are under study to improve diagnostic accuracy in GVHD, cellular therapy, and
immune-based therapeutics. (NCT03633955 FLT-CT in immunotherapy, F-18 ARA-G PET
(NCT03367962, NCT03546556 FLT/MRI, NCT03802123 89Zr-Df-AB22M2C PET/CT CD8
TIL in solid tumor response). As therapeutics in cellular therapy advance, the allogeneic
and immunologic sphere of cancer care expand into both hematologic and solid tumor
areas, the capability to monitor, track, and quantitatively measure upregulated cellular
components will be necessary, which will require the use of molecular imaging. In addition,
future studies will also require molecular imaging to track the potential toxicity and early
indications of efficacy.

5. Image Analysis of Inflammatory Disease

While this review focuses on the molecular imaging of inflammation for the diagnosis
of inflammatory disease, there are many other methods for imaging inflammatory disease.
Computer-assisted detection, segmentation, and classification of inflammatory tissues in
the body have been the subject of several studies. These studies obtain images through
various modalities (e.g., video endoscopy, infrared, or thermal imaging, etc.), and develop
algorithms to recognize the characteristics of inflammation. While initial studies relied on
classical machine learning and image analysis techniques, recent work heavily uses deep
learning techniques. The traditional machine learning techniques can be characterized
based on the extracted features and the type of classifier. The feature extraction techniques
include gray-level co-occurrence matrix (GLCM), gray-level run-length (GLRL), speeded-
up robust feature extraction (SURF), and dual-tree m-band wavelet transform (DTMBWT)
algorithms [171–176]. The classifiers include support vector machine (SVM), k-nearest
neighbor (K-NN), Random Forest (ensemble classifiers on three ensemble algorithms:
bagging, Adaboost, and random subspace), and fuzzy c-means clustering (FCM) [177].

Recent advances in computational infrastructures and the availability of large datasets
with ground truth have accelerated deep learning-based techniques. Their application to
inflammation analysis from medical images has started. These studies rely on Convolu-
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tional Neural Networks (CNN) and CNN-based transfer learning methods (e.g., Residual
network-50 (ResNet-50) and ResNet-34 [178], VGG-16 [179], and Inception-V3 [180], In-
ceptionResnetV2 [181], and NASnet (mobile) [182]). Transfer learning methods employ
pre-trained networks and retrain them with new domain-specific images but require a
smaller number of images.

These methods were applied to various organs and inflammatory diseases, particu-
larly rheumatoid arthritis (RA), which is the most common inflammatory and systemic
connective tissue disease [183,184]. Some of the RA-related studies focus on hand images
captured with different imaging modalities, such as infrared thermography sensor [185],
thermal image [172], and digital anterior–posterior radiographs of hand images [186,187].
Some of these studies (e.g., [172,185]) use traditional image processing and machine learn-
ing algorithms such as thresholding, dilation, erosion, depth-first search (DFS), gray-level
co-occurrence matrix (GLCM), and k-means. Other studies (e.g., [186,187]) use a CNN-
based approach to segment and detect the RA regions. A review paper summarizes
machine learning studies in rheumatic diseases [188]. Some studies go beyond detection
and segmentation to scoring severity (Figure 7) [173,189]. Computerized analysis of inflam-
mation was also applied to other inflammation diseases: paranasal sinus [190,191], chronic
obstructive pulmonary disease (COPD) [177,192–194], celiac disease (CD) [195–198], inflam-
matory gastrointestinal lesions [176,199,200], varicose veins [201], myocarditis [202,203],
and inflammatory brain abnormalities.
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Figure 7. Schematic of the convolutional neural network that scores disease severity of RA based on an ultrasound color
Doppler image of the wrist. Synovitis activity is evaluated and scored from 0–3, based on the OMERACT-EULAR Synovitis
Scoring (OESS) System. After passing through each layer of the neural network, the classification neuron will map the
resulting information to probability scores for each OESS score. The score with the highest probability is assigned to the
US image [189].

Table 2 further demonstrates the broad spectrum of the imaging modalities and image
analysis techniques employed to detect, segment, or classify inflammatory diseases. These
studies report the performance of their algorithms with commonly used metrics of precision,
accuracy, recall, specificity, F1 score, loss, the area under the curve (AUC), true positive rate
(TPR), positive predictive value (PPV), and Dice coefficient. The performances vary from
study to study. To give some idea of these performance values, the range of the Dice coefficient
for sinusitis segmentation is 86–97%, the accuracy is 78% to 92% [190,191,204]. For COPD and
lung disease inflammation, and the accuracy ranges from 61% to 95% [177,192,193,195,205].
For CD, the accuracy ranges from 79% to 97%, while the sensitivity and specificity vary from
83% to 100% and 96% to 100%, respectively [195–198].
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Table 2. Inflammatory diseases, imaging modalities, and image analysis techniques of the studies stated in the reference column.

Inflammatory Disease Imaging Modalities Image Analysis Techniques Source

Rheumatoid arthritis (RA) CT,
Thermal Image

GLCM, KNN, Random Forest,
DFS, K-Means Clustering [172,173,185–189,206]

Paranasal sinus
Chronic rhinosinusitis (CRI)

CT,
Radiography Images

CNN-Based Segmentation,
CNN-Based Transfer Learning [190,191,204]

Chronic Obstructive
Pulmonary Disease,

Detecting Lung Disease,
Fibrotic and inflammatory

Lung Disease

CT,
X-Ray Images

Microscopy Images (Whole Slide Images)

GLCM, CNN, FCM, CNN-Based
Transfer Learning [177,192–194,205]

Celiac Disease (CD) Endoscopy Images
H&E Duodenal Biopsy Images

CNN-Based Transfer Learning
(Alexnet, VGG Nets, Resnet)

SVM, Bayesian
[195–198]

Inflammatory Bowel
Disease (IBD)
Inflammatory

Gastrointestinal Lesion

Histology and Endoscopy Images
Colonoscopy Images

CNN, SURF, CNN-Based Transfer
Learning (Resnet-152,
Inception-Resnet-V2)

[173,199,200,207]

Varicose Vein Multi-Scale Image CNN [201]

Myocarditis Cardiac MRI (CMR) CNN, K-Means Clustering [202,203]

Inflammatory Brain
Abnormalities

MS Segmentation

H&E Stain Image
Magnetic Resonance Imaging (MRI)

R-CNN, DTMBWT, GLCM, GLRL,
SVM, KNN, Random Forest [208–213]

Many reported studies need larger training datasets to better characterize the bias
among different imaging modalities and to improve their performance and generalizability
because of the variability in datasets. These studies also highlight the need for stronger
clinical significance. For example, in a recent study of sinusitis, CNN scores were correlated
with Lund–MacKay (LM) scores, which is the clinical visual score [190,214,215], while eval-
uating clinical significance was left as future work. Some studies also point out the need
for further algorithmic development, such as the need for reliable methods for separating
individual sinus cavities [190]. For COPD and inflammatory lung disease, microscopic
image scoring algorithm accuracies are reported to be similar to those of pathologists;
however, both computer algorithms and pathologists struggle in discriminating red blood
cells from inflammatory cells when the staining was very dark [194]. For the CD, IBD, and
inflammatory gastrointestinal lesion studies, it is often difficult to select the informative
parts of the endoscopy and colonoscopy videos because of contributions from out-of-focus
areas and image quality problems. For these studies, future work must be done to associate
clinical findings with endoscopy results to have a fully automated system. Multiple sclero-
sis (MS) is a chronic inflammatory diseases of the brain which often requires segmentation
of brain MRI images. The 3D patch-wise CNN approach has been used to segment the
brain [211–213], but a large spatial variability makes the segmentation challenging. In
addition, using 3D CNN needs more volumetric data (weights) to prevent overfitting.

6. Conclusions

Inflammatory diseases are extremely common and have high morbidity and mortality
rates in severe cases. Early identification of molecular characteristics is the best chance at
stopping irreversible damage. There is a demand for a non-invasive and highly specific
way to image the pathophysiology of these diseases. As the immune system plays a huge
role in inflammatory disease, immune cells and corresponding inflammatory cytokines
are the primary targets in the molecular imaging of inflammatory disease. Advances in
molecular imaging enable earlier detection through specific biomarkers that may be present
before the onset of symptoms, leading to better patient care.
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Rheumatoid Arthritis. Reumatologia 2018, 56, 111–120. [CrossRef]

86. Yoshitomi, H. Regulation of Immune Responses and Chronic Inflammation by Fibroblast-Like Synoviocytes. Front. Immunol.
2019, 10. [CrossRef]

87. Nehoff, H.; Parayath, N.N.; Domanovitch, L.; Taurin, S.; Greish, K. Nanomedicine for Drug Targeting: Strategies beyond the
Enhanced Permeability and Retention Effect. Int. J. Nanomed. 2014, 9, 2539–2555. [CrossRef]

88. Butoescu, N.; Seemayer, C.A.; Foti, M.; Jordan, O.; Doelker, E. Dexamethasone-Containing PLGA Superparamagnetic Microparti-
cles as Carriers for the Local Treatment of Arthritis. Biomaterials 2009, 30, 1772–1780. [CrossRef]

89. Wu, L.; Shen, S. What Potential do Magnetic Iron Oxide Nanoparticles Have for the Treatment of Rheumatoid Arthritis?
Nanomedicine 2019, 14, 927–930. [CrossRef]

90. Beckers, C.; Ribbens, C.; André, B.; Marcelis, S.; Kaye, O.; Mathy, L.; Kaiser, M.J.; Hustinx, R.; Foidart, J.; Malaise, M.G. Assessment
of Disease Activity in Rheumatoid Arthritis with (18)F-FDG PET. J. Nucl. Med. 2004, 45, 956–964.

91. Chaudhari, A.J.; Ferrero, A.; Godinez, F.; Yang, K.; Shelton, D.K.; Hunter, J.C.; Naguwa, S.M.; Boone, J.M.; Raychaudhuri, S.P.;
Badawi, R.D. High-Resolution 18F-FDG PET/CT for Assessing Disease Activity in Rheumatoid and Psoriatic Arthritis: Findings
of a Prospective Pilot Study. Br. J. Radiol. 2016, 89, 20160138. [CrossRef]

92. Kubota, K.; Yamashita, H.; Mimori, A. Clinical Value of FDG-PET/CT for the Evaluation of Rheumatic Diseases: Rheumatoid
Arthritis, Polymyalgia Rheumatica, and Relapsing Polychondritis. Semin. Nucl. Med. 2017, 47, 408–424. [CrossRef] [PubMed]

93. Chandrupatla, D.; Molthoff, C.F.M.; Lammertsma, A.A.; van der Laken, C.J.; Jansen, G. The Folate Receptor β as a Macrophage-
Mediated Imaging and Therapeutic Target in Rheumatoid Arthritis. Drug Deliv. Transl. Res. 2019, 9, 366–378. [CrossRef]
[PubMed]

94. Xia, W.; Hilgenbrink, A.R.; Matteson, E.L.; Lockwood, M.B.; Cheng, J.-X.; Low, P.S. A Functional Folate Receptor Is Induced during
Macrophage Activation and Can Be Used to Target Drugs to Activated Macrophages. Blood J. Am. Soc. Hematol. 2009, 113, 438–446.
[CrossRef]

95. De Visser, H.M.; Korthagen, N.M.; Müller, C.; Ramakers, R.M.; Krijger, G.C.; Lafeber, F.P.J.G.; Beekman, F.J.; Mastbergen, S.C.;
Weinans, H. Imaging of Folate Receptor Expressing Macrophages in the Rat Groove Model of Osteoarthritis: Using a New
DOTA-Folate Conjugate. Cartilage 2018, 9, 183–191. [CrossRef]

http://doi.org/10.1111/ijcp.13045
http://www.ncbi.nlm.nih.gov/pubmed/29231278
http://doi.org/10.3389/fmed.2018.00207
http://www.ncbi.nlm.nih.gov/pubmed/30123797
http://doi.org/10.5114/reum.2018.75524
http://www.ncbi.nlm.nih.gov/pubmed/29853728
http://doi.org/10.1136/annrheumdis-2016-210431
http://doi.org/10.1002/art.38634
http://www.ncbi.nlm.nih.gov/pubmed/24729427
http://doi.org/10.1186/s42358-018-0042-8
http://doi.org/10.1007/s11926-011-0193-7
http://doi.org/10.1007/s00296-012-2635-6
http://doi.org/10.1155/2013/726598
http://doi.org/10.1002/art.27584
http://doi.org/10.1016/j.semarthrit.2006.04.009
http://www.ncbi.nlm.nih.gov/pubmed/17023258
http://doi.org/10.1155/2015/325909
http://doi.org/10.1016/S0889-857X(05)70206-4
http://doi.org/10.5114/reum.2018.75523
http://doi.org/10.3389/fimmu.2019.01395
http://doi.org/10.2147/IJN.S47129
http://doi.org/10.1016/j.biomaterials.2008.12.017
http://doi.org/10.2217/nnm-2019-0071
http://doi.org/10.1259/bjr.20160138
http://doi.org/10.1053/j.semnuclmed.2017.02.005
http://www.ncbi.nlm.nih.gov/pubmed/28583280
http://doi.org/10.1007/s13346-018-0589-2
http://www.ncbi.nlm.nih.gov/pubmed/30280318
http://doi.org/10.1182/blood-2008-04-150789
http://doi.org/10.1177/1947603517738073


Biomedicines 2021, 9, 152 19 of 23

96. Van Der Heijden, J.W.; Oerlemans, R.; Dijkmans, B.A.; Qi, H.; Laken, C.J.V.D.; Lems, W.F.; Jackman, A.L.; Kraan, M.C.; Tak, P.P.;
Ratnam, M. Folate Receptor β as a Potential Delivery Route for Novel Folate Antagonists to Macrophages in the Synovial Tissue
of Rheumatoid Arthritis Patients. Arthritis Rheum. 2009, 60, 12–21. [CrossRef] [PubMed]

97. Verweij, N.J.F.; Yaqub, M.; Bruijnen, S.T.G.; Pieplenbosch, S.; Ter Wee, M.M.; Jansen, G.; Chen, Q.; Low, P.S.; Windhorst, A.D.;
Lammertsma, A.A.; et al. First in Man Study of [(18)F]fluoro-PEG-folate PET: A Novel Macrophage Imaging Technique to
Visualize Rheumatoid Arthritis. Sci. Rep. 2020, 10, 1047. [CrossRef]

98. Chen, W.-T.; Mahmood, U.; Weissleder, R.; Tung, C.-H. Arthritis Imaging Using a Near-Infrared Fluorescence Folate-Targeted
Probe. Arthritis Res. Ther. 2005, 7, R310–R317. [CrossRef]

99. Put, S.; Westhovens, R.; Lahoutte, T.; Matthys, P. Molecular Imaging of Rheumatoid Arthritis: Emerging Markers, Tools, and
Techniques. Arthritis Res. Ther. 2014, 16, 208. [CrossRef]

100. Chapman, P.T.; Jamar, F.; Keelan, E.T.; Peters, A.M.; Haskard, D.O. Use of a Radiolabeled Monoclonal Antibody against E-Selectin
for Imaging of Endothelial Activation in Rheumatoid Arthritis. Arthritis Rheum. 1996, 39, 1371–1375. [CrossRef]

101. Gompels, L.L.; Madden, L.; Lim, N.H.; Inglis, J.J.; McConnell, E.; Vincent, T.L.; Haskard, D.O.; Paleolog, E.M. In Vivo Fluorescence
Imaging of E-Selectin: Quantitative Detection of Endothelial Activation in a Mouse Model of Arthritis. Arthritis Rheum. 2011, 63, 107–117.
[CrossRef]

102. Jamar, F.; Houssiau, F.; Devogelaer, J.P.; Chapman, P.; Haskard, D.; Beaujean, V.; Beckers, C.; Manicourt, D.H.; Peters, A. Scintigraphy
Using a Technetium 99m-Labelled Anti-E-Selectin Fab Fragment in Rheumatoid Arthritis. Rheumatology 2002, 41, 53–61. [CrossRef]
[PubMed]

103. Ryu, J.H.; Lee, A.; Chu, J.U.; Koo, H.; Ko, C.Y.; Kim, H.S.; Yoon, S.Y.; Kim, B.S.; Choi, K.; Kwon, I.C.; et al. Early Diagnosis of
Arthritis in Mice with Collagen-Induced Arthritis, Using a Fluorogenic Matrix Metalloproteinase 3-Specific Polymeric Probe.
Arthritis Rheum. 2011, 63, 3824–3832. [CrossRef] [PubMed]

104. Schrigten, D.; Breyholz, H.-J.; Wagner, S.; Hermann, S.; Schober, O.; Schäfers, M.; Haufe, G.; Kopka, K. A New Generation of
Radiofluorinated Pyrimidine-2,4,6-triones as MMP-Targeted Radiotracers for Positron Emission Tomography. J. Med. Chem.
2012, 55, 223–232. [CrossRef]

105. Bruijnen, S.; Tsang-A-Sjoe, M.; Raterman, H.; Ramwadhdoebe, T.; Vugts, D.; van Dongen, G.; Huisman, M.; Hoekstra, O.; Tak, P.-P.;
Voskuyl, A.; et al. B-Cell Imaging with Zirconium-89 Labelled Rituximab PET-CT at Baseline Is Associated with Therapeutic
Response 24 Weeks after Initiation of Rituximab Treatment in Rheumatoid Arthritis Patients. Arthritis Res. Ther. 2016, 18, 266.
[CrossRef]

106. Tran, L.; Huitema, A.D.; van Rijswijk, M.H.; Dinant, H.J.; Baars, J.W.; Beijnen, J.H.; Vogel, W.V. CD20 Antigen Imaging with
124I-rituximab PET/CT in Patients with Rheumatoid Arthritis. Hum. Antibodies 2011, 20, 29–35. [CrossRef]

107. Barrera, P.; Oyen, W.; Boerman, O.; Van Riel, P. Scintigraphic Detection of Tumour Necrosis Factor in Patients with Rheumatoid
Arthritis. Ann. Rheum. Dis. 2003, 62, 825–828. [CrossRef]

108. Maini, R.N.; Feldmann, M. How Does Infliximab Work in Rheumatoid Arthritis? Arthritis Res. Ther. 2002, 4, S22–S28. [CrossRef]
109. Roimicher, L.; Lopes, F.P.; de Souza, S.A.; Mendes, L.F.; Domingues, R.C.; da Fonseca, L.M.; Gutfilen, B. 99mTc-anti-TNF-α

Scintigraphy in RA: A Comparison Pilot Study with MRI and Clinical Examination. Rheumatology 2011, 50, 2044–2050. [CrossRef]
110. Barthel, S.R.; Gavino, J.D.; Descheny, L.; Dimitroff, C.J. Targeting Selectins and Selectin Ligands in Inflammation and Cancer.

Expert Opin. Ther. Targets 2007, 11, 1473–1491. [CrossRef]
111. Licha, K.; Welker, P.; Weinhart, M.; Wegner, N.; Kern, S.; Reichert, S.; Gemeinhardt, I.; Weissbach, C.; Ebert, B.; Haag, R.; et al.

Fluorescence Imaging with Multifunctional Polyglycerol Sulfates: Novel Polymeric near-IR Probes Targeting Inflammation.
Bioconjug. Chem. 2011, 22, 2453–2460. [CrossRef]

112. MacCuaig, W.M.; Jones, M.A.; Abeyakoon, O.; McNally, L.R. Development of Multispectral Optoacoustic Tomography as a
Clinically Translatable Modality for Cancer Imaging. Radiol. Imaging Cancer 2020, 2, e200066. [CrossRef] [PubMed]

113. Beziere, N.; von Schacky, C.; Kosanke, Y.; Kimm, M.; Nunes, A.; Licha, K.; Aichler, M.; Walch, A.; Rummeny, E.J.; Ntziachristos, V.; et al.
Optoacoustic Imaging and Staging of Inflammation in a Murine Model of Arthritis. Arthritis Rheumatol. 2014, 66, 2071–2078.
[CrossRef] [PubMed]

114. Criner, R.N.; Han, M.K. COPD Care in the 21st Century: A Public Health Priority. Respir. Care 2018, 63, 591–600. [CrossRef]
[PubMed]

115. Athanazio, R. Airway Disease: Similarities and Differences between Asthma, COPD and Bronchiectasis. Clinics 2012, 67, 1335–1343.
[CrossRef]

116. Rovina, N.; Koutsoukou, A.; Koulouris, N.G. Inflammation and Immune Response in COPD: Where Do We Stand? Mediat.
Inflamm. 2013, 2013, 413735. [CrossRef]

117. Myc, L.A.; Shim, Y.M.; Laubach, V.E.; Dimastromatteo, J. Role of Medical and Molecular Imaging in COPD. Clin. Transl. Med.
2019, 8, 12. [CrossRef]

118. Sverzellati, N.; Molinari, F.; Pirronti, T.; Bonomo, L.; Spagnolo, P.; Zompatori, M. New Insights on COPD Imaging via CT and
MRI. Int. J. Chron. Obstruct. Pulmon. Dis. 2007, 2, 301–312. [PubMed]

119. Shah, P.L.; Herth, F.J.; van Geffen, W.H.; Deslee, G.; Slebos, D.-J. Lung Volume Reduction for Emphysema. Lancet Respir. Med.
2017, 5, 147–156. [CrossRef]

120. Sharafkhaneh, A.; Hanania, N.A.; Kim, V. Pathogenesis of Emphysema: From the Bench to the Bedside. Proc. Am. Thorac. Soc.
2008, 5, 475–477. [CrossRef]

http://doi.org/10.1002/art.24219
http://www.ncbi.nlm.nih.gov/pubmed/19116913
http://doi.org/10.1038/s41598-020-57841-x
http://doi.org/10.1186/ar1483
http://doi.org/10.1186/ar4542
http://doi.org/10.1002/art.1780390815
http://doi.org/10.1002/art.30082
http://doi.org/10.1093/rheumatology/41.1.53
http://www.ncbi.nlm.nih.gov/pubmed/11792880
http://doi.org/10.1002/art.30628
http://www.ncbi.nlm.nih.gov/pubmed/22127700
http://doi.org/10.1021/jm201142w
http://doi.org/10.1186/s13075-016-1166-z
http://doi.org/10.3233/HAB-2011-0239
http://doi.org/10.1136/ard.62.9.825
http://doi.org/10.1186/ar549
http://doi.org/10.1093/rheumatology/ker234
http://doi.org/10.1517/14728222.11.11.1473
http://doi.org/10.1021/bc2002727
http://doi.org/10.1148/rycan.2020200066
http://www.ncbi.nlm.nih.gov/pubmed/33330850
http://doi.org/10.1002/art.38642
http://www.ncbi.nlm.nih.gov/pubmed/24692100
http://doi.org/10.4187/respcare.06276
http://www.ncbi.nlm.nih.gov/pubmed/29692353
http://doi.org/10.6061/clinics/2012(11)19
http://doi.org/10.1155/2013/413735
http://doi.org/10.1186/s40169-019-0231-z
http://www.ncbi.nlm.nih.gov/pubmed/18229568
http://doi.org/10.1016/S2213-2600(16)30221-1
http://doi.org/10.1513/pats.200708-126ET


Biomedicines 2021, 9, 152 20 of 23

121. Izquierdo-Alonso, J.L.; Rodriguez-Gonzálezmoro, J.M.; de Lucas-Ramos, P.; Unzueta, I.; Ribera, X.; Antón, E.; Martín, A.
Prevalence and Characteristics of Three Clinical phenotypes of Chronic Obstructive Pulmonary Disease (COPD). Respir. Med.
2013, 107, 724–731. [CrossRef] [PubMed]

122. Lahousse, L.; Seys, L.J.M.; Joos, G.F.; Franco, O.H.; Stricker, B.H.; Brusselle, G.G. Epidemiology and Impact of Chronic Bronchitis
in Chronic obstructive Pulmonary Disease. Eur. Respir. J. 2017, 50, 1602470. [CrossRef] [PubMed]

123. Mortensen, J.; Berg, R.M.G. Lung Scintigraphy in COPD. Semin. Nucl. Med. 2019, 49, 16–21. [CrossRef]
124. Magnant, J.; Vecellio, L.; de Monte, M.; Grimbert, D.; Valat, C.; Boissinot, E.; Guilloteau, D.; Lemarié, E.; Diot, P. Comparative

Analysis of Different Scintigraphic Approaches to Assess Pulmonary Ventilation. J. Aerosol Med. 2006, 19, 148–159. [CrossRef]
[PubMed]

125. Brudin, L.H.; Rhodes, C.G.; Valind, S.O.; Buckingham, P.D.; Jones, T.; Hughes, J.M. Regional Structure-Function Correlations in
Chronic Obstructive Lung Disease Measured with Positron Emission Tomography. Thorax 1992, 47, 914–921. [CrossRef] [PubMed]

126. Milne, S.; King, G.G. Advanced Imaging in COPD: Insights into Pulmonary Pathophysiology. J. Thorac. Dis. 2014, 6, 1570–1585.
[CrossRef]

127. Roos, J.E.; McAdams, H.P.; Kaushik, S.S.; Driehuys, B. Hyperpolarized Gas MR Imaging: Technique and Applications. Magn.
Reson. Imaging Clin. N. Am. 2015, 23, 217–229. [CrossRef]

128. Fain, S.B.; Panth, S.R.; Evans, M.D.; Wentland, A.L.; Holmes, J.H.; Korosec, F.R.; O’Brien, M.J.; Fountaine, H.; Grist, T.M. Early
Emphysematous Changes in Asymptomatic Smokers: Detection with 3He MR Imaging. Radiology 2006, 239, 875–883. [CrossRef]

129. Tafti, S.; Garrison, W.J.; Mugler, J.P.; Shim, Y.M.; Altes, T.A.; Mata, J.F.; de Lange, E.E.; Cates, G.D.; Ropp, A.M.; Wang, C.; et al.
Emphysema Index Based on Hyperpolarized 3He or 129Xe Diffusion MRI: Performance and Comparison with Quantitative CT
and Pulmonary Function Tests. Radiology 2020, 297, 201–210. [CrossRef]

130. Coello, C.; Fisk, M.; Mohan, D.; Wilson, F.J.; Brown, A.P.; Polkey, M.I.; Wilkinson, I.; Tal-Singer, R.; Murphy, P.S.; Cheriyan, J.; et al.
Quantitative Analysis of Dynamic (18)F-FDG PET/CT for Measurement of Lung Inflammation. EJNMMI Res. 2017, 7, 47.
[CrossRef] [PubMed]

131. Kothekar, E.; Borja, A.J.; Gerke, O.; Werner, T.J.; Alavi, A.; Revheim, M.-E. Assessing Respitatory Muscle Activity with (18)F-FDG-
PET/CT in Patients with COPD. Am. J. Nucl. Med. Mol. Imaging 2019, 9, 309–315. [PubMed]

132. Pournazari, K.; Jahangiri, P.; Al-zaghal, A.; Arani, L.; Mehdizadeh Seraj, S.; Werner, T.; Alavi, A.; Torigian, D. Feasibility of
Using Global Lung FDG Uptake in COPD Patients on PET/CT to Assess the Degree of Pulmonary Inflammation in Relation to
Emphysema Severity. J. Nucl. Med. 2018, 59, 517.

133. Subramanian, D.R.; Jenkins, L.; Edgar, R.; Quraishi, N.; Stockley, R.A.; Parr, D.G. Assessment of Pulmonary Neutrophilic
Inflammation in Emphysema by Quantitative Positron Emission Tomography. Am. J. Respir. Crit. Care Med. 2012, 186, 1125–1132.
[CrossRef] [PubMed]

134. Jones, H.A.; Marino, P.S.; Shakur, B.H.; Morrell, N.W. In Vivo Assessment of Lung Inflammatory Cell Activity in Patients with
COPD and Asthma. Eur. Respir. J. 2003, 21, 567–573. [CrossRef]

135. Kondo, N.; Temma, T.; Aita, K.; Shimochi, S.; Koshino, K.; Senda, M.; Iida, H. Development of Matrix Metalloproteinase-Targeted
Probes for Lung Inflammation Detection with Positron Emission Tomography. Sci. Rep. 2018, 8, 1347. [CrossRef]

136. Golestani, R.; Razavian, M.; Ye, Y.; Zhang, J.; Jung, J.-J.; Toczek, J.; Gona, K.; Kim, H.-Y.; Elias, J.A.; Lee, C.G.; et al. Matrix
Metalloproteinase-Targeted Imaging of Lung Inflammation and Remodeling. J. Nucl. Med. 2017, 58, 138–143. [CrossRef]

137. Ady, J.; Fong, Y. Imaging for Infection: From Visualization of Inflammation to Visualization of Microbes. Surg. Infect. (Larchmt)
2014, 15, 700–707. [CrossRef]

138. Frickenstein, A.N.; Jones, M.A.; Behkam, B.; McNally, L.R. Imaging Inflammation and Infection in the Gastrointestinal Tract. Int.
J. Mol. Sci. 2019, 21, 243. [CrossRef]

139. Alatab, S.; Sepanlou, S.G.; Ikuta, K.; Vahedi, H.; Bisignano, C.; Safiri, S.; Sadeghi, A.; Nixon, M.R.; Abdoli, A.; Abolhassani, H.; et al. The
Global, Regional, and National Burden of Inflammatory Bowel Disease in 195 Countries and Territories, 1990–2017: A Systematic
Analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol. Hepatol. 2020, 5, 17–30. [CrossRef]

140. Molodecky, N.A.; Kaplan, G.G. Environmental Risk Factors for Inflammatory Bowel Disease. Gastroenterol. Hepatol. (NY) 2010, 6, 339–346.
141. Mattar, M.C.; Lough, D.; Pishvaian, M.J.; Charabaty, A. Current Management of Inflammatory Bowel Disease and Colorectal

Cancer. Gastrointest. Cancer Res. 2011, 4, 53–61. [PubMed]
142. Kilcoyne, A.; Kaplan, J.L.; Gee, M.S. Inflammatory Bowel Disease Imaging: Current Practice and Future Directions. World J.

Gastroenterol. 2016, 22, 917–932. [CrossRef] [PubMed]
143. Brewer, S.; McPherson, M.; Fujiwara, D.; Turovskaya, O.; Ziring, D.; Chen, L.; Takedatsu, H.; Targan, S.R.; Wei, B.; Braun, J.

Molecular Imaging of Murine Intestinal Inflammation with 2-deoxy-2-[18F]fluoro-D-glucose and Positron Emission Tomography.
Gastroenterology 2008, 135, 744–755. [CrossRef]

144. Pio, B.S.; Byrne, F.R.; Aranda, R.; Boulay, G.; Spicher, K.; Song, M.H.; Birnbaumer, L.; Phelps, M.E.; Czernin, J.; Silverman, D.H.
Noninvasive Quantification of Bowel Inflammation Through Positron Emission Tomography Imaging of 2-deoxy-2-[18F]fluoro-
D-glucose-labeled White Blood Cells. Mol. Imaging Biol. 2003, 5, 271–277. [CrossRef]

145. Gotthardt, M.; Bleeker-Rovers, C.P.; Boerman, O.C.; Oyen, W.J. Imaging of Inflammation by PET, Conventional Scintigraphy, and
Other Imaging Techniques. J. Nucl. Med. 2010, 51, 1937–1949. [CrossRef]

146. Catalano, O.A.; Wu, V.; Mahmood, U.; Signore, A.; Vangel, M.; Soricelli, A.; Salvatore, M.; Gervais, D.; Rosen, B.R. Diagnostic
Performance of PET/MR in the Evaluation of Active Inflammation in Crohn Disease. Am. J. Nucl. Med. Mol. Imaging 2018, 8, 62–69.

http://doi.org/10.1016/j.rmed.2013.01.001
http://www.ncbi.nlm.nih.gov/pubmed/23419828
http://doi.org/10.1183/13993003.02470-2016
http://www.ncbi.nlm.nih.gov/pubmed/28798087
http://doi.org/10.1053/j.semnuclmed.2018.10.010
http://doi.org/10.1089/jam.2006.19.148
http://www.ncbi.nlm.nih.gov/pubmed/16796539
http://doi.org/10.1136/thx.47.11.914
http://www.ncbi.nlm.nih.gov/pubmed/1465748
http://doi.org/10.3978/j.issn.2072-1439.2014.11.30
http://doi.org/10.1016/j.mric.2015.01.003
http://doi.org/10.1148/radiol.2393050111
http://doi.org/10.1148/radiol.2020192804
http://doi.org/10.1186/s13550-017-0291-2
http://www.ncbi.nlm.nih.gov/pubmed/28547129
http://www.ncbi.nlm.nih.gov/pubmed/31976160
http://doi.org/10.1164/rccm.201201-0051OC
http://www.ncbi.nlm.nih.gov/pubmed/22837375
http://doi.org/10.1183/09031936.03.00048502
http://doi.org/10.1038/s41598-018-19890-1
http://doi.org/10.2967/jnumed.116.176198
http://doi.org/10.1089/sur.2014.029
http://doi.org/10.3390/ijms21010243
http://doi.org/10.1016/S2468-1253(19)30333-4
http://www.ncbi.nlm.nih.gov/pubmed/21673876
http://doi.org/10.3748/wjg.v22.i3.917
http://www.ncbi.nlm.nih.gov/pubmed/26811637
http://doi.org/10.1053/j.gastro.2008.06.040
http://doi.org/10.1016/S1536-1632(03)00103-3
http://doi.org/10.2967/jnumed.110.076232


Biomedicines 2021, 9, 152 21 of 23

147. Le Fur, M.; Zhou, I.Y.; Catalano, O.; Caravan, P. Toward Molecular Imaging of Intestinal Pathology. Inflamm. Bowel Dis. 2020, 26, 1470–1484.
[CrossRef]

148. Perlman, S.B.; Hall, B.S.; Reichelderfer, M. PET/CT Imaging of Inflammatory Bowel Disease. Semin. Nucl. Med. 2013, 43, 420–426.
[CrossRef]

149. Wang, H.; Machtaler, S.; Bettinger, T.; Lutz, A.M.; Luong, R.; Bussat, P.; Gambhir, S.S.; Tranquart, F.; Tian, L.; Willmann, J.K.
Molecular Imaging of Inflammation in Inflammatory Bowel Disease with a Clinically Translatable Dual-Selectin-Targeted US
Contrast Agent: Comparison with FDG PET/CT in a Mouse Model. Radiology 2013, 267, 818–829. [CrossRef]

150. Aarntzen, E.H.; Hermsen, R.; Drenth, J.P.; Boerman, O.C.; Oyen, W.J. 99mTc-CXCL8 SPECT to Monitor Disease Activity in
Inflammatory Bowel Disease. J. Nucl. Med. 2016, 57, 398–403. [CrossRef] [PubMed]

151. Dmochowska, N.; Tieu, W.; Keller, M.D.; Wardill, H.R.; Mavrangelos, C.; Campaniello, M.A.; Takhar, P.; Hughes, P.A. Immuno-
PET of Innate Immune Markers CD11b and IL-1beta Detects Inflammation in Murine Colitis. J. Nucl. Med. 2019, 60, 858–863.
[CrossRef] [PubMed]

152. Freise, A.C.; Zettlitz, K.A.; Salazar, F.B.; Tavare, R.; Tsai, W.K.; Chatziioannou, A.F.; Rozengurt, N.; Braun, J.; Wu, A.M. Immuno-
PET in Inflammatory Bowel Disease: Imaging CD4-Positive T Cells in a Murine Model of Colitis. J. Nucl. Med. 2018, 59, 980–985.
[CrossRef]

153. Beziere, N.; Ntziachristos, V. Optoacoustic Imaging: An Emerging Modality for the Gastrointestinal Tract. Gastroenterology
2011, 141, 1979–1985. [CrossRef]

154. McNally, L.R.; Mezera, M.; Morgan, D.E.; Frederick, P.J.; Yang, E.S.; Eltoum, I.E.; Grizzle, W.E. Current and Emerging Clinical
Applications of Multispectral Optoacoustic Tomography (MSOT) in Oncology. Clin. Cancer Res. 2016, 22, 3432–3439. [CrossRef]

155. Bhutiani, N.; Grizzle, W.E.; Galandiuk, S.; Otali, D.; Dryden, G.W.; Egilmez, N.K.; McNally, L.R. Noninvasive Imaging of Colitis
Using Multispectral Optoacoustic Tomography. J. Nucl. Med. 2017, 58, 1009–1012. [CrossRef]

156. Dearling, J.L.; Park, E.J.; Dunning, P.; Baker, A.; Fahey, F.; Treves, S.T.; Soriano, S.G.; Shimaoka, M.; Packard, A.B.; Peer, D.
Detection of Intestinal Inflammation by MicroPET Imaging Using a (64)Cu-Labeled Anti-beta(7) Integrin Antibody. Inflamm.
Bowel Dis. 2010, 16, 1458–1466. [CrossRef]

157. Rath, T.; Bojarski, C.; Neurath, M.F.; Atreya, R. Molecular Imaging of Mucosal α4β7 Integrin Expression with the Fluorescent
Anti-Adhesion Antibody Vedolizumab in Crohn’s Disease. Gastrointest. Endosc. 2017, 86, 406–408. [CrossRef] [PubMed]

158. Turker, N.S.; Heidari, P.; Kucherlapati, R.; Kucherlapati, M.; Mahmood, U. An EGFR Targeted PET Imaging Probe for the
Detection of Colonic Adenocarcinomas in the Setting of Colitis. Theranostics 2014, 4, 893–903. [CrossRef] [PubMed]

159. Coussens, L.M.; Werb, Z. Inflammation and Cancer. Nature 2002, 420, 860–867. [CrossRef] [PubMed]
160. Derlin, T.; Grünwald, V.; Steinbach, J.; Wester, H.-J.; Ross, T.L. Molecular Imaging in Oncology Using Positron Emission

Tomography. Dtsch. Arztebl. Int. 2018, 115, 175–181. [CrossRef] [PubMed]
161. Motiei, M.; Dreifuss, T.; Betzer, O.; Panet, H.; Popovtzer, A.; Santana, J.; Abourbeh, G.; Mishani, E.; Popovtzer, R. Differentiating

between Cancer and Inflammation: A Metabolic-Based Method for Functional Computed Tomography Imaging. ACS Nano
2016, 10, 3469–3477. [CrossRef]

162. Seyfer, P.; Pagenstecher, A.; Mandic, R.; Klose, K.-J.; Heverhagen, J.T. Cancer and Inflammation: Differentiation by USPIO-
Enhanced MR Imaging. J. Magn. Reson. Imaging 2014, 39, 665–672. [CrossRef]

163. Ntziachristos, V.; Razansky, D. Molecular Imaging by Means of Multispectral Optoacoustic Tomography (MSOT). Chem. Rev.
2010, 110, 2783–2794. [CrossRef]

164. Beziere, N.; Lozano, N.; Nunes, A.; Salichs, J.; Queiros, D.; Kostarelos, K.; Ntziachristos, V. Dynamic Imaging of PEGylated
Indocyanine Green (ICG) Liposomes within the Tumor Microenvironment Using Multi-Spectral Optoacoustic Tomography
(MSOT). Biomaterials 2015, 37, 415–424. [CrossRef]

165. Khanal, A.; Ullum, C.; Kimbrough, C.W.; Garbett, N.C.; Burlison, J.A.; McNally, M.W.; Chuong, P.; El-Baz, A.S.; Jasinski, J.B.;
McNally, L.R. Tumor Targeted Mesoporous Silica-Coated Gold Nanorods Facilitate Detection of Pancreatic Tumors Using
Multispectral Optoacoustic Tomography. Nano Res. 2015, 8, 3864–3877. [CrossRef]

166. Lee, S.J.; Nguyen, T.D.; Onstad, L.; Bar, M.; Krakow, E.F.; Salit, R.B.; Carpenter, P.A.; Rodrigues, M.; Hall, A.M.; Storer, B.E.; et al.
Success of Immunosuppressive Treatments in Patients with Chronic Graft-Versus-Host Disease. Biol. Blood Marrow Transplant.
2018, 24, 555–562. [CrossRef] [PubMed]

167. McCracken, M.N.; Gschweng, E.H.; Nair-Gill, E.; McLaughlin, J.; Cooper, A.R.; Riedinger, M.; Cheng, D.; Nosala, C.; Kohn, D.B.;
Witte, O.N. Long-Term In Vivo Monitoring of Mouse and Human Hematopoietic Stem Cell Engraftment with a Human Positron
Emission Tomography Reporter Gene. Proc. Natl. Acad. Sci. USA 2013, 110, 1857–1862. [CrossRef]

168. Kao, R.L.; Truscott, L.C.; Chiou, T.T.; Tsai, W.; Wu, A.M.; De Oliveira, S.N. A Cetuximab-Mediated Suicide System in Chimeric
Antigen Receptor-Modified Hematopoietic Stem Cells for Cancer Therapy. Hum. Gene Ther. 2019, 30, 413–428. [CrossRef]
[PubMed]

169. Miletic, H.; Fischer, Y.; Litwak, S.; Giroglou, T.; Waerzeggers, Y.; Winkeler, A.; Li, H.; Himmelreich, U.; Lange, C.; Stenzel, W.; et al.
Bystander Killing of Malignant Glioma by Bone Marrow-Derived Tumor-Infiltrating Progenitor Cells Expressing a Suicide gene.
Mol. Ther. 2007, 15, 1373–1381. [CrossRef] [PubMed]

170. Federico Simonetta, I.S.A.; Lohmeyer, J.K.; Sahaf, B.; Good, Z.; Chen, W.; Xiao, Z.; Hirai, T.; Scheller, L.; Engels, P.; Vermesh, O.;
et al. Molecular Imaging of Chimeric Antigen Receptor T Cells By ICOS-ImmunoPET. Clin. Cancer Res. 2020. [CrossRef]

http://doi.org/10.1093/ibd/izaa213
http://doi.org/10.1053/j.semnuclmed.2013.06.006
http://doi.org/10.1148/radiol.13122509
http://doi.org/10.2967/jnumed.115.165795
http://www.ncbi.nlm.nih.gov/pubmed/26609182
http://doi.org/10.2967/jnumed.118.219287
http://www.ncbi.nlm.nih.gov/pubmed/30413657
http://doi.org/10.2967/jnumed.117.199075
http://doi.org/10.1053/j.gastro.2011.10.006
http://doi.org/10.1158/1078-0432.CCR-16-0573
http://doi.org/10.2967/jnumed.116.184705
http://doi.org/10.1002/ibd.21231
http://doi.org/10.1016/j.gie.2017.01.012
http://www.ncbi.nlm.nih.gov/pubmed/28137597
http://doi.org/10.7150/thno.9425
http://www.ncbi.nlm.nih.gov/pubmed/25057314
http://doi.org/10.1038/nature01322
http://www.ncbi.nlm.nih.gov/pubmed/12490959
http://doi.org/10.3238/arztebl.2018.0175
http://www.ncbi.nlm.nih.gov/pubmed/29607803
http://doi.org/10.1021/acsnano.5b07576
http://doi.org/10.1002/jmri.24200
http://doi.org/10.1021/cr9002566
http://doi.org/10.1016/j.biomaterials.2014.10.014
http://doi.org/10.1007/s12274-015-0886-8
http://doi.org/10.1016/j.bbmt.2017.10.042
http://www.ncbi.nlm.nih.gov/pubmed/29133250
http://doi.org/10.1073/pnas.1221840110
http://doi.org/10.1089/hum.2018.180
http://www.ncbi.nlm.nih.gov/pubmed/30860401
http://doi.org/10.1038/sj.mt.6300155
http://www.ncbi.nlm.nih.gov/pubmed/17457322
http://doi.org/10.1158/1078-0432.CCR-20-2770


Biomedicines 2021, 9, 152 22 of 23

171. Sharon, H.; Elamvazuthi, I.; Lu, C.-K.; Parasuraman, S.; Natarajan, E. Development of Rheumatoid Arthritis Classification from
Electronic Image Sensor Using Ensemble Method. Sensors 2019, 20, 167. [CrossRef] [PubMed]

172. Snekhalatha, U.; Anburajan, M.; Sowmiya, V.; Venkatraman, B.; Menaka, M. Automated Hand Thermal Image Segmentation
and Feature Extraction in the Evaluation of Rheumatoid Arthritis. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2015, 229, 319–331.
[CrossRef] [PubMed]

173. Tiulpin, A.; Thevenot, J.; Rahtu, E.; Lehenkari, P.; Saarakkala, S. Automatic Knee Osteoarthritis Diagnosis from Plain Radiographs:
A Deep Learning-Based Approach. Sci. Rep. 2018, 8, 1727. [CrossRef] [PubMed]

174. Barraviera, B. The Journal of Venomous Animals and Toxins Including Tropical Diseases (JVATiTD) from 1995 to 2007. J. Venom.
Anim. Toxins Incl. Trop. Dis. 2007, 13, 428–429. [CrossRef]

175. Ayalapogu, R.R.; Pabboju, S.; Ramisetty, R.R. Analysis of Dual Tree M-Band Wavelet Transform Based Features for Brain Image
Classification. Magn. Reson. Med. 2018, 80, 2393–2401. [CrossRef] [PubMed]

176. Georgakopoulos, S.V.; Iakovidis, D.K.; Vasilakakis, M.; Plagianakos, V.; Koulaouzidis, A. Weakly-Supervised Convolutional
Learning for Detection of Inflammatory Gastrointestinal Lesions. In Proceedings of the 2016 IEEE International Conference on
Imaging Systems and Techniques (IST), Chania, Greece, 4–6 October 2016; pp. 510–514.

177. Sathiya, S.; Priyanka, G.; Jeyanthi, S. Detection of Chronic Obstructive Pulmonary Disease in Computer Aided Diagnosis System
with CNN Classification. Int. J. Pure Appl. Math. 2018, 119, 13815–13821.

178. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

179. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015, arXiv:1409.1556.
180. Szegedy, C.; Wei, L.; Yangqing, J.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper

with Convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston,
MA, USA, 7–12 June 2015; pp. 1–9.

181. Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A.A. Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning. In
Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; pp. 4278–4284.

182. Zoph, B.; Vasudevan, V.; Shlens, J.; Le, Q.V. Learning Transferable Architectures for Scalable Image Recognition. In Proceedings of the
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8697–8710.

183. Möttönen, T.T. Prediction of Erosiveness and Rate of Development of New Erosions in Early Rheumatoid Arthritis. Ann. Rheum.
Dis. 1988, 47, 648–653. [CrossRef]

184. Heijde, D. Joint Erosions and Patients with Early Rheumatoid Arthritis. Rheumatology 1995, 34, 74–78. [CrossRef]
185. Pauk, J.; Wasilewska, A.; Ihnatouski, M. Infrared Thermography Sensor for Disease Activity Detection in Rheumatoid Arthritis

Patients. Sensors 2019, 19, 3444. [CrossRef]
186. Hirano, T.; Nishide, M.; Nonaka, N.; Seita, J.; Ebina, K.; Sakurada, K.; Kumanogoh, A. Development and Validation of a

Deep-Learning Model for Scoring of Radiographic Finger Joint Destruction in Rheumatoid Arthritis. Rheumatol. Adv. Pract.
2019, 3, rkz047. [CrossRef]

187. Huang, Y.-J.; Shun, M.; Zheng, K.; Lu, L.; Lu, Y.; Lin, C.; Kuo, C.-F. Radiographic Bone Texture Analysis Using Deep Learning
Models for Early Rheumatoid Arthritis Diagnosis. 2020. Available online: https://assets.researchsquare.com/files/rs-76193/v1
/6405299c-7383-4008-8420-e5082bba28fa.pdf (accessed on 23 October 2020).

188. Jiang, M.; Li, Y.; Jiang, C.; Zhao, L.; Zhang, X.; Lipsky, P.E. Machine Learning in Rheumatic Diseases. Clin. Rev. Allergy Immunol. 2020.
[CrossRef]

189. Andersen, J.K.H.; Pedersen, J.S.; Laursen, M.S.; Holtz, K.; Grauslund, J.; Savarimuthu, T.R.; Just, S.A. Neural Networks for
Automatic Scoring of Arthritis Disease Activity on Ultrasound Images. RMD Open 2019, 5, e000891. [CrossRef]

190. Humphries, S.M.; Centeno, J.P.; Notary, A.M.; Gerow, J.; Cicchetti, G.; Katial, R.K.; Beswick, D.M.; Ramakrishnan, V.R.; Alam, R.;
Lynch, D.A. Volumetric Assessment of Paranasal Sinus Opacification on Computed Tomography Can Be Automated Using a
Convolutional Neural Network. Int. Forum Allergy Rhinol. 2020, 10. [CrossRef]

191. Chowdhury, N.I.; Smith, T.L.; Chandra, R.K.; Turner, J.H. Automated Classification of Osteomeatal Complex Inflammation on
Computed Tomography Using Convolutional Neural Networks. Int. Forum Allergy Rhinol. 2019, 9, 46–52. [CrossRef] [PubMed]

192. Sathiya, S.; Jeyanthi, S. Computer Aided Diagnosis System for Chronic Obstructive Pulmonary Disease from CT Images Using
Convolutional Neural Network. In Proceedings of the International Conference on Intelligent Computing Systems (ICICS), Salem,
India, 15–16 December 2017.

193. Bharati, S.; Podder, P.; Mondal, M.R.H. Hybrid Deep Learning for Detecting Lung Diseases from X-ray Images. Inform. Med.
Unlocked 2020, 20, 100391. [CrossRef]

194. Heinemann, F.; Birk, G.; Schoenberger, T.; Stierstorfer, B. Deep Neural Network Based Histological Scoring of Lung Fibrosis and
Inflammation in the Mouse Model System. PLoS ONE 2018, 13, e0202708. [CrossRef] [PubMed]

195. Wimmer, G.; Vécsei, A.; Uhl, A. CNN Transfer Learning for the Automated Diagnosis of Celiac Disease. In Proceedings of the 2016 Sixth
International Conference on Image Processing Theory, Tools and Applications (IPTA), Oulu, Finland, 12–15 December 2016; pp. 1–6.

196. Gadermayr, M.; Wimmer, G.; Kogler, H.; Vécsei, A.; Merhof, D.; Uhl, A. Automated Classification of Celiac Disease during Upper
Endoscopy: Status Quo and Quo Vadis. Comput. Biol. Med. 2018, 102, 221–226. [CrossRef] [PubMed]

197. Molder, A.; Balaban, D.V.; Jinga, M.; Molder, C.-C. Current Evidence on Computer-Aided Diagnosis of Celiac Disease: Systematic
Review. Front. Pharmacol. 2020, 11, 341. [CrossRef]

http://doi.org/10.3390/s20010167
http://www.ncbi.nlm.nih.gov/pubmed/31892135
http://doi.org/10.1177/0954411915580809
http://www.ncbi.nlm.nih.gov/pubmed/25934260
http://doi.org/10.1038/s41598-018-20132-7
http://www.ncbi.nlm.nih.gov/pubmed/29379060
http://doi.org/10.1590/S1678-91992007000200001
http://doi.org/10.1002/mrm.27210
http://www.ncbi.nlm.nih.gov/pubmed/29707806
http://doi.org/10.1136/ard.47.8.648
http://doi.org/10.1093/rheumatology/XXXIV.suppl_2.74
http://doi.org/10.3390/s19163444
http://doi.org/10.1093/rap/rkz047
https://assets.researchsquare.com/files/rs-76193/v1/6405299c-7383-4008-8420-e5082bba28fa.pdf
https://assets.researchsquare.com/files/rs-76193/v1/6405299c-7383-4008-8420-e5082bba28fa.pdf
http://doi.org/10.1007/s12016-020-08805-6
http://doi.org/10.1136/rmdopen-2018-000891
http://doi.org/10.1002/alr.22588
http://doi.org/10.1002/alr.22196
http://www.ncbi.nlm.nih.gov/pubmed/30098123
http://doi.org/10.1016/j.imu.2020.100391
http://doi.org/10.1371/journal.pone.0202708
http://www.ncbi.nlm.nih.gov/pubmed/30138413
http://doi.org/10.1016/j.compbiomed.2018.04.020
http://www.ncbi.nlm.nih.gov/pubmed/29739614
http://doi.org/10.3389/fphar.2020.00341


Biomedicines 2021, 9, 152 23 of 23

198. Srivastava, A.; Sengupta, S.; Kang, S.-J.; Kant, K.; Khan, M.; Ali, S.A.; Moore, S.R.; Amadi, B.C.; Kelly, P.; Syed, S. Deep Learning
for Detecting Diseases in Gastrointestinal Biopsy Images. In Proceedings of the 2019 Systems and Information Engineering
Design Symposium (SIEDS), Charlottesville, VA, USA, 26 April 2019; pp. 1–4.

199. Syed, S.; Stidham, R.W. Potential for Standardization and Automation for Pathology and Endoscopy in Inflammatory Bowel
Disease. Inflamm. Bowel Dis. 2020, 26, 1490–1497. [CrossRef]

200. Ding, Z.; Shi, H.; Zhang, H.; Meng, L.; Fan, M.; Han, C.; Zhang, K.; Ming, F.; Xie, X.; Liu, H. Gastroenterologist-Level Identification of Small-
Bowel Diseases and Normal Variants by Capsule Endoscopy Using a Deep-Learning Model. Gastroenterology 2019, 157, 1044–1054.e1045.
[CrossRef]

201. Zhu, R.; Niu, H.; Yin, N.; Wu, T.; Zhao, Y. Analysis of Varicose Veins of Lower Extremities Based on Vascular Endothelial Cell
Inflammation Images and Multi-Scale Deep Learning. IEEE Access 2019, 7, 174345–174358. [CrossRef]

202. Sharifrazi, D.; Alizadehsani, R.; Joloudari, J.H.; Shamshirband, S.; Hussain, S.; Sani, Z.A.; Hasanzadeh, F.; Shoaibi, A.; Dehzangi, A.;
Alinejad-Rokny, H. CNN-KCL: Automatic Myocarditis Diagnosis using Convolutional Neural Network Combined with K-means
Clustering. Math. Comput. Sci. 2020. [CrossRef]

203. Leiner, T.; Rueckert, D.; Suinesiaputra, A.; Baeßler, B.; Nezafat, R.; Išgum, I.; Young, A.A. Machine Learning in Cardiovascular
Magnetic Resonance: Basic Concepts and Applications. J. Cardiovasc. Magn. Reson. 2019, 21, 1–14. [CrossRef]

204. Kim, Y.; Lee, K.J.; Sunwoo, L.; Choi, D.; Nam, C.-M.; Cho, J.; Kim, J.; Bae, Y.J.; Yoo, R.-E.; Choi, B.S. Deep Learning in Diagnosis of
Maxillary Sinusitis Using Conventional Radiography. Investig. Radiol. 2019, 54, 7–15. [CrossRef]

205. Heinemann, F.; Birk, G.; Stierstorfer, B. Deep Learning Enables Pathologist-Like Scoring of NASH Models. Sci. Rep. 2019, 9, 1–10.
[CrossRef]

206. Joo, Y.B.; Baek, I.-W.; Park, Y.-J.; Park, K.-S.; Kim, K.-J. Machine Learning-Based Prediction of Radiographic Progression in Patients
with Axial Spondyloarthritis. Clin. Rheumatol. 2020, 39, 983–991. [CrossRef]

207. Yang, Y.J.; Cho, B.-J.; Lee, M.-J.; Kim, J.H.; Lim, H.; Bang, C.S.; Jeong, H.M.; Hong, J.T.; Baik, G.H. Automated Classification of
Colorectal Neoplasms in White-Light Colonoscopy Images via Deep Learning. J. Clin. Med. 2020, 9, 1593. [CrossRef] [PubMed]

208. Talo, M.; Baloglu, U.B.; Yıldırım, Ö.; Acharya, U.R. Application of Deep Transfer Learning for Automated Brain Abnormality
Classification Using MR Images. Cogn. Syst. Res. 2019, 54, 176–188. [CrossRef]

209. Bayramoglu, N.; Heikkilä, J. Transfer Learning for Cell Nuclei Classification in Histopathology Images. In Proceedings of the
European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 532–539.

210. Ker, J.; Bai, Y.; Lee, H.Y.; Rao, J.; Wang, L. Automated Brain Histology Classification Using Machine Learning. J. Clin. Neurosci.
2019, 66, 239–245. [CrossRef] [PubMed]

211. Essa, E.; Aldesouky, D.; Hussein, S.E.; Rashad, M. Neuro-Fuzzy Patch-Wise R-CNN for Multiple Sclerosis Segmentation. Med.
Biol. Eng. Comput. 2020, 58, 2161–2175. [CrossRef] [PubMed]

212. Birenbaum, A.; Greenspan, H. Multi-View Longitudinal CNN for Multiple Sclerosis Lesion Segmentation. Eng. Appl. Artif. Intell.
2017, 65, 111–118. [CrossRef]

213. Kaur, A.; Kaur, L.; Singh, A. State-of-the-Art Segmentation Techniques and Future Directions for Multiple Sclerosis Brain Lesions.
Arch. Comput. Methods Eng. 2020, 1–27. [CrossRef]

214. Brooks, S.G.; Trope, M.; Blasetti, M.; Doghramji, L.; Parasher, A.; Glicksman, J.T.; Kennedy, D.W.; Thaler, E.R.; Cohen, N.A.;
Palmer, J.N. Preoperative Lund-Mackay Computed Tomography Score Is Associated with Preoperative Symptom Severity and
Predicts Quality-of-Life Outcome Trajectories after Sinus Surgery. Int. Forum Allergy Rhinol. 2018, 8, 668–675. [CrossRef] [PubMed]

215. Lund, V.J.; Mackay, I.S. Staging in Rhinosinusitis. Rhinology 1993, 31, 183. [CrossRef]

http://doi.org/10.1093/ibd/izaa211
http://doi.org/10.1053/j.gastro.2019.06.025
http://doi.org/10.1109/ACCESS.2019.2954708
http://doi.org/10.20944/preprints202007.0650.v1
http://doi.org/10.1186/s12968-019-0575-y
http://doi.org/10.1097/RLI.0000000000000503
http://doi.org/10.1038/s41598-019-54904-6
http://doi.org/10.1007/s10067-019-04803-y
http://doi.org/10.3390/jcm9051593
http://www.ncbi.nlm.nih.gov/pubmed/32456309
http://doi.org/10.1016/j.cogsys.2018.12.007
http://doi.org/10.1016/j.jocn.2019.05.019
http://www.ncbi.nlm.nih.gov/pubmed/31155342
http://doi.org/10.1007/s11517-020-02225-6
http://www.ncbi.nlm.nih.gov/pubmed/32681214
http://doi.org/10.1016/j.engappai.2017.06.006
http://doi.org/10.1007/s11831-020-09403-7
http://doi.org/10.1002/alr.22109
http://www.ncbi.nlm.nih.gov/pubmed/29517156
http://doi.org/10.1016/S0194-5998(97)70005-6

	Introduction 
	Imaging Inflammatory Disease 
	Cardiovascular Disease (CVD) 
	Rheumatoid Arthritis 
	Chronic Obstructive Pulmonary Disease (COPD) 
	Gastrointestinal 

	Cancer 
	Imaging of Immunotherapy and Cellular Therapy 
	Image Analysis of Inflammatory Disease 
	Conclusions 
	References

