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Abstract
Sickle cell disease and the ß-thalassemias are caused by mutations of the ß-globin gene and represent the most frequent single gene
disorders worldwide. Even in European countries with a previous low frequency of these conditions the prevalence has substantially
increased following large scale migration from Africa and the Middle East to Europe. The hemoglobin diseases severely limit both, life
expectancy and quality of life and require either life-long supportive therapy if cure cannot be achieved by allogeneic stem cell
transplantation. Strategies for ex vivo gene therapy aiming at either re-establishing normal ß-globin chain synthesis or at re-activating
fetal g-globin chain and HbF expression are currently in clinical development. The European Medicine Agency (EMA) conditionally
licensed gene addition therapy based on lentiviral transduction of hematopoietic stem cells in 2019 for a selected group of patients
with transfusion dependent non-ß° thalassemia major without a suitable stem cell donor. Gene therapy thus offers a relevant chance
to this group of patients for whom cure has previously not been on the horizon. In this review, we discuss the potential and the
challenges of gene addition and gene editing strategies for the hemoglobin diseases.
The clinical challenges of hemoglobinopathies inherited a-thalassemia mutations present with the phenotype of
Hemoglobinopathies, most importantly sickle cell disease
(SCD) and ß-thalassemia, are themost prevalent genetic disorders
globally.1,2 Migration from regions of high prevalence has
resulted and will likely continue to result in a rise of patient
numbers in Europe.3,4

Thalassemia mutations either completely abolish (ß0) or
substantially reduce (ß+) the expression of the hemoglobin ß-
chain, resulting in an imbalance of the hemoglobin a- and ß-
chains. This imbalance causes hyperplastic but ineffective
erythropoiesis and can result in extramedullary hematopoiesis.5

While the ß-thalassemias are genetically diverse with various
mutations being prevalent among different ethnic groups, the
clinical phenotype in most patients with biallelic inactivation of
the ß-globin gene is that of thalassemia major, characterized by
the need for life-long regular red blood cell transfusions from
early childhood (TDT, “transfusion dependent thalassemia”).
Approximately 10% to 15% of patients who carry either
mutations allowing for relevant residual expression of ß-globin,
who carry genetic modifiers boosting the expression of g-globin
and fetal hemoglobin (HbF) beyond infancy or who have co-
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thalassemia intermedia. These patients may require red blood cell
transfusions only occasionally, but typically develop skeletal
changes and iron overload later in life because of marked
erythroid hyperplasia. Recently, this clinical phenotype has also
been referred to, probably inappropriately, as “non-transfusion
dependent thalassemia” (NTDT).6

The mainstay of thalassemia treatment is red blood cell
transfusion, accompanied by intensive iron chelation.While most
patients will reach adulthood if well treated, both, quality of life
and life expectancy are severely impaired by the complications of
iron overload.7–9 If an HLA-matched stem cell donor is available,
allogeneic stem cell transplantation as soon as possible and before
iron overload develops is considered advisable.10–12 The
economic burden of thalassemia is substantial especially in
countries of high prevalence. The expenses for red blood cell
transfusions and for iron chelation are estimated to exceed
€30,000 annually for an adult patient.8,13

Patients with SCD always carry the HbS allele that codes for a
valine instead of a glutamic acid residue at position 6 of ß-globin,
either in a homozygous or a compound heterozygous state, and
consequently express exclusively or predominantly sickle cell
hemoglobin, HbS. Valine, a hydrophobic amino acid, at position 6
favors the polymerization of deoxygenated HbS and the formation
of sickle-shaped erythrocytes. After the hemoglobin switch, when
HbF is replaced by HbS during infancy, patients present with
chronic hemolysis, acute vasoocclusive crises and a chronic
vasculopathy that affects all organs.14 As is the case for ß-
thalassemia, the severity of SCD is modulated by the expression of
HbF and the co-inheritance of a-thalassemia. This modulation is
most obvious in patientswho carry, besidesHbS, one allele of the ß-
globin gene cluster that does not turn off the expression of HbF
during infancy (“hereditary persistence of fetal hemoglobin”,
HPFH).15 As HbF efficiently interferes with the polymerization of
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HbS, these patients can show few or no symptoms of SCD.
Further, pharmacologic induction of HbF is known to reduce the
severity of SCD.17,18However, itmustbenoted that evenhigh levels
of HbF do not consistently improve all complications of SCD.16,19

Without adequate medical care, most patients with SCD die
during early childhood.20,21 With the use of prophylactic
antibiotics, vaccinations, parent education, assessment for risk
of stroke by transcranial Doppler ultrasound, red blood cell
transfusions and hydroxycarbamide, more than 95% of patients
reach adulthood.22,23 Nevertheless, the quality of life is severely
impaired by painful vasoocclusive crises and chronic organ
damage. Life expectancy, even with optimal care, is shortened by
approximately two decades.24–28 During recent years, pharma-
cologic treatments targeting several pathophysiologic mecha-
nisms of SCD have been developed and show clinically relevant
effects.29–33 Although combinations of these drugs can poten-
tially offer a chance for a meaningful reduction of SCD symptoms
in many patients, they do not offer cure and need to be applied
over many years or even for the entire life. Currently, the only
curative treatment is allogeneic stem cell transplantation which is
increasingly considered as “standard of care” if an HLA-matched
sibling donor is available.11,34,35 Stem cell transplantation from
alternative donors, that is matched unrelated or mismatched
Figure 1. Ex vivogene therapy for hemoglobinopathies.Stem cells aremobilize
bone marrow without preceding mobilization can be harvested. Stem cells are enric
manufactured underGMP-conditions (4) and incubatedwith the purified stem cells (5
(6), the patient is treated with myeloablative chemotherapy (7). The manipulated ste
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family donors, is associated with a high morbidity and even a
mortality in the range of 10% and is reserved for selected patients
with a severe course of SCD.36–38
Principles of gene therapy for the
hemoglobinopathies

SCD and TDT are monogenic disorders and particularly
amenable to gene therapy because the genetic defect needs to be
corrected in hematopoietic stem cells giving rise to erythroid
precursors only. With a history of allogeneic stem cell transplan-
tation overmore than 50 years,39,40methods for the collection and
manipulation of hematopoietic stem cells are readily available.
Gene therapy41 offers the potential of cure for patients with TDT
andwith SCD even if no suitable stem cell donor is available and is
not associatedwith the risk ofGraft-versus-Host-Disease (GvHD).
A tailored conditioning without the need for immunosuppression
promises a reduced risk for short- and long-term toxicity in
comparison to allogeneic stem cell transplantation.
Gene therapies for the hemoglobinopathies in clinical use or

clinical development all rely on ex vivo manipulation of
hematopoietic stem cells and resemble autologous stem cell
transplantation (Fig. 1).42–44 Several conditions must be met for
dbyG-CSF and/or plerixafor (1) and harvested by leukapheresis (2). Alternatively,
hed from the apheresis product by positive selection for CD34 (3). The vector is
). After the product has been subjected to rigorous quality controls and is released
m cell product is applied either intravenously or intraosseously (8).
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Figure 2. Selected milestones of ex vivo gene therapy for hematologic disorders.

(2020) 4:5 www.hemaspherejournal.com
the cure of a hemoglobinopathy. First, a sufficient number of
hematopoietic stem cells must be obtained and manipulated
without damaging or reducing their capacity of engraftment, self-
renewal, proliferation and differentiation. Second, the gene defect
must be corrected in a large majority of stem cells. Third, the
manipulated stem cells have to be given into an environment that
promotes survival and long term expansion, requiring myeloa-
blative conditioning. A characteristic of thalassemias is the
limited maturation potential of erythroid precursors, conferring a
selective advantage to those precursors whose genetic defect has
been repaired by gene therapy. Such an effect was first
demonstrated after allogeneic stem cell transplantation for
thalassemia, when a proportion of 20% of all nucleated bone
marrow cells suffices to produce exclusively donor-derived
erythrocytes.45 However, this selective advantage is by far less
pronounced as compared to that of corrected T-cells in severe
combined immunodeficiency- one of the reasons, why historically
immunodeficiencies were the first targets of gene therapy.46–48

History of gene therapy

With the advent of recombinant DNA-technologies and the
cloning of ß-globin as first human gene in the mid-70ies49 very
3

early and, from today’s perspective, premature attempts for gene
therapy of thalassemia were made.50 Because major obstacles—
efficiency, longevity, and safety of gene transfer into hematopoi-
etic stem cells—could not be overcome at that time, gene therapy
for thalassemia and SCD remained a hypothetical option that had
not become reality for decades (Fig. 2).

g-retroviral vectors

A breakthrough for the clinical application of gene therapy has
been the development of retroviral vectors. These vectors use the
intrinsic capacity of retroviruses such as the Moloney Murine
Leukemia Virus for efficient integration into the host genome and
subsequent stable expressionof viral genes.After the eliminationof
pathogenic sections of the viral genome, vectors derived from
g-retroviruses allow the transduction of hematopoietic stem cells
and the expression of recombinant therapeutic genes in maturing
and mature blood cells (Fig. 3). This revolutionary technique was
first used for the treatment of inborn immunodeficiencies46–48,51,52

where already a low level expression of the therapeutic gene
can correct the phenotype and where transduced cells acquire
a selective advantage over cells that did not receive the
therapeutic gene. In consequence, the first ex vivo gene therapy

http://www.hemaspherejournal.com
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Figure 3. Vectors used for gene addition. A: The vector used for the first clinical application of gene transfer into human hematopoietic stem cells.51 This vector
was based on the Moloney murine leukemia virus. LTR- long terminal repeat, c+ extended packaging signal; ADA, human ADA cDNA; SV, SV40 early region
promoter; NEO, neomycin resistance gene. The viral LTR sequencing mediate high-level expression of the transgene and genomic integration in the vicinity of
transcriptionally active genes, resulting in the risk of oncogene activation. B: The self-inactivating lentiviral vector used for manufacturing of Zynteglo, the first
approved gene therapy for ß-thalassemia.43,96 Hybrid LTR - hybrid long terminal repeat: the CMV enhancer and promoter replace the HIV U3 enhancer and
promoter (allowing for Tat-independent translation), HIV R/U5 regions are preserved; c+ - extended packaging signal (carrying 2 stop codons to prevent
readthrough from the CMV promoter); cPPT - central polypurine track (facilitates nuclear import of the viral preintegration complex); RRE – Rev responsive element
(facilitates nuclear export of viral RNA in the packaging cell lines); I, II, III – human ß globin exons (the reverse orientation enables maintenance of the intron structure of
the transgene; the Thr87Gln mutation confers anti-sickling properties without affecting hemoglobin function and enables tracking of therapeutic gene expression; a
deletion in intron 2 is indicated by a triangle); HS2, HS3, HS4 – hypersensitive sites (HS) of the human ß-globin locus control region (stimulating ß-globin expression
via looping to the ß-globin promoter); ppt – polypurine tract; DU3 – HIV LTR U3 region carrying a 400bp deletion that results in self-inactivation after transduction
(because the 3’ UTR serves as template for both LTRs); R – HIV LTR R region (including viral polyA signal); pA - rabbit ß-globin polyA signal (as additional safety
measure).
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receivingmarketing authorization in Europe in 2016was that for
ADA-SCID, a very rare severe combined immunodeficiency
(SCID) caused by a deficiency of adenosine desaminase (ADA).53

In parallel, trials for the treatment of other rare immunode-
ficiencies were at least partially successful in terms of cure of the
underlying disorder.54–58 Although gene therapy proved to be
safe and effective in ADA-SCID, the therapeutic gene has been
demonstrated to preferentially integrate in proximity of onco-
genes in several other indications.59–62 The genotoxic potential of
retroviruses was most drastically illustrated by the first series of
patients treated for Wiskott-Aldrich syndrome: Seven of nine
patients developed leukemia,63 a complication that scotched the
enthusiasm for g-retroviral vectors.
The insertional mutagenesis by g-retroviral vectors is caused by

the preferential integration of the vector into transcriptionally
active regulatory regions of the host genome that results in a
selection of modified cells with an activated oncogene that
stimulates proliferation.62–66 The selectivity for transcriptionally
active regions und thus the risk for an oncogenic insertion is
mediated by the retroviral “long terminal repeats” (LTR).67

Because of the potential for the induction of leukemias,
g-retroviral vectors are no longer in clinical use.
New self-inactivating (SIN) lentiviral vectors

Viral vectors that are used in current gene therapy approaches
are derived from the human immunodeficiency virus (HIV) by
deleting accessory virulence factors and regulatory genes from the
viral genome. The envelope protein is exchanged by that of
another virus (typically vesicular stomatitis virus- VSV) and
expressed from a separate plasmid in the packaging cell line, as
are the genes required for virus packaging, gag, pol, and rev.
Deletions in the viral LTR preclude virus replication once the
viral DNA is integrated in the host genome. The promoter
4

function of the LTR is replaced by a constitutively active
promoter that is independent from viral factors such as tat.
Expression of the therapeutic gene is driven from the endogenous
promoter and regulatory sequences.68–73 These self-inactivating
(SIN) lentiviral vectors randomly integrate into the host genome
without preference for regulatory regions.74 In addition, the loss
of the LTRs limits their potential to activate genes in proximity of
the integration site. With a vector copy number that typically
reaches two to three per host genome, the risk of oncogene
activation is statistically low, but cannot be completely excluded.
In a growing number (>300) of patients treated for different
genetic disorders in trials using lentiviral vectors, no malignancy
related to lentiviral insertional mutagenesis has so far been
detected.43,48,74–82 However, the number of patients treated for
hemoglobinopathies with lentiviral gene therapy is still too low
(approximately 10043,44,83–85) to be certain about the oncogenic
risk in this specific indication.
Challenges in gene therapy for
ß-hemoglobinopathies

Although self-inactivating lentiviral vectors offer an efficient
and hopefully safe way of manipulating hematopoietic stem cells,
a clinically successful gene therapy still requires an optimization
of all steps (Fig. 1).
Historically, the first source of stem cells for gene therapy of

hemoglobinopathies was bone marrow. However, hematopoietic
stem cells obtained from bone marrow are limited in quantity,
typically requiring two or more harvesting procedures.76,86 In
addition, chronic inflammation may impede the potential of
proliferation and transduction of bone marrow stem cells in
patients with SCD.87 For these reasons, hematopoietic stem cells
collected from the peripheral blood have replaced bone marrow
as a cell source for gene therapy.
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For patients with thalassemia, the protocols for the mobili-
zation of hematopoietic stem cells resemble that of other
indications. However, the cell numbers required for the
manufacturing process are much higher in comparison to that
required for an autologous rescue after high dose chemotherapy
and mobilization by chemotherapy is not indicated for a benign
disorder. For this reason, the combination of G-CSF with (off-
label) plerixafor is used most frequently.43,44,88 Stem cells
mobilized by this combination are readily transduced by
lentiviral vectors and produce more ß-globin per gene copy as
compared to stem cells mobilized by other regimens. The higher
expression level of the therapeutic gene after mobilization with
the combination of G-CSF and plerixafor in comparison to other
mobilization regimens may be related to a preferential integration
into transcriptionally active chromatin regions.89

For patients with SCD, however, G-CSF is contraindicated,
because it can precipitate fatal vaso-occlusive crises.90,91 There-
fore, (off-label) plerixafor has been used as the only mobilization
agent92–94 and results in stem cells that are well suited for
transduction and expression of the therapeutic ß-globin.89

The apheresis procedure needs to account for the particular
sedimentation properties of blood cells in patients with
hemoglobinopathies. In comparison to other indications, the
stem cell fraction typically needs to be collected with a much
higher admixture of erythrocytes.92

In order to revert the transfusion requirement in TDT by gene
addition, transduced stem cells must be able to differentiate into a
sufficient number of erythroid precursors that produce as much
ß-globin as a healthy ß-globin locus would do. The number of
vector copies per genome in the peripheral blood after gene
therapy is correlated with the number of vector copies in the
manipulated stem cells.43,44 Although the level of hemoglobin
expressed from the therapeutic gene increases with the propor-
tion of transduced stem cells in the cell product and with the
resulting vector copy number in the peripheral blood, the
characteristics of the cell product do not fully predict the success
of the gene therapy. One vector copy per periphal blood genome
appears to be sufficient to render the patient independent from
red blood cell transfusions.43,44

For this reason, the ideal cellular product with the lowest
possible risk of insertional mutagenesis would be characterized by
one vector copy in each cell. Although the success of gene therapy is
determined by several factors and cannot easily be predicted, the
quantity of therapeutic ß-globin that is required to correct TDT is
reduced if the patient carries at least one ß+-globin allele that allows
for a residual expression of ß-globin. In this context, it must be
noted that thequantityof residual ß-globin chain synthesisdepends
on the type of the ß+-thalassemia mutation and varies from less
than 5% tomore than 20%.89 In order to reach the optimal vector
copy numberwith a near to complete transduction of all cells in the
graft, the transduction procedure itself needs to be optimized.71,72

Parameters that can improve transduction efficiency are the viral
coat proteins,95 the use of growth factors and of polycations such
as protamine,96 and the ratio of vector to target cells.
Consequently, the enrichment of hematopoietic stem cells by the
use of cell surface markers can greatly reduce the amount of
lentiviral vector required.97 Before the graft can be re-transplanted,
stringent quality controls have to ensure successful gene transfer
into the host genome, viability and sterility.
In contrast to severe immunodeficiencies, the corrected cells in

the hemoglobinopathies only slightly benefit from a proliferative
advantage in comparison to cells with the uncorrected genetic
defect.45,98–100 This is why the myeloablative conditioning of the
5

recipient is of paramount importance. Unlike allogeneic stem cell
transplantation, gene therapy does not require immunoablation
with serotherapy or lymphotrophic chemotherapy such as
fludarabine or cyclophosphamide. In clinical trials, either
busulfan42,43,76,101 or the combination of treosulfan with
thiotepa44 was used. An earlier trial with submyeloablative
busulfan did not succeed but was hampered by a relatively low
transduction efficiency resulting in copy numbers of approxi-
mately 0.5 per cell in the cellular product.89,102,103

The acute toxicity of gene therapy is determined by the
myeloablative conditioning and comparable to that of high dose
chemotherapy with mucositis, bacterial infections, bleeding and
sinusoidal obstruction syndrome.43 In addition, chemocondi-
tioning results in long term sequelae, most importantly infertility
and treatment-induced malignancies. The latter has rarely been
observed within the first ten years after conditioning with
busulfan for allogeneic transplantation, but is a major concern in
the long term follow-up.104,105 In order to avoid the toxicities of
chemotherapy, alternative ways of myeloablation are being tested
preclinically. These employ the depletion of CD45+ or CD117+
precursors with toxic immune conjugates106–108 and promise
complete myeloablation with minimal systemic toxicity.
Most patients with SCD suffer from chronic vasculopathy with

the risk of vasoocclusive crises at the time of gene therapy. As
with allogeneic stem cell transplantation, prophylactic measures
such as exchange transfusion and anticonvulsive prophylaxis are
necessary to reduce the risk of acute complications.109

As for allogeneic stem cell transplantation, stem cells corrected
by gene therapy are usually applied intravenously.42,43,101 A
mouse model suggests that a direct intraosseous application may
result in a more efficient homing of stem cells. Although some
patients were successfully treated by the intraosseous application
of genetically modified stem cells,44 neither of these application
routes has been demonstrated to be superior over the other in a
controlled trial.
After the infusion of genetically modified stem cells, several

weeks of bone marrow aplasia carry the risk of infections and
bleeding before hematopoiesis is finally restored. The full
expression of the therapeutic gene can be expected after 3 to 6
months and can be correlated with a reduction or, ideally,
complete resolution of the transfusion requirement.43,44 A
possible reason for the delay between application of the graft
and full expression of therapeutic hemoglobin may be a selection
for clones that most efficiently express the transgene. This clonal
evolution of hematopoiesis derived from manipulated stem cells
can be monitored by integration site analysis that demonstrates
dynamic changes in the clonal composition even after years.43

Vectors that code for a ß-globin with an amino acid substitution
allow for the quantification of the expression of the therapeutic
gene in relation to endogenous ß-globin by hemoglobin
separation.71,96 In addition, the physicochemical properties of
the therapeutic ß-globin can be modified by amino acid
substitutions to interfere with the polymerization of HbS.
Similarly to an increased expression of HbF, the expression of
such therapeutic ß-globins tackles the pathophysiology of SCD at
the very root.110,111

Clinical results of “gene addition” for
transfusion-dependent thalassemia and for
sickle cell disease

A first patient treated with lentiviral gene addition for TDT in
2007 reached independence from transfusions, but showed clonal

http://www.hemaspherejournal.com
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hematopoiesis likely caused by insertional mutagenesis which
persisted for years.43,112 Subsequently, with vectors that were
modified to reduce the risk of insertional mutagenesis, several
trials demonstrated a success of gene therapy for thalassemia
without inducing clonal hematopoiesis. Both made use of a
lentiviral gene addition therapy, either with the vector
BB30542,43,113 or the GLOBE vector.44 Most important
predictors for the success of gene therapy were genotype and
patient age.
The HGB-204 and HGB-205 trials run by bluebird bio

reported that 12 of 13 evaluable patients with a non-ß0/ß0

genotype became independent from transfusions (median dura-
tion 38 months for HGB-204).43,83 The subsequent trial HGB-
207 used an improved transduction procedure and reached
independence from transfusions for at least 6 months in 10 of 11
patients.114 Based on these results, the European Medicines
Agency conditionally licensed gene therapy by lentiviral gene
addition (ZyntegloTM) for patients with TDT aged 12 years or
older and a non-ß0/ß0 genotype for whom no HLA-matched
sibling is available as a stem cell donor.115

Treatment of TDT in patients with a ß0/ß0 genotype proved to
be more difficult: In the HGB204 trial, transfusion frequency was
reduced in all patients, but only four of eight evaluable patients
reached complete transfusion independence.43,83 This subopti-
mal albeit promising result was attributed to an insufficient
transduction efficiency with low vector copy numbers in the
hematopoietic stem cells and to an insufficient proportion of
transduced stem cells. While the follow-up is still too short to
draw final conclusions, first results of the succeeding trial HGB-
212 show that with an improved transduction procedure three of
four TDT patients with a ß0/ß0 genotype were off transfusions for
at least six months after gene therapy.116,117 It must be noted,
however, that even patients who become transfusion independent
following gene therapy may not have been completely cured. In a
study of 8 such patients there was remaining, albeit improved
ineffective erythropoiesis and a marker profile indicating
disturbed iron homeostasis likely resulting in inappropriate iron
resorption.118 Therefore, these patients may have to be
monitored for extramedullary erythropoiesis and may still
require (costly) iron chelation.
With the GLOBE vector, four of 6 children but none of 3 adults

with TDT became independent from transfusions. However, only
one of these patients had a non-ß0/ß0 genotype with relevant
residual synthesis of endogenous ß-globin and was successfully
treated. The authors attributed the difference between children
and adults to a defect of the stem cell niche induced by long-term
transfusions.44,119

In SCD, successful gene therapy must reduce the frequency and
severity of vaso-occlusive complications such as pain crises or
acute chest syndrome and ultimately prevent or even reverse end
organ damage. Patients with compound heterozygosity for the
HbS mutation and a second allele resulting in the persistence of
g-globin until adulthood are free of symptoms if all erythrocytes
contain at least 30% of HbF.16 In analogy, a pancellular
expression of a therapeutic ß-globin chain interfering with the
polymerization of HbS to the same level is expected to blunt the
symptoms and freeze progression of SCD.
This goal was partially reached in the first patient treated by

gene addition with the lentiviral vector BB305.42,113 In further
patients, however, the vector copy number and subsequently the
expression of anti-sickling ß-globin did not suffice to clearly
improve the complications of SCD.76,113 As for the TDT trials,
the gene therapy protocol for SCD needed optimization at several
6

levels. With the use of plerixafor for mobilization and improved
technology for transduction, the most recently treated group of
patients expressed approximately 6g/dl of therapeutic hemoglo-
bin, distributed in a pancellular fashion. As expected, with this
expression level of the anti-sickling ß-globin, laboratory
parameters for hemolysis normalized and the frequency of
vasoocclusive complications was reduced.76,85,101
Gene therapy beyond gene addition

Besides “gene addition,” several other strategies either aim at a
direct repair of the pathogenic mutation or at neutralizing the
pathogenic mutation by the introduction of genomic changes in
trans (Fig. 4). While preclinical studies are far advanced, only
very limited clinical experience with these techniques is available
(Table 1).
A direct correction of pathogenic mutations (Fig. 4A) could be

achieved by inserting a therapeutic DNA fragment with the help
of homology-directed repair (HDR). However, the poor
efficiency of HDR in hematopoietic stem cells precluded its use
for gene therapy of hemoglobinopathies so far.120 Specific base
editing can alternatively be achieved by expressing cytidine
deaminases that are guided by small RNAs to a specific target
sequence and result in C>T or G>A mutations.121,122 Due to
restrictions in the targeting of the “base editors” to a target
sequence and because of off-target effects, this technique has not
been employed clinically so far.
While for SCD the direct repair of the underlying mutations

appears attractive once the technical issues are solved, in TDT the
direct repair of the underlying ß-globin mutations is cumbersome
because more than 300 different mutations in the ß-globin gene
resulting in a thalassemia phenotype would need to be addressed.
This is why all genome editing approaches that are currently

being developed do not target the ß-globin gene but aim at the re-
activation of the g-globin gene and at the expression of HbF.
Despite the difference in oxygen affinity when compared to HbA,
HbF is a fully functional globin chain even in adult life and can
replace the lacking HbA in ß-thalassemia.15 HbF can prevent or
limit the polymerization of deoxygenized HbS in SCD, offering a
therapeutic target for both ß-hemoglobinopathies. Patients with
hereditary persistence of fetal hemoglobin (HPFH) demonstrate
that HbF can substitute for HbA without major functional
limitations15 and protect from polymerization of HbS if co-
expressed with the HbS mutation.16 Such an indirect strategy of
modifying globin synthesis thus carries the potential of curing
both TDT and SCD,123,124 although cure of ß-thalassemia by this
strategy will require a more pronounced reactivation of g-globin
chain synthesis than will likely be required for SCD.
The techniques used for genome editing in hematopoietic stem

cells do not aim at reverting or introducing a specific mutation,
but rather at the inactivation of certain DNA sequences. Such an
inactivation can be achieved in a sequence-specific manner
without the need for endogenous homology-directed repair
activity by the CRISPR/Cas9 system. The CRISPR/Cas9 system is
making use of prokaryotic enzymes that recognize and degrade
DNA sequences introduced into bacteria by bacterio-
phages.125,126 Specific guide RNAs recruit the endonuclease
Cas9 to specific sites of the genome, where Cas9 introduces
double strand breaks that will be repaired by nonhomologous
end joining (NHEJ). Imprecisions in the repair process result in
small insertions or deletions that inactivate the target gene.127,128

An alternative technique of introducing targeted double strand
breaks into DNA involves nucleases that directly bind to the
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Figure 4. Alternatives to gene addition for correction of hemoglobinopathies. A: In cells with active HDR (homology directed repair) double strand breaks
introduced by nucleases can be repaired with the help of a template, resulting in the correction of pathogenic mutations.41 Because a specific template is needed for
eachmutation and because HDR is not active in hematopoietic stem cells, this approach is not in clinical use for the hemoglobinopathies. An alternative technique of
direct correction of pathogenic mutations is “base editing” by deaminases that result in C to T or G to A changes in a sequence context defined by a guide RNA.122

While this technique does not require any endogenous DNA repair activity, it suffers from limited specificity and thus from off target effects. B: Induction of g-globin
expression by introduction of mutations that activate the expression of g-globin as can be naturally observed in HPFH (hereditary persistence of fetal hemoglobin),
presumably by abrogating BCL11A binding.130,131 C: Induction of g-globin expression by disruption of an erythroid-specific BCL11A enhancer.132,136–138

Approaches B and C can be used for all ß-hemoglobinopathies and rely on non-homologous end joining or microhomology-mediated end joining that are active in
hematopoietic stem cells. D: Induction of g-globin expression by depletion of BCL11A via shRNA expressed from a lentiviral vector.93,133 E: Induction of g-globin
expression by forced chromatin looping mediated by a Zink-Finger/Ldb1-fusion protein expressed from a lentiviral vector.146 Approaches D and E can be used in
principle for all ß-hemoglobinopathies and do not rely on endogenous DNA repair activity.
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Table 1

Active Clinical Trials for Gene Therapy of ß-hemoglobinopathies (https://www.clinicaltrials.gov, Accessed 09.04.2020, Filtering Criteria
Were “Thalassemia OR Sickle Cell Disease” AND “Gene Therapy” AND “Recruiting OR Active/Non-recruiting”).

Gene therapy product/ NCT trial number Sponsor Indication Gene Therapy Strategy

Lenti/G-bAS3-FB
NCT02247843

University of California, Los Angeles SCD Lentiviral ß-globin gene addition

GLOBE
NCT02453477

IRCCS San Raffaele TDT Lentiviral ß-globin gene addition

Zynteglo
NCT03207009
NCT02906202

bluebird bio TDT Lentiviral ß-globin gene addition

BB305
NCT02140554
NCT04293185

bluebird bio SCD Lentiviral ß-globin gene addition

ARU-1801
NCT02186418

Aruvant Sciences SCD Lentiviral g-globin gene addition

CSL200
NCT04091737

CSL Behring SCD Lentiviral g-globin gene addition, selection via
expression of a shRNA directed against
HPRT151

TNS9.3.55
NCT01639690

Memorial Sloan Kettering Cancer Center TDT Lentiviral ß-globin gene addition

NCT04205435 Shanghai Bioraylaboratory INC TDT Gene editing: reactivation of HbF synthesis by
CRISPR/CAS9

CTX-001
NCT03655678

Vertex Pharmaceuticals Incorporated TDT Gene editing: reactivation of HbF synthesis by
CRISPR/CAS9 mediated inactivation of BCL11A

CTX-001
NCT03745287

Vertex Pharmaceuticals Incorporated SCD Gene editing: reactivation of HbF synthesis by
CRISPR/CAS9 mediated inactivation of BCL11A

ST-400
NCT03432364

Sangamo Therapeutics TDT Gene editing: reactivation of HbF synthesis by
Zinc-finger nuclease mediated inactivation of
BCL11A

BIVV003
NCT03653247

Bioverativ/Sanofi SCD Gene editing: reactivation of HbF synthesis by
Zinc-finger nuclease mediated inactivation of
BCL11A

NCT03282656 Boston Children’s Hospital SCD “Transcriptome editing” by lentiviral expression of
an shRNA targeting BCL11A mRNA

Kunz and Kulozik Gene Therapy of the Hemoglobinopathies
target sequence without the need of a specific guide RNA. Double
strand breaks introduced by such Transcription Activator-Like
EffectorNucleases (TALEN) or by Zink finger enzymes inactivate
the respective gene as do double strand breaks introduced by
Cas9.129

Several strategies employ genome editing to boost HbF
expression, most directly by the introduction of activating
mutations in the g-globin promoter that abrogate binding of
postnatal repressors (Fig. 4B).130,131 The most frequently
modified target of genome editing for the ß-hemoglobinopathies
is BCL11A. BCL11A encodes a transcription factor that is
required to turn off g-globin expression during the perinatal
hemoglobin switch. Inactivation of BCL11A in erythroid
precursors results in an increased synthesis of HbF.132–134

Similarly, disruption of the interaction of LRF, another
transcription factor promoting the hemoglobin switch, with
the g-globin promoter induces HbF expression.135

BCL11A can be specifically inactivated (Fig. 4C) in erythroid
cells by targeting a TALEN nuclease136,137 or a CRISPR/Cas9
nuclease132 against a lineage specific enhancer of BCL11A. This
lineage specificity138 is important, because BCL11A is not only
crucial for erythroid, but also for lymphoid139 and neuronal140

differentiation. If BCL11A is disabled in erythroid precursors
derived from edited hematopoietic stem cells, there is a robust
induction of HbF.132,136,137 Very first patients with TDT and
with SCD were treated with a CRISP/Cas9-mediated inactivation
8

of BCL11A (Table 1, NCT03745287 and NCT03655678).
While follow up is short and numbers small, preliminary results
are encouraging.141 Similarly, disruption of BCL11A in
hematopoetic stem cells by Zink finger nucleases resulted in
HbF induction both in erythroid cells and in first patients with
TDT who received these stem cells.142,143

Another way of inducing HbF by repressing BCL11A makes
use of the expression of short hairpin (sh)RNAs that are
introduced into hematopoietic stem cells by a lentiviral vector
(Fig. 4D). By specific hybridization to and degradation of the
target mRNA, these shRNAs downmodulate the expression of
their target gene. Inducing HbF by downmodulating BCL11A in
hematopoietic stem cells by shRNA is currently explored as
treatment of SCD.133 Preliminary results of this “transcriptome
editing” approach in three patients with SCD who were followed
at least 6 months after gene therapy showed a lineage-specific
induction of HbF and an improvement of hemolysis.93

Yet another alternative to “genome editing” is the expression
of an engineered fusion protein between Ldb1 and a Zink finger
protein from a lentiviral vector (Fig. 4E) that forces the ß-globin
locus control region into proximity of the g-globin gene. As a
result, HbF expression is reactivated and exceeds that of HbS in
vitro144–146—a situation compatible with cure of SCD if achieved
in vivo.
A combination of more than one of the mentioned strategies

would have the potential to optimize the expression of a

https://www.clinicaltrials.gov/
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therapeutic gene product. Such a combination may for instance
include the expression of ß-globin via lentiviral gene addition and
at the same time repressing BCL11A via shRNAs encoded by the
same vector and could result in a success rate that robustly
outperforms that of allogeneic stem cell transplantation.147
Perspectives

The current standard of care for TDT and SCD is a disease
modifying treatment with red blood cell transfusions, iron
chelation and pharmacologic induction of HbF that needs to be
combined with the treatment of symptoms and complications.
Recently, additional treatments for TDT that aim at improving
the survival of erythroid precursors have emerged.148 However,
the only established curative option is allogeneic stem cell
transplantation that, depending on patient age and the type of
donor, is associated with relevant morbidity including graft
versus host disease, infertility and other long term complica-
tions.104,105While transplantation from anHLA-matched sibling
is widely accepted as standard of care, for most patients such a
donor is not available and transplantation from alternative
donors still carries a risk of treatment-relatedmortality of 10%or
higher that is considered not acceptable for non-malignant
disorders.34,37,109,149

Gene therapy bypasses two of the most relevant shortcomings
of allogeneic transplantation—limited donor availability and risk
of GvHD—while possibly offering cure in 80% of patients with
TDT with a non-ß0/ß0 genotype. So far, no treatment-related
mortalities have been reported after gene therapy for hemoglo-
binopathies. These results have led to the licensing of the first gene
therapy for transfusion dependent thalassemia in Europe and
offer the chance to assess the potential of gene therapy under real
world conditions and in a larger number of patients.
Two major obstacles currently preclude the widespread use of

gene therapy. First, current protocols still require myeloablative
conditioning. Even if in comparison to allogeneic stem cell
transplantation the cumulative dose of chemotherapy is reduced,
long term sequelae such as infertility and the risk of secondary
neoplasms will likely remain a challenge. Second, the sophisti-
cated logistics and the costs of gene therapy150 limit its use in
patients and health care systems with sufficient resources while
prohibiting its use in countries with a high prevalence of
hemoglobinopathies which cannot provide the required infra-
structure and resources. Obviously, the development of condi-
tioning regimens with reduced toxicity and lowering the costs of
gene therapy are the most important steps required to bring this
treatment options to more than a small number of selected
patients.
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