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ABSTRACT In many biological scenarios, from the development of drug resistance in pathogens to the progression of healthy cells
toward cancer, quantifying the selection acting on observed mutations is a central question. One difficulty in answering this question is
the complexity of the background upon which mutations can arise, with multiple potential interactions between genetic loci. We here
present a method for discerning selection from a population history that accounts for interference between mutations. Given
sequences sampled from multiple time points in the history of a population, we infer selection at each locus by maximizing a likelihood
function derived from a multilocus evolution model. We apply the method to the question of distinguishing between loci where new
mutations are under positive selection (drivers) and loci that emit neutral mutations (passengers) in a Wright–Fisher model of evolution.
Relative to an otherwise equivalent method in which the genetic background of mutations was ignored, our method inferred selection
coefficients more accurately for both driver mutations evolving under clonal interference and passenger mutations reaching fixation in
the population through genetic drift or hitchhiking. In a population history recorded by 750 sets of sequences of 100 individuals taken
at intervals of 100 generations, a set of 50 loci were divided into drivers and passengers with a mean accuracy of.0.95 across a range
of numbers of driver loci. The potential application of our model, either in full or in part, to a range of biological systems, is discussed.

INTERFERENCE between mutations in an evolving popu-
lation can have significant effects on adaptation, affecting

the development of both beneficial and nonbeneficial muta-
tions. In the absence of recombination, beneficial mutations
arising within different individuals compete with one an-
other, in a process referred to as clonal interference (Fisher
1930; Muller 1932). Where the effects of selection are
strong, effects on nonbeneficial mutations are seen, with
neutral and deleterious alleles fixing via hitchhiking with
strongly beneficial alleles (Smith and Haigh 1974).

The importance of interference, caused by genetic linkage
between mutations, has been noted in a range of experimen-
tal studies. For example, clonal interference places a con-
straint on the speed of adaptive evolution (De Visser et al.
1999) and it affects the magnitude of selection coefficients of
mutations escaping genetic drift (Perfeito et al. 2007). Studies

of the evolution of an RNA virus have shown a loss of beneficial
mutations through interference (Bollback and Huelsenbeck
2007; Betancourt 2009). Observations of reduced genomic
diversity in regions of genomes with lower recombination
rates are consistent with the fixation of alleles through
hitchhiking (Stephan and Langley 1989). In a recent large-
scale study of beneficial mutations in the adaptation of
yeast, background genetic variation was observed to be crit-
ical in determining the fate of new mutations (Lang et al.
2011).

In an attempt to understand the underlying dynamics of
populations characterized by interference, a range of theo-
retical models have been developed, giving estimates for
properties such as the fixation probability of a beneficial
mutation, the expected rate of change of the mean fitness of
the population, and the rate of substitutions within the
population (see, e.g., Barton 1995; Gerrish and Lenski 1998;
Gillepie 2001; Rouzine et al. 2003; Wilke 2004; Desai and
Fisher 2007). As summarized in recent reviews (Park et al.
2010; Sniegowski and Gerrish 2010), these studies and
others have made a substantial and still growing contribu-
tion to the understanding of asexual evolution.

In this work we present a method to infer selection in an
evolving population characterized by multiple genetic linkages
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between mutations at different loci. While in our understand-
ing we lean heavily on the body of theoretical work discussed
above, our approach is substantially different. Rather than
describing general properties of systems under selection, such
as mean times for allele fixation, we consider the evolutionary
history of a single system. Using time-resolved data from the
system, we try to deduce the fitness landscape according to
which adaptation has in that one specific case taken place.

Our method complements existing methods of discerning
selective effects. In a commonly used method, the labeling of
a fraction of the population by a genetic marker with known
or neutral effect can be used to measure evolutionary fitness
(Hegreness et al. 2006; Kao and Sherlock 2008; Barrick et al.
2010; Lang et al. 2011). Our method bears some similarity to
this approach, in that we consider subsections of the popula-
tion with and without given mutations at a locus, but extends
the idea to consider all mutations present at any one time.

Our method is designed for the analysis of time-series
data. In microbial systems, an increasing amount of data of
this form are becoming available via application of modern
sequencing technologies, with measurements in some cases
taken over long time periods (Barrick et al. 2009). The po-
tential scope for application, however, may extend beyond
these examples. In studies of the development of cancer, for
example, a distinction is made between driver mutations,
which push a cell toward a cancerous state, and passenger
mutations not directly contributing to the cancer phenotype
of the cell (Stratton et al. 2009). Time-series genetic data,
recorded over the development of a cancer, have the poten-
tial to aid the identification of mutations that lead to cancer.
To give another example, viral systems adapt over time to
acquire resistance to drug therapy (Coffin 1995) or to evade
immune pressure (Grenfell et al. 2004). The analysis of
time-series data of viral evolution, in a single patient or
across a local or global outbreak, leads to the possibility of
distinguishing the selective effects of observed mutations.

To demonstrate the principles of our method, we here
apply it to a model system consisting of two-allele loci
divided into “drivers”, at which mutants convey a fixed fit-
ness benefit, and “passengers”, which evolve neutrally. The
inspiration for the model is taken from a viral system that
evolves under pressure to escape from its host’s immune
system. A survey of 35 negative-sense RNA viruses has sug-
gested that homologous recombination is relatively rare,
implying the potential importance of genetic background
effects on mutations (Chare 2003). RNA viruses have high
mutation rates, allowing for rapid adaptation to selective
pressure (Holland et al. 1982). Our model, in which bene-
ficial mutants at driver loci revert to wild-type fitness levels
upon fixation, represents to an extent viruses such as influ-
enza, where immune escape is an important driver to evo-
lution in strains affecting both humans and other species
(Smith et al. 2004; Park et al. 2009).

We here demonstrate the ability of our method to separate
driver and passenger loci by discerning selection coefficients

in a system characterized by interference between mutations.
We examine the performance of the method in capturing the
effects of selection under a range of sampling conditions,
considering different time resolution and depths of sequenc-
ing. Finally, we discuss the potential for developing and
applying the method for use with biological data.

Methods

Overview of the inference method

We divide our description of the method into two sections,
considering first methods and results that are inherent to
our procedure for estimating selection in a system of linked
mutations and second those adaptations or implementations
that are particular to the testing of the method carried out
here. Thinking first about the inherent method, we here
consider a population of N individuals, represented by
sequences each of L loci. We suppose that each locus i is
biallelic with alleles {0, 1}, the mutant allele having a con-
stant selection coefficient si ¼ f 1i 2f 0i (i.e., constant fitness
difference between the alleles).

At the heart of our method is a maximum-likelihood
calculation. Given a set of measurements from a system
describing allele and two-locus haplotype frequencies at
a range of different points in time (frequencies potentially
being derived from individual sequences), we calculate the
likelihood of these data given an arbitrary set of locus
selection coefficients. This provides an objective function,
which can be maximized to obtain the maximum-likelihood
set of locus selection coefficients. Figure 1 provides an over-
view of the different steps of the method, which we now
describe in more detail.

Measuring allele and haplotype frequencies

Given our population, we consider changes in the popula-
tion over time. At a given time t, we define qai ðtÞ to be the
frequency of the allele a 2 {0, 1} at locus i and qabij ðtÞ to be
the frequency of the two-locus haplotype a, b 2 {0, 1} at loci
i, j. We now suppose that the population is sampled at a set
of time points tk for k ¼ 1, 2, . . . , with ngðtkÞ individuals
being sequenced at time tk. We write q̂ai ðtkÞ for the sampled
frequency of the allele a 2 {0, 1} at locus i at time tk, and
q̂abij ðtkÞ as the sampled frequency of the two-locus haplotype
a, b 2 {0, 1} at loci i, j, also at time tk.

Dividing mutant allele frequencies into trajectories

Sampled allele frequencies from each locus were divided into
trajectories, each trajectory consisting of a set of frequencies
at consecutive sample times describing the evolution of
a single polymorphism. The first element in a trajectory was
characterized by the first observation of polymorphism at
a locus at which no trajectory was already in progress, while
the last element of a trajectory was defined as the first
observation at which the fixation or death of the poly-
morphism was observed. To distinguish the real fixation or
death of a polymorphism from artifacts of the finite sampling
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process, sample allele frequencies subsequent to the apparent
fixation or death were examined.

Guessing initial locus selection coefficients

We use the notation f~sig to describe the set of estimates of
the locus selection coefficients {si}. Initial estimates for lo-
cus selection coefficients were assigned from the uniform
random distribution U(2s, s).

Identifying nonneutral trajectories

As we go on to describe, our method attempts to identify the
strength of selection on an allele from observations of
changes in the allele frequency, making the assumption that
changes in allele frequency are driven primarily by selection.
This assumption makes sense only if selective effects are
indeed the main cause of allele frequency changes. We note
that, at very small frequencies, changes in an allele fre-
quency are dominated by genetic drift, with selection
becoming the primary driver of evolution at a threshold
frequency of 1/Ns (Rouzine et al. 2001). To avoid assigning
selection to primarily stochastic events, observed trajectories
were divided into two sets according to their maximum ob-
served frequency. Given an estimated locus selection coeffi-
cient ~si, trajectories at the locus i with a maximum allele
frequency of less than a threshold qsi ¼ minf1=N~si;  

1
10g, or

, 1
10 for ~si#0, were modeled as evolving neutrally, the value

of N here being taken from the underlying population. Tra-
jectories above this threshold were modeled as evolving
nonneutrally, due to the effects of selection. While not elim-
inating drift from the system, this removed from consider-
ation a substantial number of trajectories for which selection
was not the primary driver of allele frequency change.

Calculating time-dependent selection coefficients
accounting for linkage effects

Due to effects such as hitchhiking and clonal interference,
the selection acting on a mutant allele can change over time.
We define the effective selection coefficient se

i ðtkÞ as the
selection acting on a mutant allele at locus i at time tk,
accounting for linkage to alleles at other loci under positive
or negative selection. Assuming an additive model of selec-
tion, the effect of linkage with other alleles can be written as
a sum of pairwise interactions, such that

se
i ðtkÞ ¼ si þ

X
j
sijðtkÞ; (1)

where sij(tk) is the effect that alleles at locus j have on the
selection acting on the mutant allele at i at time tk.

To demonstrate this, we first recall the standard result
that, assuming deterministic dynamics, changes in the two-
locus haplotype frequencies can be written in the form

_qabab ¼ f abij q
ab
ij 2 qabij

0
@ X

a9;b92f0;1g
f a9b9ij qa9b9ij

1
A; (2)

where a dot denotes a time derivative, f abij denotes the fit-
ness of the respective two-locus haplotype, and the term in
parentheses is the mean fitness. We now consider the de-
velopment of the frequency of a mutant allele at locus i
given a simultaneous polymorphism at locus j. At the locus
i, the change in the mutant allele frequency can be
expressed as

_q1i ¼ _q11ij þ _q10ij : (3)

Combining this with the equation above, and using the
assumption of additive fitness, we obtain

_q1i ¼ �si þ sj
�
q11ij þ siq10ij 2

�
q11ij þ q10ij

�
  ·  

h�
si þ sj

�
q11ij þ siq10ij þ sjq01ij

i
:

(4)

Collecting terms in si and sj and rearranging gives

_q1i ¼ si

h
q11ij þ q10ij 2

�
q11ij þ q10ij

�2iþ sj

h
q00ij q

11
ij 2 q10ij q

01
ij

i
;

(5)

which with further rearrangement gives the form

_q1i ¼
"
si þ sj

 
q11ij

q11ij þ q10ij
2

q01ij
q01ij þ q00ij

!#
q1i
�
12 q1i

�
: (6)

Figure 1 Flow chart illustrating the steps of the method.
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Noting that, in a single-locus case, changes in the mutant
allele frequency can be written as

_q1i ¼ siq1i
�
12 q1i

�
; (7)

we obtain the result

sijðtkÞ ¼ sj

 
q11ij ðtkÞ

q11ij ðtkÞ þ q10ij ðtkÞ
2

q01ij ðtkÞ
q01ij ðtkÞ þ q00ij ðtkÞ

!
: (8)

While only two interacting loci are considered here, Equation
8 is correct for multiple interacting loci (for derivation repeat
the above calculations for _q1i ¼ _q111ijk þ _q110ijk þ _q101ijk þ _q100ijk ).
These equations are part of the standard population genetic
toolkit and as shown above are straightforward to derive from
Equation 2 (for a thorough treatment of multilocus systems
including equations for the time evolution of the linkages, see
Barton and Turelli 1991; Kirkpatrick et al. 2002; Neher and
Shraiman 2011).

For trajectories with maximal frequency less than the
threshold frequency, the effective selection coefficient ~se

i ðtkÞ
was set to zero for each tk, while the effects of linkage be-
tween these and other trajectories were ignored; i.e.,
sijðtkÞ ¼ 0, where maxðq1j ðtkÞÞ,1=Nsj. For all other trajecto-
ries, approximate time-dependent selection coefficients ~se

i ðtkÞ
were calculated from the estimated locus selection coeffi-
cients f~sig and the sample haplotype frequencies q̂abij ðtkÞ us-
ing Equations 1 and 8, to obtain a description of the selection
acting on the mutant allele throughout the time for which it
remained polymorphic.

Fitting maximum-likelihood deterministic trajectories

A deterministic curve, satisfying the approximate selection
coefficients ~se

i ðtkÞ, was fitted to each trajectory. Under a de-
terministic scenario, if the locus i is the only polymorphic
locus in the system, the evolution of q1i has the analytical
solution

q1i ðtÞ ¼
q1i ð0Þesit

12 q1i ð0Þ þ q1i ð0Þesit
; (9)

where q1i ð0Þ is the frequency at time t ¼ 0. Where more than
one locus in the system is polymorphic, changes in the
haplotype frequencies and effective selection coefficients
become interlinked, leading to complex evolutionary behav-
ior; however, changes in the mutant allele frequency can be
approximated using a discrete method. If Dtk ¼ tk+1 2 tk is
small, such that the linkage between alleles does not change
substantially within this time interval, we can write the dif-
ference equation

q1i ðtkþ1Þ ¼
q1i ðtkÞes

e
i ðtkÞDtk

12 q1i ðtkÞ þ q1i ðtkÞes
e
i ðtkÞDtk

: (10)

This gives an approximation of the behavior of a mutant
allele in a linked system under a deterministic scenario,

making the assumption of constant linkage between con-
secutive sampling points.

Assuming the underlying frequencies q1i ðtÞ to evolve in
a deterministic manner according to selection, Equation 10
was applied to values of ~se

i ðtkÞ generated from the locus
selection coefficients f~sig. This gave, for each observed al-
lele trajectory, a hypothetical mutant allele trajectory
f~q1i ðtkÞg, approximating the evolution of q1i ðtÞ, in accordance
with the observed linkage between alleles, and obeying the
calculated effective selection coefficients. Equation 10
defines a family of frequency curves, parameterized by
q1i ðtkÞ for any one time point tk. For each trajectory, the
sampling time tc closest to equidistant between the start
and end points of the trajectory was found, and the fre-
quency ~q1i ðtcÞ was optimized to identify the deterministic
curve best fitting the observed allele frequencies.

Curve fitting was carried out using a maximum-likelihood
method, utilizing a binomial model. Given a large popula-
tion in which the frequency of a mutant allele is q, the
probability that a sample of ng sequences from the popula-
tion will have the mutant allele frequency q̂ is

P
�
q̂ 
��  q; ng� ¼

�
ng
ngq̂

�
qngq̂ð12qÞng ð12q̂Þ: (11)

Considering a specific locus i at time tk, the likelihood of
a given underlying frequency q1i ðtkÞ given the observation
q̂1i ðtkÞ can be expressed as

L�q1i ðtkÞ��q̂1i ðtkÞ; ngðtkÞ� ¼ P
�
q̂1i ðtkÞ

��q1i ðtkÞ; ngðtkÞ�; (12)

while given multiple observed frequencies fq̂1i ðtkÞg, the log
likelihood of the underlying frequencies fq1i ðtkÞg can be
written as

logL�	q1i ðtkÞ
� ¼X
tk

logLðq1i ðtkÞ
��q̂1i ðtkÞ; ngðtkÞÞ: (13)

For each trajectory, this equation was used to find the
inferred frequencies f~q1i ðtkÞg best approximating the under-
lying allele frequencies fq1i ðtkÞg, whether the trajectory was
neutral or nonneutral. An illustration of the fitting process
for a single polymorphism is shown in Figure 2.

Calculating the overall likelihood for the
selection coefficients

The fitting of inferred frequencies to the observed frequen-
cies for each trajectory results in an associated log likelihood
in each case, the likelihood being a function of the estimated
selection coefficients f~sig. Summing over all trajectories
gave an overall log likelihood for the observed polymor-
phism frequencies given these selection coefficients. Varying
the locus selection coefficients using a simulated annealing
process gave an estimate of the most likely selection coeffi-
cients given the behavior of the system. Full details of the
annealing process are given below.
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Testing the performance of the method using
model data

Having outlined the general principles of the method, we
now describe its application to detect selection in a simulated
population. A Wright–Fisher model was used to simulate
a population of fixed size, with loci divided into drivers, at
which the mutant allele was under positive selection, and
passengers, which evolved in a neutral fashion. Under
a range of different model parameters, the ability of the

method to identify locus selection coefficients was tested.
Details of the process are given below.

Simulating evolutionary histories: The underlying popula-
tion was simulated using a Wright–Fisher model with a fixed
population size of N ¼ 104 individuals. Each individual con-
sisted of a sequence of L ¼ 50 binary loci, aij 2 {0, 1}, where
the first index denotes the individual (1 # i # N) and the
second denotes the locus (1 # j # L). Loci themselves were
divided into D driver loci, at which the mutant allele had
some selection coefficient s . 0, and L 2 D passenger loci,
at which the mutant allele had no selective advantage. An
additive fitness landscape was assumed, such that the fitness
Fi of an individual in the population was defined as the sum
of its allele fitnesses f aj :

Fi ¼
XL
j¼1

f aijj : (14)

Within each generation, the alleles of any individual were
subject to mutation from 0 to 1 or vice versa with fixed
probability m defined by 2Nm ¼ 0.01. Subsequent genera-
tions were sampled from the previous population using
a multinomial sampling process, in which the probability
pi of choosing an individual i for replication was propor-
tional to eFi . Simulations were carried out using a range of
values of D 2 f5;   10;   15;   20;   25;   50g and with
2Ns 2 f10;   20;   50;   100g. In each case the evolution of
the population was recorded over 4 million generations.
For each combination of parameters {D, 2Ns}, five simu-
lated population histories were generated.

In viral systems such as influenza, selective pressure on
antigenic loci varies according to immune adaptation to the
current strain. Here, a model of constant selective pressure
on the driver loci was assumed, such that any new allele is
always under selective advantage. As such, when a mutant
allele at some locus fixed in the population, the frequency of
the mutant was kept at fixation, removing the possibility of
back mutations, for 3200 generations, the mutant frequency
then being set to zero. The value of 3200 generations was
picked arbitrarily, but allowed, with the exception of very
long sample times, fixation events to be detected. Resetting
fixed mutant allele frequencies in this manner caused
difficulties in calling trajectories that would not be encoun-
tered with biological sequence data; details of the solution
applied in this instance are given in Supporting Information,
File S1.

Generating sample populations: A sample of constant size
ng individuals was drawn from the population at regular
intervals of dts generations, across a total of T generations.
The occurrence and development of polymorphisms at each
of the loci in the system were recorded, along with two-
locus haplotype frequencies at each sample point.

Figure 2 Illustration of the method of assigning a likelihood to a set of
locus selection coefficients. Data are presented for a single trajectory in
a model two-locus system. Top: Two-locus haplotype frequencies (colored
lines) are sampled at each point in time. Middle: The sample two-locus
haplotype frequencies, along with current estimates of the locus selection
coefficients, are used to approximate the time-dependent effective selec-
tion coefficients se

i ðtkÞ for the trajectory that has reached fixation. Red
dots indicate the estimated selection coefficient, ~se

i ðtkÞ, at each time
point, while the accompanying red line gives the approximate selection
coefficient propagated over time (i.e., the selection is kept constant until
the next sample). The real effective selection coefficient, se

i ðtkÞ, measured
directly from the simulation, is represented by the gray line. Correct locus
selection coefficients (si ¼ 0.0025) have been used to calculate the esti-
mates shown. Bottom: Deterministic curves satisfying these selection
coefficients are fitted to the observed allele frequencies using a maxi-
mum-likelihood method. Observed allele frequencies q̂1i ðtkÞ are shown
as blue dots. Estimated allele frequencies ~q1i ðtÞ are shown as red dots,
with the accompanying red line describing the estimated propagation of
the allele frequency. The true allele frequency q1i ðtÞ is shown as a gray
line. The log likelihood for the trajectory was obtained from the fit be-
tween the ~q1i ðtkÞ and q̂1i ðtkÞ values. Summing the log likelihoods over all
trajectories gave the overall fit to the given locus selection coefficients.
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Fitting deterministic trajectories: To enable fitting be-
tween the inferred and observed frequencies in the case of
very short polymorphisms (the extreme case being a single
observation), null “observations” of zero frequency were
added to the start of each trajectory, with further observa-
tions, representing fixation or death as appropriate, being
added to the end of the trajectory. The number of observa-
tions, no, added in each case was calculated as a function of
the difference between sample times across the trajectory,
dts, and the mean time to fixation of a trajectory across the
simulation, �tfix, each measured in generations

no ¼ max
�

�tfix
10dts

;    10
�
: (15)

Additional observations were added at intervals of dts. At
these additional sample times, for trajectories identified as
being nonneutral, effective selection coefficients were set to
the locus selection coefficient if the deterministic estimate
for the wild-type frequency was in the interval ½qsi ;   12qsi �
and to zero, representing neutral evolution, for allele fre-
quencies outside of this interval. For trajectories not crossing
the neutral threshold, effective selection coefficients were
set uniformly to zero.

Simulated annealing: For each simulation, and each set of
values {T, ng, dts}, five separate annealing runs were carried
out, each beginning with a different set of estimates for the
locus selection coefficients f~sig. At each step of the anneal-
ing process, a trial change was made to a randomly chosen
~si of magnitude chosen from a uniform random distribution.
If the resulting change in log likelihood, D log L, was pos-
itive, this change was accepted, while if D log L was nega-
tive the change was accepted with probability ebDlogL for an
annealing parameter b. In the case where a change in a locus
selection coefficient led to a change in log likelihood of pre-
cisely zero, the change was accepted if the new selection
coefficient had a smaller magnitude than the previous selec-
tion coefficient. This step implies the null hypothesis that
each locus evolves under neutral selection; if no data were
observed at a locus, it would be assigned close to zero se-
lection. The annealing parameter b used in the evaluation of
changes in likelihood was set to an initial value of 0.002,
increasing by a factor of 1.005 each generation. In the event
of 80 consecutive rejections of changes to f~sig the magni-
tude of the random changes was decreased, the algorithm
terminating after the third such set of rejections. In a sample
set of calculations, across a variety of parameters, the mean
standard deviation in a single optimized selection coefficient
calculated across five annealing processes was 0.04, mea-
sured in units of 2Ns.

Linked and unlinked analyses: Analyses of the simulated
population data were carried out using two distinct meth-
ods. In the first method, referred to from this point on as the
“linked method”, identification of selection coefficients was

carried out precisely as described in the methods above. In
the second method, referred to as the “unlinked method”,
selection coefficients were discerned without the inclusion
of linkage, setting ~se

i ðtkÞ ¼ si for all time points. Compari-
son of the results of the linked and unlinked methods gave
an insight into the importance of linkage for correctly iden-
tifying selection effects.

Analysis of results from model data

Having obtained predicted selection coefficients for each
locus, two methods were applied to separate predicted
driver loci from predicted passenger loci. In an initial
measurement of the ability of the method to distinguish
driver from passenger loci in a case where the number of
driver loci is known to be equal to D, the loci with the D
highest selection coefficients were identified as drivers, the
remaining L 2 D loci being identified as passengers. Using
this approach, receiver operating characteristic (ROC)
curves were plotted, comparing true and false positive iden-
tifications of drivers across cases in which the model had
between 5 and 25 driver loci for a default set of parameters
ng ¼ 100 and dts ¼ 100, representing 1% sampling of the
population in 1% of generations, and T ¼ 5 · 105, for each
value of s. A comparison was made between results of the
linked and unlinked methods. Optimized selection coeffi-
cients obtained for driver and passenger loci were exam-
ined, examining the effect of linkage on estimates of each
of these values.

In a more thorough assessment of the performance of the
method, a clustering algorithm was used to separate drivers
from passenger loci. Loci with large negative selection
coefficients (less than minus the mean absolute value of
f~sig) were automatically classified as passengers, while
remaining loci were separated using a K-means clustering
method, identifying initial cluster centers as the two loci
with estimated selection coefficients closest to 2Ns and
zero, respectively. The accuracy of identifying drivers and
passenger loci was then calculated from the numbers of
correctly and incorrectly classified loci,

Accuracy ¼ dþ þ pþ

dþ þ d2 þ pþ þ p2
; (16)

where d+ is the number of correctly identified driver loci, p+

is the number of correctly identified passenger loci, d2 is the
number of incorrectly assigned passenger loci, and p2 is the
number of incorrectly assigned driver loci. Mean accuracy
values were calculated across simulated population histories
with between 5 and 25 driver loci. Next, to assess the ability
of the method to reproduce precise magnitudes of selection,
the mean predicted selection coefficient was calculated over
the prespecified driver loci across simulated population his-
tories having between 5 and 50 driver loci. Calculations
were performed separately for population histories with
each specified value of 2Ns and for a range of sampling
parameters (T, dts, and ng). Results were compared for
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selection coefficients obtained using the linked and unlinked
methods.

Results

Measuring selection in a linked system

In general, a good fit was observed between the frequencies
inferred with the linked method and the observed allele
frequencies. This is a nontrivial result as the inference is
based on a deterministic approximation (see Methods) of
a complex stochastic system. It is precisely due to this ap-
proximate description of the dynamics that the inference
problem remains computationally tractable.

Figure 3 gives an illustration of the output generated by
the inference at a single time point in a set of sample data.

Comparison between the observed allele frequencies and
those inferred shows errors where linkage between poly-
morphisms was ignored, but a close fit where linkage was
included. The inclusion of linkage in the inference accounts

for changes in the mutant allele’s effective fitness caused by
changes in the background population. The graph of correct
fitness values and interlocus effects shows that linkage has
a substantial effect on the locus selection coefficients and
the resulting network of interactions is complex at the time
point shown. While the mutant alleles at each of the 5 poly-
morphic loci are all beneficial, the growth of the mutant at
locus 9 is opposed by the influence of the beneficial alleles at
loci 2, 10, 14, and 15, leaving it under strong negative se-
lection. The mutant at locus 2, while opposed by the influ-
ence of the mutant allele at locus 9, is positively influenced
by the mutant alleles at loci 10, 14, and 15, so retaining
a strong positive selection.

The distribution of haplotypes gives some insight into
these fitness effects. While the beneficial allele at locus 9 is
the only mutation in its haplotype, most other haplotypes
contain two or more mutant alleles, and as such have higher
fitnesses. Relative to the remainder of the population, the
haplotype with the mutant at locus 9 is therefore under
negative selection. By contrast, the haplotypes containing

Figure 3 The linked method accurately repro-
duces observed allele frequencies and underly-
ing selection coefficients. Top: Observed and
inferred allele frequencies for loci that are poly-
morphic at the time point indicated by the ver-
tical line of a simulated population. Allele
frequencies inferred by the model (red lines),
optimized using the unlinked (left) and linked
(right) methods, are shown. Observed frequen-
cies are plotted as gray columns, with lighter
colors representing higher frequencies. Fre-
quencies are stacked vertically, with the posi-
tion on the vertical axis being calculated as
the locus at which the polymorphism occurs,
plus the frequency of the trajectory itself. Loci
that are not polymorphic at the time indicated
by the vertical line are not shown. Middle: Cor-
rect values for time-dependent selection coeffi-
cients and interlocus effects at the time of
sampling (left). Nodes are labeled by locus,
while directed edges between loci represent
interlocus selection effects sij(t). Negative
effects, which decrease selection at the tar-
geted locus, are colored blue, while positive
effects, which increase selection, are colored
red. In each case, darker colors represent stron-
ger effects. Self-directed edges represent the
time-dependent effective selection se

i ðtÞ acting
at each locus. Values were calculated using the
locus selection coefficients assigned to the un-
derlying population. Right, distribution of mu-
tant alleles across haplotypes. Haplotypes are
plotted horizontally, with colored blocks repre-
senting mutant alleles at the loci enumerated
on the horizontal axis. The top 25% of the
population, for example, has the mutant allele
at loci 2, 10, and 14. Bottom: Estimates for
effective selection and interlocus effects at the
time of sampling, estimated using unlinked

(left) and linked (right) models. Graphs are plotted in an identical manner to the correct values (middle left). Results are taken from a system with
20 drivers of strength 2Ns = 50, sampled to a depth of 100 every 100 generations.
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the mutant at locus 2, which span the majority of the
population, are on average positively selected for, resulting
in positive selection on the mutant at locus 2.

Graphs illustrating effective selection evaluated from the
inferred selection coefficients show the ability of the linked
method to capture interference between mutations and
more generally the importance of linkage in the evolution
of the system. At the time point in question, the unlinked
method infers loci 2, 14, and 15 to be under weak positive
selection, while loci 9 and 10 are close to neutral. Under the
linked method, however, the inferred pattern of selection
and linkage between loci is close to being correct, with, for
example, locus 9 under strong negative selection and locus
15 close to neutral.

We note here that the inferred selection coefficients
represented in the graphs have been evaluated from the
entire data set, rather than simply for this time window.
Differences between the values obtained through the linked
and unlinked methods therefore reflect, to some extent, the
ability of these models to explain the whole of the data.
Replicas of the three graphs, in which numerical values for
the effective selection acting on each locus and the effects on
the effective selection resulting from each pairwise interac-
tion between loci are shown, are given in Figure S1.

Comparison of selection coefficients obtained with and
without the incorporation of linkage

Examination of selection coefficients inferred with the
linked method showed an improvement in two character-
istics. First, driver loci inferred using the linked method had
substantially more accurate (higher) selection coefficients
than those obtained with the unlinked method. This is due
to the former method accounting for clonal interference.
Second, passenger loci at which a fixation occurred were
inferred to have significantly lower selection coefficients
under the linked method compared to the unlinked method.
This result arises because the linked method can detect
hitchhiking of neutral alleles with drivers.

Under the default parameters for the sampling process,
100 individuals were sampled from the population every
100 generations for a total of 5 · 105 generations. With
these parameters, using the method of taking the D loci with
the highest selection coefficients to identify drivers, the
linked method showed a large improvement over the un-
linked method in its ability to discern driver from passenger
loci. Figure 4 shows ROC curves for the default model for
various values of s, the selection coefficient acting on driver
loci in the population. Here, and throughout, this selection
coefficient is expressed in terms of 2Ns, where N is the
population size.

At each level of selection, the accuracy of the linked
method was greater than that of the unlinked method. With
2Ns ¼ 10, the calculated accuracies were 0.85 and 0.79 for
the linked and unlinked methods, respectively, while with
2Ns ¼ 50, the accuracies were 0.999 and 0.91. At the higher
selection coefficients, the linked method separated driver
and passenger loci almost perfectly.

The histograms of selection coefficients identified with the
linked and unlinked methods at 2Ns ¼ 50 showed a clear
improvement by the former method in the assignment of
selection coefficients to driver loci. Under the linked method,
inferred selection coefficients of drivers and passengers were
well separated into roughly Gaussian distributions, with clus-
ters close to 0 and 1 (in units of 2Ns), with mean selection
coefficients for driver and passenger loci of 0.94 and 0.08,
respectively. Under the unlinked method, the distribution of
the inferred driver loci selection coefficients had a substan-
tially lower mean of 0.41 resulting from the failure to recog-
nize clonal interference between drivers, while the mean of
the passenger loci selection coefficients was 0.07.

Although no significant difference between methods was
seen between mean selection coefficients for passenger loci,
an improvement was seen under the linked method in the
assignment of selection coefficients for passenger loci at
which a fixation event took place, with substantially lower

Figure 4 Incorporation of linkage greatly improves dis-
crimination between driver and passenger loci. Top: ROC
curves for the default model system sampled over 5 · 105

generations to a depth of 100 every 100 generations, for
values of 2Ns = 10 (green), 20 (yellow), 50 (red), and 100
(blue). Curves describing the accuracy with which driver
loci were called are shown for the methods including link-
age (left, solid lines) and excluding linkage (right, dashed
lines). Bottom: Histograms of the inferred locus selection
coefficients (in units of 2Ns) obtained using the methods
with linkage (left) and without linkage (right) for 2Ns =
50, showing selection coefficients for true driver loci in red
and those for true passenger loci in blue. Inferred selection
coefficients are from five annealing runs carried out on
each of five sample data sets. The number of driver loci
in systems varied between 5 and 50, giving a total of 3125
driver loci and 4375 passenger loci in each histogram.
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mean selection coefficients being assigned. Figure S2 shows
mean optimized selection coefficients for this subset of loci.

Performance of the method across varying
sampling parameters

The performance of both methods was tested across a range
of sampling parameters, the accuracy in identifying drivers
and passengers being quantified using a clustering method,
and selection coefficients being measured for driver loci.
Results for the linked method are shown in Figure 5, with
equivalent numbers for the unlinked method shown in
Figure S4. For each parameter set, five different sets of
sample frequencies were generated from the evolutionary
history of the population. These sets of frequencies were
analyzed in five independent runs of the annealing process,
so that each point in the figure represents a mean over at
least 125 calculations (averaging also over at least five val-
ues of D). While statistical noise is still evident in the data,
the overall trends are captured by the analysis.

The ability of the linked method to distinguish driver
from passenger loci increased as the amount of sampling
data increased, here quantified in terms of the number of
generations sampled, T. Accuracies were higher at larger
selection coefficients, due primarily to the increased differ-
ence between driver and passenger loci, but also because of

the greater amount of information available for highly se-
lected driver loci. At large selection coefficients, the proba-
bility of a mutant allele escaping genetic drift is increased,
leading to a larger number of observed fixation events. Fur-
thermore, fixations occur more quickly, allowing for more
fixations to occur in a given time. In the simulation run here,
a mean of 2.71 fixations per 105 generations were observed
in each driver locus for 2Ns= 100, but only 0.38 fixations in
the same time period for each driver locus for 2Ns= 10. For
2Ns= 100, an accuracy of.0.95 was observed after 75,000
generations. The same result was observed for 2Ns = 50 at
2 · 105 generations, while the accuracy for 2Ns = 20 is
close to 0.95 after 1 million generations. As T increased,
the accuracy of the method increased, representing better
discrimination between drivers and passengers with more
information available to the method. Perfect discrimination
between driver and passenger loci was observed after 1
million generations for 2Ns = 100. Results obtained with
the unlinked method were substantially worse, with an ac-
curacy of ,0.85 for all selection coefficients tested after 2
million generations.

Variance in the accuracy of the linked method for varying
values of the sample size ng shows roughly constant perfor-
mance for sample sizes .100, with a decrease in perfor-
mance at smaller sample sizes. At the highest selection

Figure 5 Performance of the linked
method under varying data collection
scenarios. Variation in the accuracy of
the method in identifying driver and
passenger loci (left column) and in the
reproduction of selection coefficients (in
units of 2Ns) for driver loci (right col-
umn) is shown. Default parameters were
a number of generations sampled of T ¼
5 · 105, a sampling depth of ng ¼ 100,
and a sampling frequency of dts ¼ 100
generations. Top: Variation in perfor-
mance under different values of T, the
number of generations sampled. Mid-
dle: Variation in performance under dif-
ferent values of ng, the number of
individuals sampled at each time point.
Bottom: Variation in performance given
different values of dts, the time between
sample points. Data are plotted for val-
ues of 2Ns ¼ 100 (blue), 50 (red), 20
(yellow), and 10 (green). Accuracy values
are averaged over simulations with 5,
10, 15, 20, and 25 drivers, while mean
s-values are averaged over simulations
with 5, 10, 15, 20, 25, and 50 drivers.
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coefficients, good results are obtained at a sample size of 20,
with accuracies of 0.97 achieved for 2Ns ¼ 100 and 2Ns ¼
50; however, accuracy is rapidly lost below this point. Com-
parison of locus selection coefficients obtained from simula-
tions with ng ¼ 5, ng ¼ 100, and 2Ns ¼ 50 suggested poorer
accuracy at the lowest sampling level resulted from an in-
crease in the variance of the inferred locus selection coeffi-
cients. Details are shown in Figure S3.

The accuracy of the linked method showed dramatic
changes with increased time between sampling points, dts.
At short sampling times, as already observed, high accura-
cies can be achieved. However, as dts increases, a decline in
performance is seen, with an increased rate of decline at
higher selection coefficients. At very long intervals between
sample points, little information is collected about each tra-
jectory, such that, in the extreme case, fixations are observed
as changes in frequency from 0 to 1 at subsequent sample
points. In such cases, measurements of linkage either cannot
be made or become highly inaccurate when extrapolated
over the time between sample points.

In systems for which every locus was a driver, improved
selection coefficients were observed with the linked method
compared to the unlinked method. Under the default
sampling parameters, selection coefficients were underesti-
mated using the unlinked method, with a larger underesti-
mate at high selection coefficients. Mean inferred selection
coefficients (in units of 2Ns) varied from 0.29 at 2Ns ¼ 100
to 0.63 at 2Ns ¼ 10. Under the linked method, mean
inferred selection coefficients for the all-driver case varied
from 0.91 to 1.00, with no clear correlation between the
inferred coefficient and the size of s.

Interestingly, analysis of the selection coefficients ob-
tained for driver loci reveals a systematic error in the
coefficients obtained. As T increases, the mean selection co-
efficient appears to tend to a limit that is less than one, with
values closer to one obtained at lower selection coefficients.
As dts increases, a dramatic fall in mean selection coeffi-
cients is seen, again with greater errors at higher selection
coefficients. An explanation for this is discussed next.

Interference reduces the fitness of mutations

Supposing the existence of a polymorphism at locus i, the
function SiðtÞ was defined as the difference between the
mean fitnesses of sequences in the population with and with-
out the mutant allele at locus i at some time t. Furthermore,
the change in the selective benefit of the mutant allele at i
after some time t, resulting from changes in polymorphisms
at other loci, is given by Siðt þ tÞ2SiðtÞ. Figure 6 shows the
mean of this statistic over all polymorphisms and all time
steps t calculated directly from simulations with 20 driver
loci and a varying driver selection coefficient. Averaged over
all polymorphic observations, the real change in selection is
negative, indicating that the selective advantage of a mutant
allele generally decreases with time. Because of this, the as-
sumption made in the method that the effective selection

coefficient will remain constant between sample points will,
on a statistically consistent basis, produce an overestimate of
the selective effects in the system. This overestimate, while
initially small, increases as the interval between sample
points increases both with the time interval t and with an
increasing selection coefficient. When selection coefficients
are optimized, therefore, the increased selection coefficient
generated by the constant fitness assumption will be compen-
sated for by reducing the inferred selection coefficient, the
lower selection coefficient combining with the overestimate
of selection over time to recreate the behavior of the system.

Discussion

We have given examples of the use of a method for
quantifying selection in driver–passenger systems and dem-
onstrated its potential to separate driver from passenger loci
in a model system. By accounting for the background set of
polymorphisms on which a trajectory develops, the linked
method corrects for clonal interference, which can reduce
apparent selection coefficients, and, through recognition of
fixation events occurring through hitchhiking with driver
alleles, assigns lower selection coefficients to passenger loci
at which the mutant allele reaches fixation.

Unsurprisingly, the performance achieved in separating
driver and passenger loci depended to a great extent on the
magnitude of selection acting on the driver loci, a greater
driver selection coefficient describing a greater inherent
difference between the two classes of loci. Here, a driver
selection coefficient of 2Ns $ 50 led to accuracies .95%
under a range of conditions, while drivers at 2Ns = 20 were
more difficult to distinguish.

Variation in the sampling parameters gave a range of
results. Under variation in the length of the simulation, an

Figure 6 Interference decreases the fitness of a mutant allele over time.
The mean change in the difference in fitness between sequences, with
the mutant or the wild-type allele at a given locus in the sequence, is
measured as a function of time. Changes in the selection coefficient are
measured in units of 2Ns. Data were calculated across five simulations of
length 2 · 106 generations containing 20 driver and 30 passenger loci
under varying selection coefficients and for selection coefficients 2Ns ¼
100 (blue), 50 (red), 20 (yellow), and 10 (green).
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increase in the available data consistently improved perfor-
mance. With an underlying selection coefficient defined by
2Ns ¼ 100, an accuracy of .0.95 in separating driver from
passenger loci was achieved in a 50-locus model after 75,000
generations of sampling, captured by 750 sample points, each
containing 100 individuals. Under variance in the depth of
sampling, consistent accuracy was achieved down to locus
sample sizes of 20, well within the reach of next-generation
sequencing methods. Finally, where the time between consec-
utive samples was varied, while good results were achieved at
high sampling rates, increasing the sampling time was detri-
mental to the accuracy achieved. At the higher selection coef-
ficients, .95% accuracy was achieved up to a sample time of
400 generations, representing the collection of, on average,
10.7 and 6.2 samples within the mean time for a fixation
event at 2Ns ¼ 50 and 2Ns ¼ 100, respectively.

Reproducing precise values of selection coefficients proved
a challenge, with the assumption of constant selection
between sampling points leading to a systematic underesti-
mate in the coefficients assigned to driver loci. Due to the
computational and theoretical difficulties inherent in mod-
eling stochastic evolution of multiple linked loci over
a number of generations, some form of approximation to
model the selection acting on trajectories between sampled
time points is necessary [evaluation of selection using a
trajectory including stochastic effects has been carried out in
a single-locus case (Bollback et al. 2008)]. We leave the task
of improving on the constant selection between the sample
points approximation to future work.

Considering the application of the method to specific
examples of experimental data, we note that care must be
taken in the interpretation of the parameters discussed above
and their effect on the accuracy potentially achievable. For
the number of generations sampled, while the amount of
information available increases linearly with time, the rate of
this increase is a function of the inherent properties of the
system. Under a higher mutation rate, more events would be
observed per generation, such that more information would
be available in a set number of generations. Whereas if the
selection coefficient was increased, more mutations in driver
loci would escape being removed at low frequencies by
genetic drift, such that more fixation events would be seen.
Here, where division of the entire set of loci into driver and
passenger sets was the goal, a large amount of data were
required, with the observation of at least one significant event
in a driver locus being necessary for its identification as
a driver. Accounting for driver loci in which no fixation was
observed improved results at low values of T (data not
shown). Depending on what is desired to be learned from
a system, and depending on the underlying dynamics of the
system in question, the numerical values for parameters re-
quired for a given accuracy may vary substantially.

For the purposes of method development we have here
considered a simplified model of a viral genome under
constant selective pressure at each locus. However, given the

caveats mentioned above, we suggest that the approach we
present, with suitable modification, has the potential to be
applied to a wide range of biological systems. While, as
mentioned above, the use of genetic markers can be used to
identify the fitness of subsets of a population (Lang et al.
2011), where a greater amount of sequence information is
available, the effect of the genetic background on the de-
velopment of individual alleles can be quantified. Even in
systems for which a small number of mutations are ob-
served, the core component of the method, of fitting trajec-
tories that obey an effectively time-dependent model of
selection to observed allele frequencies, can be applied.

While many simplifications were made in the application
of the inference method presented here, the method has
potential to be extended in several directions. Considering
biological data, with allowance for synonymous and non-
synonymous mutations, the binary locus model used here
could be extended. Replacement of the constant sampling
time intervals and sampling depths with variable measures
is easily implementable within the current framework.

More complex evolutionary scenarios could also be mod-
eled. For example, while recombination decreases linkage
between alleles, disrupting the driver–passenger paradigm
considered here, it would not necessarily prevent application
of the method. If the rate of recombination were low relative
to the rate of sampling, estimates of linkage captured by
haplotype sampling would still be accurate enough to provide
a meaningful picture of linkage between polymorphisms until
the next sample was taken, thereby allowing for improved
discernment of selection in the system.

A larger challenge to the model is that of fitness effects
that are epistatic (Weinreich et al. 2005), frequency and/or
genuinely time dependent, reflecting an underlying fitness
seascape (Mustonen and Lässig 2009) (as opposed to the
effectively time-dependent selection considered here caused
by linkage even if the underlying additive fitness landscape is
static). While epistatic fitnesses for each pair of loci could
easily be incorporated into the model, the multiplication of
terms to be learned would provide a substantial challenge
given any but the largest data set. Modeling of epistasis,
therefore, would likely involve some further simplification.
Supposing loci interacting through epistasis are not simulta-
neously polymorphic, selection coefficients could be deter-
mined on a trajectory, rather than at a locus level. The
same remedy would also be applicable to time-dependent
selection if the pressure were to stay roughly constant on
the timescale of polymorphism lifetimes. Consistent changes
in the fitness detected for trajectories at a given locus would
then provide an indication of such effects. In general, we
suggest that problems in applying the method to more com-
plex systems arise more from the availability of data than
from the theoretical difficulty of adapting the model given
here.
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SUPPORTING TEXT

Calling trajectories The resetting of fixed mutant alleles led to difficulties in calling

trajectories which would not be encountered with biological sequence data, particularly in

identifying the end of a trajectory. While, in the identification of the initial point of a

trajectory, ignoring sampling effects makes for a pragmatic solution, the time of fixation or

death of a polymorphism is more difficult to pinpoint. Indeed, errors at this point can lead

to the spurious identification of new trajectories, leading to obvious problems in the later

analysis. Here, a cutoff number of observations, c, was defined as

c =max{300/ng,8} (1)

In the case of an apparent death of a polymorphism at some locus i, indicated by a zero

sample frequency, the frequencies q̂1i (tk) at the subsequent c − 1 samples were examined. If

a non-zero sample frequency was observed in any of these samples, it was assumed that the

apparent death was an artefact of limited sampling, and the polymorphism was assumed to

be in existence across the intervening time-points. If no non-zero sample frequencies were

observed, the apparent observation of the death of the wild-type allele was assumed to reflect

a death in the underlying population. The value of 300 used in the definition of c here reflects

the number of observations required to be 95% certain that a polymorphism does not exist

at a frequency greater than 1% in the underlying population. In the case of an apparent fix-

ation in the population, marked by a sample frequency value of 1, a slightly different process

was required, due to the delayed return in the simulation of fixed mutant alleles to the wild

type. Subsequent to an apparent fixation, the allele frequencies at the locus were observed
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as above. If a polymorphic frequency between 0 and 0.5 was observed at that locus, it was

assumed that the fixed mutant allele had been returned to the wild-type, and a fixation was

recorded at the first time of apparent fixation in the locus. If a polymorphic frequency greater

than 0.5 was observed at the locus, it was assumed that the initial observation of fixation

arose through limited sampling, no fixation having occurred in the intervening time. We note

that, at large values of dts, this method is not error-free in the histories of polymorphisms

called at different loci, leading to a potential worsening of the results reported in the main

text for long sampling times. However, when the method is extended to a biological sys-

tem, with binary alleles replaced by codons, the mutation of a fixed allele back to wild-type

would become easily distinguishable from a mutation to a new, third allele at the same locus.

SUPPORTING FIGURES

[Figure 1 about here.]

[Figure 2 about here.]

[Figure 3 about here.]

[Figure 4 about here.]
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Figure S1    Selection and inter‐locus effects in a model system. Details of selection coefficients in the system represented in 
Figure 2 of the main text. Red edges indicate positive selection and inter‐locus effects, while blue edges indicate negative 
selection and inter‐locus effects. The data represented is identical to that in the graphs of Figure 2, albeit with numerical values 
included. A close fit between the true selection and the inferred selection using linked method can be observed. 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Figure S2   The linked method more accurately measures selection in passenger loci observed to undergo fixation. Mean inferred 
selection coefficients, in units of 2Nσ, assigned to loci from simulations with T = 500, ng = 100, and dts = 100, for various values of 
the underlying selection coefficient σ, calculated from the models excluding linkage (purple), and including linkage (blue). The 
correct value in each case is zero. More than 800 inferred selection coefficients are represented by each data point. A similar 
relationship between selection coefficients is observed for different values of the parameters T, ng, and dts. 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Figure S3   Selection coefficients inferred from lower sampling levels had a greater variance. Inferred selection coefficients, in 
units of 2Nσ, for driver (red), and passenger (blue) selection coefficients for T = 500, dts = 100, and ng equal to 100 and 5 
respectively. The greater variance at lower sampling is evident. Outlier passenger coefficients falling lower than the range shown 
are excluded ‐ these comprise 3.5% of coefficients at ng 5 and 0.3 % of passenger coefficients at ng = 100. 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Figure S4   Performance of the unlinked method under varying data collection scenarios. Variation in the accuracy of the method 
in identifying driver and passenger loci (left column) and in the reproduction of selection coefficients, in units of 2Nσ, for driver 
loci (right column). Default parameters were T = 5 × 105 , ng = 100, and dts = 100. Top: Variation in performance under different 
values of T , the number of generations sampled. Middle: Variation in performance under different values of ng, the number of 
individuals sampled at each time point. Bottom: Variation in performance given different values of dts, the time between sample 
points. Data is plotted for values of 2Nσ equal to 100 (blue), 50 (red), 20 (yellow) and 10 (green). Accuracy values are averaged 
over simulations with 5, 10, 15, 20, and 25 drivers, while mean sigma values are averaged over simulations with 5, 10, 15, 20, 25, 
and 50 drivers. 

 
 
 




