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ABSTRACT
Potato virus Y (PVY) is a deadly environmental constraint that damages productivity of potato 
(Solanum tuberosum) around the globe. One of the major challenges is to develop resistance 
against PVY. Emerging clustered regularly short palindromic repeat (CRISPR)/Cas systems have 
the potential to develop resistance against PVY. In the current research, CRISPR-Cas13 has been 
exploited to target multiple strains of PVYN, PVYO, and PVYNTN. Multiple genes PI, HC-Pro, P3, Cl1, Cl2, 
and VPg genes of PVY were targeted by CRISPR/Cas13a. Multiplex gRNA cassettes were developed 
on the conserved regions of the PVY-genes. Three independent CRISPR/Cas13 transgenic potato 
lines were developed by applying an optimized concentration of trans-ribo zeatin and indole acetic 
acid at callus development, rooting, and shooting growth stages. The level of resistance in 
transgenic plants was confirmed through double-antibody sandwich enzyme-linked immunosor-
bent assay and real-time quantitative PCR. Our results have shown that efficiency of PVY inhibition 
was positively correlated with the Cas13a/sgRNA expression. Finding provides the specific func-
tionality of Cas13 with specific gRNA cassette and engineering the potential resistance in potato 
crop against multiple strains of PVY.
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1. Background

Potato is the most important consumable non- 
grain crop. It is the most consumable vegetable 
crop of 37 million ton production in the year of 
2019 around the globe, and production rate of 
Pakistan was 4.8 million tons (http://www.fao.org/ 
faostat/en/#data/QC). Sustainable potato produc-
tion is affected by several biotic and abiotic envir-
onmental constraints. Among biotic factors, potato 
viruses like Potato virus Y (PVY), Potato leaf roll 
virus (PLRV), Potato virus A (PVA), Potato mop- 
top virus, Potato virus X, and Potato virus S (PVS) 
are reported. PVY is a significant devastating factor 
for the potato crop. PVY belongs to the family 
Potyviridae and has multiple strains, and it has 
affected the tuber quality and yield of crop losses 
up to 80%.1 The PVY genome is single-stranded 
(ss) positive-sense RNA with approximately 9.7 kb 
in length. The translated protein 3061 amino acid 

from the viral genome is processed by viral pro-
teases into a small reading frame (ORF) P1, HC- 
Pro, P3 (PIPO) 6K1, CI, 6K2, NIa (VPg plus Pro), 
NIb (viral replicase), and CP (capsid protein).2

The mutations in the PVY genomes lead to 
a higher rate of recombination and diversity that 
developed an effective mechanism to escape 
from plant natural immunity. The most signifi-
cant strains PVYO, PVYN, PVYC, including 
recombinant strains like PVYNTN and PVYN:O 

have devastated the potato crop.3,4 Previously, 
several transgenic approaches were applied to 
develop resistance against PVY, including over- 
expression of resistance eIF4E allele, mutating 
the susceptible eIF4E gene by CRISPR/Cas9, 
and utilization of RNAi strategy.5,6 

Furthermore, RNAi approaches have off-target 
effects due to constitutive siRNA expression.6,7 

Limitations of several transgenic approaches 
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provided the reasons to develop new strategies 
for generating broad-spectrum resistance against 
dominating multiple PVY strains.

The clustered regularly short palindromic repeat 
(CRISPR)/Cas systems imparted molecular immu-
nity to bacteria, Archaea and invading conjugative 
plasmid and phages. The immunity attain step-
wise 1) acquisition of spacer (gRNA) from invader’s 
genome, 2) biogenesis and processing of CRISPR 
RNAs (crRNA), and 3) interference with the inva-
der’s genome.8,9 The CRISPR/Cas9, Cas12, and 
Cas14 have ability to cleave the double stranded10 

DNA or single-stranded (ss) DNA, while Cas13 has 
unique ability to cleave the single-stranded (ss) 
RNA including viral genomes to provide 
defense.11,12

Based on function, the CRISPR/Cas13 belongs to 
single multi-domain effectors with 900–1300bp 
range with 4-subtypes (A-D). These subtypes have 
low sequence homology. Cas13 cleaves the Serna 
with nonspecific manners with the help of crRNA. 
Cas13 crRNA possesses a simple structure 20–30 
nucleotide guide sequence with a protospacer 
flanking site of A, U, or C as a preference for the 
functional activity of Cas13a.13–15 The functional 
activity of Cas13 is greatly affected by the secondary 
structure of the target sequences. Further, the 
knockdown of RNA transcript through Cas13a is 
comparable to the RNA-interference mechanism, 
but it has reduced off-target effects.12 LshCas13a 
has been exploited to gain resistance in monocot 
grains plant against Southern rice black-streaked 
dwarf virus (SRBSDV) and Rice Stripe Mosaic 
Virus (RSMV).16 Potentially, CRISPR/Cas13a sys-
tem can develop stable resistance against significant 
RNA viral disease in major crops.17 In fields, the 
plants are exposed to multiple viruses and their 
strains. More fruitful results would be obtained if 
conserved regions of multiple viruses or strains 

would be targeted to attain resistance. The key 
advantage of using CRISPR/Cas is the simplicity 
and ease of this system even for targeting multiple 
sites simultaneously. Multiplexed genome editing 
(MGE) approach involves more than one gRNA to 
target multiple regions in the genome. In plants, 
different strategies have been harnessed to deliver 
a combination of gRNAs. A construct carrying 
different gRNAs under the influence of their sepa-
rate promoters has been used for MGE in various 
plants, e.g. Arabidopsis, maize, wheat, tomato, and 
rice.18–21

In current research, CRISPR/Cas13a has been 
employed to target the multiple strains of PVY. 
The response of multiple gRNA cassettes with 
direct-repeat processing was exploited to develop 
resistance by targeting conserved coding regions of 
different PVY strains. We have demonstrated that 
the CRISPR/Cas13a system can be engineered to 
confer broad-spectrum resistance in transgenic 
potato plants against multiple PVY strains. The 
agrobacterium-mediated transformation protocol 
was optimized by altering the amount of acetosyr-
ingone and plant growth regulators (PGRs) at the 
time of transformation. The cytokinin (CK) and 
indole acetic acid (IAA) concentrations were opti-
mized to generate quick stable transgenic lines. The 
expression of Cas13 has been confirmed by RT- 
PCR. Functional specificity of CRISPR/Cas13a sys-
tem was confirmed by treating Cas13 lines with 
PLRV.

2. Results

2.1. Construction Preparation

The PVY genome has high mutation, recombina-
tion rate, and holding genetic diversity among the 
strains (Fig. 1 and supplementary Table S1).3 

Figure 1. Representation of PVY sequence information. The indication of genes in the PVY genome with respective size.
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Alignment of 100 sequences of PVY was conducted 
using mega muscle alignment tool, based on which 
gRNAs were designed. A total of six gRNAs were 
designed based on conserved regions with 28bp 
sequence and specific PSF-preferences of the fol-
lowing genes as potyviral membrane protein (PI, 
P3), HC-Pro, cytoplasmic laminate inclusion (Cl, 
Cl2), and viral genome linked protein (VPg), 
respectively (Fig. 2, Table 1). Further off-targeting 
of the gRNA was aligned with the manually against 
potato whole genome (https://www.plantbreeding. 
wur.nl/Solyntus/). No off-targets were found with 
all six targets with 28bp sequence. We constructed 
the binary vector that harboring the Cas13 

(LshCas13a, WP_018451595.1) under the CAMV- 
35S-promoter and sgRNAs and multiplex-sgRNA 
vector with nuclear export signals expressed under 
U6-promoter. The construct confirmed through 
the PCR, restriction analysis, and Sanger sequen-
cing (Fig. 3).

2.2. Confirmation of Multiplex Targeting Construct

Multiplex guide RNA cassette was confirmed by 
restriction analyses. Restriction of plasmid with 
Hind III yielded a product of 792bp (Fig. 4a) indi-
cative of the multiplex gRNA, sequence represented 
in supplementary data (Supplementary sequence 1, 
Fig. 1). The restricted product through HindIII was 
ligated into Pk2GW7-LshCas13 vector through 
restriction-ligation protocols. In the clone, PVY- 
cassette was confirmed by using specific PCR pri-
mers with 783bp product size (Table 2: PVY- 
cassette confirmation), while Cas13 was confirmed 
by specific primers that yield a 316bp product size 

Figure 2. Alignment of 100PVY-sequences to find-out the conserved region through MUSCLES alignment. gRNAs were designed on the 
conserved regions highlighted as yellow color of the HC-Pro, P1, P3, Cl1, Cl2 and VPggenes of PVY.

Table 1. List of gRNAs.
Gene Name Sequence

PI 5’ ACCCTCTCTTCTCCGACATAATCTGCTT 3’
HC-Pro 5ʹCCATCATAGTTGGCCAGGTTCCAAGCT 3’
P3 5ʹGATGAAATATTTACACACTTAGTATTGA3’
CI 5’ AATGTCATGTATGACAGGATGCATTGAT3’
CI2 5ʹGCTCTGCTTCACTCGCTCCTCTTCAAGC3’
VPg 5ʹTTCGCACTTCACTAAATCTCTCTTGAAT3’

3XFLAGAttB

RB    Terminator    Multiple gRNA-Cassette     U6 Promoter   N-NS                    LshC2C2                       CaMV 35S       NOS-promote     Neo/KanR NOS-termi LB 

AttB

Figure 3. Development of Construct with multiple gRNA cassette and orientation of Cas13 in the map.
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Figure 4. The confirmation of gRNA Cassette in the construct by restricting plasmid through HindIII enzyme and 800 bp elution confirm 
the gRNA Cassette 4B: Verification of Cas13 and PVY-gRNA Cassette by specific primers.

Table 2. Primers for transgene confirmation.
Gene Name Sequences

Cas13 confirmation Cas13 F: 5ʹATGGGCAACCTCTTTGGCCATAAGCGTT3’
Cas13 R: 5ʹCCACTTCTTCAGTCTCGAGGAAATCGTC3’

PVY-Cassette confirmation PVY-Cassette-F: 5ʹTTTTCTTCTTCTTCGTTCATACAG3’
PVY-Cassette-R: 5ʹAAAGAAACCAATCGTTGAGAATG3’

Cas13 detection Cas13-D F:5ʹATGGGCAACCTCTTTGGCCATAAGCGTT3’
Cas13-D R:5ʹACGAATGTCTATCTCGATCTCCTCC3’

St-Ac St-AcF1: 5ʹ-GATGGCAGA CGGAGAGGA-3ʹ
St-AcR1: 5ʹ-GAGGACAGGATG CTCCTC-3ʹ

St-Ac97 St-Ac97F2: 5′-AGTATGACGAATCTGGTCCTTCTATTG-3
St-Ac97R2: 5′-ACCCAACAATCAACTCTGCCCTCTC-3′

Cas13 Cas13 F: 5’-ATGGGCAACCTCTTTGGCCATAAGCGTT-3’
Cas13R: 5’- GTACTTGTTTCCGTCGTAGTTGCGCTTC- 3’

HC-Pro RT-HC1: 5’-ACTCAATGATCCAGTTTTCGAATGCTGA-3’
RT-HC2: 5’-AACAGATCGCTAACCGGCAAGCTGGCAT-3’

VPg RT-Vp1: 5’-GAATTCAAGCCTTGAAGTTTCGCCATGC-3’
RT-Vp2: 5’-TGCGCCCCAGTGAGTGGATCAACGAATT-3’

Table 3. Concentration of PGRs and media’s composition for optimized tissue culture.
Callus Induction medium (CIM) 1000 mL 3C5ZR medium 1000 mL

MS salts 4.3 g MS salts 4.3 g
MSVI Vitamins (stock) 1 mL 3R vitamins (stock) 1 mL
JHMS vitamins (stock) 1 mL Myo-inositol 100 mg
Myo-inositol 100 mg Sucrose 30
Sucrose 30 g IAA (100 mg/mL) 0.5 mL
Trans-zeatin riboside (1 mg/mL) 5 mL Trans-zeatin riboside (1 mg/mL) 6 mL
IAA (1 mg/mL) Timentin (100 mg/mL) 3 mL
Agar 4.4 Agar 4.4
pH 5.7 pH 5.7
Shoot-Propagation/Rooting medium (CM) 1000 ml MS liquid medium 1000 ml
MS salts 1 mL MS salts 4.3 g
Potato vitamins (stocks) 20 g MSVI vitamins (stock) 1 mL
Sucrose 30 g JHMS vitamins (stock) 1 mL
Agar 3 g Sucrose 30 g
IAA (1 mg/mL) 0.35 mg pH 5.7
Timentin 300 mg
pH 5.7
3R Vitamins (stock) 100 ml JHMS Vitamins (stock) 100 ml
Thiamine HCl 100 mg d-biotin 5 mg
Nicotinic acid 50 mg Folic acid 25 mg
Pyridoxine HCl 50 mg
MSVI vitamins (stock) 100 ml Potato vitamins (stock) 100 ml
Glycine 200 mg Myo-inositol 10 g
Nicotinic acid 50 mg Thiamanie HCl 40 mg
Pyridoxine HCl 50 mg
Thiamine HCl 40 mg
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Figure 5. Developmental stages of transformed internodes into plants: The plants internodes were transformed by the Agrobacterium- 
mediated transformation (GV3101). A: the callus development stage, B: Shoot initiation stage C & D: Shoot development stage E&F: Root 
initiation and development stage.
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Figure 6. Transgene confirmation and gRNA-component in the plants. Transformed transgenic lines confirmed through PCR and Sanger 
sequencing to check the presence of gRNA; A is gRNA for the PI, B; HC-Pro, C: P3, D: Cl1, E: Cl2, F: Vpg, G: Direct repeat of Cas13 and H: 
representing the PCR confirmation of transgenic plants.
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(primer’s sequence in # Table 2 Cas13 confirmation 
Fig. 4b). Final confirmation was carried out by 
Sanger sequencing.

2.3. Transformation of Potato with Optimized PGRs

The internode cuttings from the potato variety 
Kruda were transformed via Agrobacterium- 
mediated transformation (GV3101 strain). 
Approximately 20 transformed internodes were 
remained viable on kanamycin selection plate of 
25 internodes. The transformed calli were shifted 
to callus induction medium (CIM) up to 40 days, 
and healthy surviving calli were transferred to 
regeneration medium. Regenerated plantlets were 
moved from shooting medium to rooting medium 
with 0.2 mg/L and 0.35 mg/L CK and IAA, respec-
tively. Parallel, 4 concentrations of 10 mg/mL, 
15 mg/mL, 20 mg/mL, and 30 mg/mL of acetosyr-
ingone were added in the simple MS-liquid media 
at the time of transformation. The 10 mg/mL of 
acetosyringone has not affected the rate of transfor-
mation, while internode treated with 30 mg/mL 
showed bacterial growth during callus induction 
stage. The 20 mg/mL of acetosyringone enhanced 
the transformation efficiency to 10 mg/mL and 
30 mg/mL. The optimal AS-treatment duration 
was 20 min for the internode-transformation 
(Table 3).

The IAA and Cytokinin (CK trans-ribo zeatin) 
work antagonistically. We exploited the 100 μL/L, 
250 μL/L, 350 μL/L, and 500 μL/L from 100 mg/mL 
stock of IAA, and 1 mL/L, 2 mL/L, 5 mL/L, and 
6 mL/L from 1 mg/mL stock of CK in the plant full 
MS-media for callus induction (Table 3). We found 
the best callus development with the application of 
350 μL/L and 5 mL/L to IAA and CK, respectively. 
The application of 0.2 mg/mL CK at shooting-stage 
provided strong secondary growth.

The developmental stages from internodes to 
plants are shown in Fig. 5. The transgenic lines 
were confirmed by PCR and Sanger sequencing 
(Fig. 6). The 15 independent transgenic lines were 
obtained and confirmed by PCR by using Cas13 
detection primers (Cas13 F: 5ʹATGGGCA 
ACCTCTTTGGCCATAAGCGTT3’ and Cas13 R: 
5ʹCCACTTCTTCAGTCTCGAGGAAATCGTC3’ 
with 480bp product. To proceed further study, RNA- 
isolation from these lines and expression of Cas13 
were identified. Among them, 3 transgenic lines 13.1, 
13.2, and 13.3 were highly expressed Cas13, and these 
lines were multiplied. Confirmed transgenic lines 
were shifted to soil and kept in greenhouse under 
the controlled conditions for establishment of roots 
growth from media to soil. After 1 month of hard-
ening, the resistance efficiency was verified by phe-
notypic assay.

Figure 7. Patho-test against PVY in transgenic and wild control line. Wild-type control plants indicating PVY symptoms in comparison 
to transgenic lines that representing resistance against PVY strains in the field.
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2.4. PVY-Bioassay and DAS-ELISA

The confirmed strains PVYO, PVYN, and PVYNTN 

were applied for the bioassay. To find out the viral 
load, the bioassay confirmation through DAS- 

ELISA and real-time qPCR were performed after 
regular intervals, i.e. 7 days post inoculation (dpi), 
15 dpi, and 30 dpi. The significant phenotypic 
symptoms of PVY like mosaic, mottled, and 

Figure 8. DAS-ELISA values indicate the results of PVY-resistance in three transgenic lines. In the data, line 13.2 is most resistance in 
response to individual strain and multiple strain infections as compared to other 13.1 and 13.3 lines.

Figure 9. RT-PCR analysis; A; Relative expression of Cas13a in the transgenic lines were represented as compared to control line, error 
bar is representing the technical repeats. Line Cas13.2 strongly expressing as compared to Cas13.1, Cas13.3. B: Copy number of PVY 
were determined by qRT-PCR: B; Control dilutions parameters, while C, D, E and F expressing virus titer in the transgenic lines against 
PVYO, PVYN, PVYNTN, and co-inoculations of PVYO, PVYN, PVYNTN respectively.
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crinkled leaves and vein necrosis were observed in 
wild-type susceptible control lines (Fig. 7). The 
three strains of PVYo (HQ912865), PVYN 

(X97895), and PVYNTN (M95491) were exposed to 
the transgenic and control lines to check the resis-
tance of the transgenic plants. The resistance assay 
was checked after regular interval of 7 dpi, 15 dpi, 
and 30 dpi to monitor the disease symptoms of 
PVY-strains. Mosaic and vein necrosis were 
observed in control lines, while no symptoms 
appeared in transgenic lines Cas13.1, Cas13.2, and 
Cas13.3, as shown in Fig. 7 and supplementary 
Figure S2. The data from DAS-ELISA indicated 
the reduced level of PVY-accumulation in the 
transgenic lines as compared to the control lines 
(in graphic chart Fig. 8).

2.5. Expression of Cas13 Inversely Proportional to 
PVY Viral Load

To find out the correlation of PVY viral load and 
Cas13a expression, the RNA-purified from PVY- 
treated control and transgenic lines were isolated. 
The cDNA-synthesized real-time qPCR was per-
formed by St-AC and ST-AC97 endogenous pri-
mers for Actin97. For the Cas13 expression 
analysis, Cas13 primers were used (Table 2). The 
expression of LshCas13 was observed by the relative 
RT-qPCR for co-relation between the expression of 
LshCas13 and level of inhibition of PVY- 
accumulation. The DAS-ELISA and RT-qPCR 
strongly supported that the higher expression of 
Cas13 lines holding the higher resistance, as 
shown in Fig. 9a. The results have shown 
a positive co-relation of Cas13 expression and 

inhibition of PVY systemic spreading as crRNA 
exploited for the multiplexed targeting the con-
served regions of the three viral strains. The highest 
expression of Cas13 was observed in line 13.2. The 
symptoms observed in this line were near to wild- 
type untreated control plants. This was also con-
firmed by the DAS-ELISA where we found strong 
resistance and no PVY-accumulation was observed. 
Similar pattern was found in the lines 13.1 and 13.3, 
where symptoms were moderate that include yel-
low mosaic pattern. The titer of virus was slightly 
high as shown by DAS-ELISA and expression of 
Cas13 was low in Cas13.1 and 13.3. Interestingly, 
we identified mixed inoculation of PVYo, PVYN, 
and PVYNTN on all transgenic lines. 
Approximately, all lines showed minute to zero 
viral load, confirmed by RT-PCR by using targeted 
gene specific primers HC-Pro and VPg (Table 2). 
These findings suggest that expression of Cas13 has 
inverse relation with the symptoms and virus titer. 
(Fig. 9b–f supplementary Figure S3, Table S2 for 
additional information).

2.6. Identification of Collateral Activity of Cas13

In addition, the CRISPR/Cas13a transgenic lines 
were treated with PLRV to check the collateral 
activity of Cas13a. Plants which were inoculated 
with PLRV showed typical symptoms at 15 dpi 
that include rolling of the top leaves followed by 
yellowing (Fig. 10). These symptoms were indistin-
guishable from that of wild-type control plants. On 
later stages, plants also showed stunted growth. 
These plants were subjected to DAS-ELISA for the 
confirmation, and they showed the presence of 

Wild-type control Cas13.1 Cas13.2 Cas13.3

Figure 10. Functional specificity of Cas13 against PLRV. Phenotypic analysis of functional specificity of Cas13 with respect to PVY- 
targeting gRNA. PVY resistant transgenic lines showed the strong susceptibility against PLRV.

104 A. NOUREEN ET AL.



PLRV as confirmed through DAS-ELISA. Our 
results have shown that Cas13a plants failed to 
provide resistance against heterologous virus, i.e. 
PLRV. Thus, the resistance developed by Cas13a 
is specific for PVY.

3. Discussion

PVY has the potential to devastate the yield of 
potato crops a large scale. Several conventional 
approaches have been applied to develop resistance 
which were met with limited success. Many bacter-
ial and archaeal species protect themselves against 
invading phages and nucleic acid by activating var-
ious forms of Cas proteins to attain immunity. To 
gain resistance and immunity against DNA and 
RNA viruses, CRISPR/Cas systems have been 
widely applied. The enzymes Cas9, Cas12, and 
Cas14 were applied to target the dsDNA and 
ssDNA viruses. In case of Cas13a, it cleaves single- 
stranded (ss) RNA followed by activating and 
maturation of crRNA and making targeted effector 
complex.22 Inconclusively, Cas13 has the potential 
ability to develop resistance against ssRNA viruses. 
In the current study, the CRISPR/Cas13 has been 
exploited to cleave the ssRNA of multiple strains of 
PVY as demonstrated in the theoretical model 
(Supplementary Figure S4).

The Cas13 from Leptotrichia shahii (LshCas13a) 
was used to develop resistance against tobacco 
turnip mosaic RNA virus (TuMV) in model plants 
Nicotiana benthamiana and Arabidopsis thaliana. 
They employed green fluorescent protein fused 
with TuMV to explore the functional potency of 
LshCas13a against TuMV. Cas13a reduced the 
expression of HC-Pro more effectively than Coat 
protein (CP) of TuMV.23 Previously, it has been 
shown that dual and distinct functions of Cas13 for 
processing the pre-crRNA and degradation of 
ssRNA moreover, multiple genes can be targeted 
to develop resistance against pathogens.24 In cur-
rent study, multiple genes, i.e. P3, Cl, HC-Pro, and 
VPg were targeted by Cas13 to develop broad- 
spectrum resistance. We targeted multiple strains 
of PVY simultaneously by CRISPR arrays harbor-
ing 28-nt targeting the PI, HC-Pro, Cl, and VPg on 
the conserved regions of the PVY. The gRNAs were 
assembled with regular interval of 28-nt direct 
repeats (DRs). These targeted genes are essential 

for the integrity of viral genome and proper func-
tioning as PI & P3 potyviral membrane protein for 
the virus replication and systemic spreading and 
pathogenicity.1,25 The CI have been involved in 
the virus infection and movement.2,10 The VPg is 
essential for interaction with the host-machinery 
and responsible for the viral genome replication 
and systemic spreading.1,26 In this study, the multi-
ple gRNA-targeting Cas13a harboring vector 
(14.5kb) has assembled to develop resistance 
against recombinant strains of PVY.

Recently Desiree and King Edward potato lines 
were developed against bacterial blight resistance 
by targeting DND1 and DMR6-1 genes at multiple 
sites.27 Transformation efficiencies were improved 
by optimizing several factors affecting regeneration, 
including the quality of the starting plant material, 
acetosyringone, and different concentrations of the 
PGRs. The plant-derived phenolic compounds 
work as chemo-attractants for the Agrobacterium. 
The significant phenolics are 3,5 dimethoxyaceto-
phenone (acetosyringone) and hydroxyacetosyrin-
gone and act as inducers during Agrobacterium- 
mediated transformation. The VirA/VirG compo-
nent of Ti-plasmid senses the acetosyringone as 
host signals and activates the vir-gene 
expression.28 The transfer and copy number repli-
cation of the Ti-plasmid from Agrobacterium to 
plants is regulated by the phenolic signals.29 

A specific protocol was designed to alleviate and 
improve the growth vigor and resulted in a 4- to 10- 
fold increase in transformation efficiency.30,31 The 
phytohormones potentially develop the signaling 
interaction to regulate several metabolic processes. 
During the transformation, the IAA and ethylene 
levels elevated in the potato internodes. The IAA is 
a substantial requirement for growth and develop-
ment, while a higher concentration over 50 μM 
enhanced the suppression of vir-gene that affects 
the rate of transformation.32 The crosstalk between 
several hormones is a crucial regulatory network in 
defense reactions against environmental con-
straints. Previously, it has been shown that 
a higher level of CK provides immunity and exo-
genous application of CK increased the level of SA- 
dependent gene expression during pathogen 
infection.33 CK involve in callus greening and 
shoot induction in the explant.34 Synthetic IAA 
has been used for root-development, proper leaf 
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growth, and identification of several auxin respon-
sive pathways.35,36 IAA and CK play crucial role for 
regeneration and development.37 Basically, the 
plant’s signals activate the virulence genes of 
Agrobacterium to transfer and integrate the 
T-DNA to plant nucleus. That expression of foreign 
T-DNA leads to the expression of IAA and CK. In 
the current study, we exploited the various amount 
of PGRs for the optimization, and we noticed the 
rate of callus development and growth was 
enhanced by the application of 0.5 mg/L and 
0.2 mg/L of trans-ribo zeatin, respectively. We 
identified that the concentration from 0.1 mg/mL 
to 0.35 mg/L of IAA promotes the shooting and 
rooting growth. Upon the induction of acetosyrin-
gone, the large size binary vectors significantly 
improved transformation in potato as previous 
reported into rice cells.38 We observed an improved 
transformation efficiency with 20 mg/mL of aceto-
syringone during the transformation of internodes.

The functionality of Cas13a to combat the RNA 
in the cytoplasm was identified by targeting three 
different genes in rice by LwaCas13a. Transformed 
protoplasts exhibited more than 50% knockdown 
after 48 hours of transformation.12 The level of 
resistance was directly correlated with the expres-
sion efficiency of Cas13a. The Lsh-Cas13a was 
exploited by generating stable transgenic lines to 
attain resistance against PVYo, PVYNTN, and 
PVYN. We tested Cas13 lines against three strains 
of PVY and PLRV to find out the level of resis-
tance, interference, and specificity of Cas13a with 
guide RNA. Our results are in line with previous 
studies where CRISPR/Cas13a transgenic 
Solanum tuberosum cv. Desiree was developed 
having resistance against PVY exhibiting no 
effects against PVA and PVS.39 We stably devel-
oped the transgenic plants with multiple gRNAs 
targeting the conserved regions of the PVY- 
strains. The multiple gRNA cassette with alterna-
tive DRs. These repeats processed as self-cleaving 
ribozyme,40 Csy4 RNase,27 or t-RNA processing 
enzyme,41 and Cas13 can process its own pre- 
crRNA.22,42 The latest strategy shows very promis-
ing efficiency for MGE in plants and successfully 
confirmed and provides resistance against multi-
ple recombinant strains of PVY.

In previous studies, the RNA viruses target by 
Cas9 from Francisella novicida (FnCas9) to develop 
resistance in tobacco and Arabidopsis.43 Currently, 
we generated the resistance in tetraploid potato 
against three strains of PVY. To further test the 
inheritability of the resistance against PVYO, 
PVYN, and PVYNTN into the successive genera-
tions, T2 of the transgenic Cas13 were harvested 
and would be challenged to various strains of PVY. 
Overexpressing of crRNA–LshCas13a specifically 
targeting the viral genome was an effective way to 
generate stable RNA virus resistance with multiple 
DRs, which was helpful in over-expression of 
Cas13a. The qualitative expression of Cas13 was 
observed in all three resistance lines to check the 
expression of Cas13 relative to resistance. The RT- 
PCR indicated the Cas13.3 highly expressed as 
compared to 13.2 and 13.1 lines. The 13.3 trans-
genic line exhibited higher resistance against indi-
vidual PVYO, PVYN, and PVYNTN assays, while less 
resistance level was observed when the mixture of 
strains was applied, which indicates discovering 
more about the emergence of novel strain or weak 
expression of gRNA cassette under U6 promoter. 
The 13.2 line exhibited lowest viral load of PVY in 
individual treatments and mixed treatment as com-
pared to control, transgenic 13.1, and 13.3 lines. 
The transgenic line 13.2 possess the higher resis-
tance as compared to transgenic lines 13.1 and 13.3 
by qRT-PCR screening assays. Previously reported 
that the Cas13 have collateral activity after recogni-
tion and cleavage of target site, leading to nonspe-
cific degradation of RNA regardless of 
complementarity to the spacer.44 However, these 
lines failed to show resistance against PLRV. 
These finding confirm that the resistance produced 
by Cas13a is highly specific and it does not work 
against heterologous viruses. PVY-resistant lines 
have not exhibited collateral activity.

Our finding showed that the RNA-targeting 
CRISPR/Cas’s system has provided the potential 
benefits over the DNA genome editing as expand-
ing the functional capacity improving anti-viral 
immunity and avoiding the pleiotropic effects of 
genome editing. This research potentially provides 
new avenues to develop resistance against patho-
gens especially with RNA genomes.
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4. Conclusion and Future Prospects

Potato is an important staple food that has 
a substantial role to feed the burgeoning population 
of the world. Molecular breeding and genetics have 
provided tremendous solutions against viral dis-
eases, and the development of CRISPR/Cas systems 
has speed up the generation and development of 
resistance. The LshCas13 has provided resistance 
against three strains of PVY simultaneously. This 
system is widely used for the transcriptome engi-
neering and would be helpful for identification of 
solutions against ssRNA viruses. Interestingly, the 
co-evolution of the viruses and microbes propelled 
the diversification of CRISPR-Cas defense systems 
to combat novel emerging recombinant strains. 
The functionality of Cas13 widely exploited in the 
RNA-base conversions in mammalian cells45 that 
would open the new avenues in the plant editing 
field. The ability of Cas13 to process pre-crRNA 
into mature crRNA, which targets the ss RNA of 
phage genome during viral interference, would be 
utilized for tracking of editing and signaling path-
ways in plants.46 That eventually helpful in detec-
tion of many diseases and exploited in improving 
crop yield.

5. Materials and Methods

5.1. Plants, Virus, and Viral Strains

Potato (S. tuberosum cultivar Kruda) plants were 
grown in a growth chamber with conditions men-
tioned earlier.47 The purity of PVY was confirmed 
by DAS-ELISA. The Local-PVYo, PVYN, and 
PVYNTN strains were confirmed by DAS-ELISA 
(Catalog # V093); most crop damaging strains in 
Pakistan were used for this study.

5.2. Multiplex Designing and Construction of 
LshCas13a/sgRNA Cassettes

For the development of CRISPR/Cas13a with its 
multiplex gRNA cassette, specific gRNAs were 
designed. For this, 100 of PVY (9.7Kb) sequences 
were aligned by using the Mega-6 muscle alignment 
software. The multiple 28bp gRNA were chosen on 
the conserved regions with respect to PFS 

preferences. The gRNAs targeting the PVY genome 
were arranged in the Cas13ʹs gRNA Cassette as PI, 
HC-Pro, P3, Cl1, Cl2, and VPg (Table 1). The 
gRNAs were manually blast with whole potato gen-
ome to identify the off-targets; there were no off- 
targets found on the potato genome. The multiple 
gRNAs with alternative 28bp DRs encoded under 
Arabidopsis U6 promoter; cassette was commer-
cially synthesized. In pK2GW7-pCas13a vector, 
the Cas13a was expressed under the 35S promoter. 
pK2GW7-pCas13a vector restricted by HindIII and 
treated with calf intestinal alkaline phosphatase 
(CIP) to avoid self-ligation and gRNA cassette was 
restricted from the PTZ57Rkana vector by HindIII, 
specific cassette eluted from gel-purification, and 
ligated with linear Cas13 vector.

5.3. Transformation of Solanum Tuberosum 
through Agrobacterium

Constructs harboring the LshCas13a clone with 
multiple gRNA Cassette were transformed into 
Agrobacterium tumefaciens strain GV3101 by elec-
troporation. Briefly, overnight-grown cultures were 
harvested by centrifugation and suspended in 
liquid MS-media. The suspension was washed 
with simple liquid half MS to remove the traces of 
antibiotics, and final concentrations of O.D600, 0.6 
was used for potato internodal transformation. 
Transgenic plants were identified by their resis-
tance to kanamycin.

5.4. Optimizing the Transformation Protocols 
through PGRs at Developmental Stages

The transformation protocol was optimized as 0.6 
O. D was measured and culture was pellet down 
and washed by MS-media to remove the traces of 
rifampicin and spectinomycin antibiotics. Final O. 
D for the transformation should be 0.5–0.8 mea-
sured and added to the acetosyringone for enhan-
cing the rate of transformation. The concentration 
of trans-zeatin (naturally CK) and IAA were opti-
mized to get rapid cell division during callus devel-
opment and early roots and shoot development 
(Table 3).
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5.5. Transgene Confirmation

Genomic DNA from transformed Solanum tubero-
sum lines were extracted through CTAB Method.48 

PCR amplifications were performed to confirm the 
presence of Cas13 in transgenic control line Cas13.0 
without gRNA cassette and transgenic lines with 
presence of gRNA cassette with Cas13 by specific 
primers (Table 2). The presence of construct in the 
transgenic plants was confirmed by Sanger sequen-
cing in three independent transgenic lines 13.1, 13.2, 
and 13.3.49

5.6. Mechanical Inoculation of Viruses and 
DAS-ELISA Assay

Transgenic and wild-type control plants were chal-
lenged with the individual and mixed strains of 
PVYO, PVYN, and PVYNTN. The confirmed trans-
genic lines were multiplied before shifting to soil. At 
the 8–10 leaf stages, plants were exposed to viral 
strain by mechanical rubbing with carborundum 
powder.50 The development of symptoms in trans-
genic and control lines was analyzed, and samples 
were collected at the 7-day, 15-day, and 30-day 
intervals from the inoculated and uninoculated 
leaves for confirmation of systemic spreading. DAS- 
ELISA with PVY specific antibodies (Agdia, Elkhart, 
IN) were performed to analyze the virus accumula-
tion in the inoculated and non-inoculated leaves.51

5.7. RNA-extraction and qRT-PCR Analyses

The expression of LshCas13a and copy number 
of as determined by of PVYO, PVYN, and 
PVYNTN have been analyzed by RT-qPCR assays 
by using specific primers. Total RNA was iso-
lated by TRIzol reagent52 and treated with 
DNase I (amplification grade, catalog number 
18068015). The synthesis of cDNA was carried 
out by using reverse transcriptase kit (RevertAid 
First Strand cDNA synthesis Kit: Catalog num-
ber: K1622), and oligo (dT) primers. The fold 
expression of Cas13 was analyzed by qualitative 
RT-PCR as compared to wild-type control by 
using Cas13 detection primers in Table 2. PVY 
titer confirmed by amplification of HC-Pro with 
167bp and VPg 176bp and CP 147bp product 
size with 56°C annealing temperature. Primer 

sequences for qRT-PCR are listed in Table 2. 
The technical repeats were performed for each 
biological replicates. The actin 97 gene was 
exploited as reference gene.
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