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We consider nonparametric and semiparametric resampling of multistate event
histories by simulating multistate trajectories from an empirical multivariate
hazard measure. One advantage of our approach is that it does not necessar-
ily require individual patient data, but may be based on published informa-
tion. This is also attractive for both study planning and simulating realistic
real-world event history data in general. The concept extends to left-truncation
and right-censoring mechanisms, nondegenerate initial distributions, and non-
proportional as well as non-Markov settings. A special focus is on its connection
to simulating survival data with time-dependent covariates. For the case of quali-
tative time-dependent exposures, we demonstrate that our proposal gives a more
natural interpretation of how such data evolve over the course of time than
many of the competing approaches. The multistate perspective avoids any latent
failure time structure and sampling spaces impossible in real life, whereas its
parsimony follows the principle of Occam's razor. We also suggest empirical sim-
ulation as a novel bootstrap procedure to assess estimation uncertainty in the
absence of individual patient data. This is not possible for established proce-
dures such as Efron's bootstrap. A simulation study investigating the effect of
liver functionality on survival in patients with liver cirrhosis serves as a proof of
concept. Example code is provided.
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1 INTRODUCTION

Simulation studies have become a crucial tool to systematically compare the performance and properties of statistical
methods in relation to the truth. The ideal scenario generates biologically plausible data following a motivating real-world
situation.1 Efficient and easy-to-implement simulation algorithms to generate survival data in the presence of a set of
time-independent covariates are well established. Standard toolboxes allow for a variety of parametric choices for the
baseline hazard function while incorporating covariate effects via the semiparametric framework of the Cox proportional
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hazards model or extensions thereof.2-5 Since, nowadays, time-to-event outcomes with longitudinal covariate patterns
are frequently encountered in biomedical studies, there has been considerable research on flexible data-generating pro-
cedures. For instance, Leemis et al studied simulation for the Cox model with time-varying covariates and generated
the survival time by inverting the cumulative survival hazard given the covariate trajectory.6-8 Various refinements have
been suggested by Austin9; see also the work of Rivera and Lumley for a recent application.10 In more complex set-
tings where the cumulative survival hazard function is noninvertible or analytically intractable, root finding with nested
numerical integration has been suggested.4 Other algorithms rely on transformations according to piecewise exponential
distributions using rejection sampling.11-13

However, all these methods have in common that the covariate trajectory is sampled a priori and that the event time is
drawn from a conditional survival distribution given the future covariate trajectory irrespective of the survival status. One
objective of this paper is to suggest a more plausible algorithmic point of view for internal (endogenous) time-dependent
covariates.14 The challenge lies in (i) imposing impossible sampling spaces in real life accompanied by (ii) a latent failure
time structure with unclear interpretation. Consequently, the hazard specifications used for simulation do not have an
interpretation as a population-level summary. This could, eg, be a concern in the context of study planning, which should
be connected to the corresponding statistical analysis. In-depth discussions regarding the plausibility and identifiability
of latent times can be found elsewhere.15-18 A similar argumentation applies to the algorithm proposed by Sylvestre and
Abrahamowicz,19 which generates survival times and covariates independently and matches them in retrospect according
to the permutation probability law corresponding to the partial likelihood of the Cox model.

Instead, we follow the work of Cortese and Andersen and represent each possible value of a time-dependent covariate as
additional (intermediate) transient states in a multistate model.20 This procedure has also been mentioned by Andersen21

as well as Beyersmann and Schumacher.22 Multistate event histories model complex time-to-event data as a sequence of
transitions (the events) between different states (the event types). Applications in medical research include oncology,23-25

cardiology,26 gastroenterology,27 orthopaedics,28 psychology,29 prenatal studies,30 or hospital epidemiology.31,32 This paper
considers simulation—or resampling—of multistate trajectories from an empirical multivariate hazard measure as, eg,
given by the (nonparametric) multistate Nelson-Aalen estimator of cumulative transition hazards.33 The procedure pro-
posed here is the empirical analogue of a probabilistic construction of Gill and Johansen,34 who investigated how to
express the distribution of a multistate model based on a (parametric) specification of the transition hazards (see also
elsewhere for a textbook account33). The key is that multistate data can be realized as a nested sequence of competing
risks experiments by iteratively generating the waiting time in the current state (step 1) and, as an intrinsic part of the
model, the event type (step 2). Specifically, this concept provides a comprehensible building plan of how the involved haz-
ards interplay in order to obtain multistate trajectories over the course of time. The appeal of this perspective is that it
avoids both concerns on identifiability, plausibility, and usefulness known from the latent failure time approach as well
as sampling spaces impossible in real life. We also mention an alternative multistate algorithm suggested by Crowther
and Lambert35,36 and recently applied elsewhere.37 Their method allows practitioners to flexibly specify a multivariate
hazard measure based on prespecified “marginal” distributions; however, the decision on the transition type within their
implementation is again based on a latent time framework. Thus, we will emphasize simulation as well as interpretation
along the lines of the work of Gill and Johansen,34 because, on the one hand, all generated quantities turn out to have a
“natural” (or “realistic”) interpretation in the sense that they are not hypothetical and can be interpreted on the popula-
tion level. The latter may also be a concern with respect to the current discussion on estimands and post-randomization
events.38-41 On the other hand, it guarantees the natural order of the events, whereas its parsimony follows the principles
of Occam's razor42 without losing any flexibility.

The advantages of an empirical perspective turn out to be diverse. First, it allows for mimicking complex real-world
time-to-event data, avoiding any preprocessing procedures. The latter may be difficult or computationally expensive in
practice regarding the derivation of closed forms for all time-dependent transition hazards. Second, the algorithm works
in a time-discrete setting, which is a typical situation in longitudinal studies resembling the viewpoint in marginal struc-
tural models with time-dependent confounding.43 Third, it provides for a convenient resampling (bootstrap) technique
not necessarily requiring individual patient data but only the estimated cumulative transition hazards. The latter may be
derived from, eg, published Nelson-Aalen plots. As a consequence, we also suggest the simulation algorithm as a novel
bootstrap procedure in order to assess estimation uncertainty as well as a general tool for sample size calculations at the
study planning stage (see elsewhere for a recent application in the context of competing risks44). Fourth, the algorithm
is not only a computational instrument for data generation but also can be used as an operational tool for interpreta-
tion by providing additional insight into the data.45 Finally, our proposal complements the rich literature on simulating
time-to-event data in the presence of time-dependent covariates by avoiding conceptual obstacles when such covariates
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are internal. Empirical simulation has been investigated in depth and recently applied for the special case of competing
risks.45,46 For the general multistate framework, it has been briefly suggested in the context of prediction in reduced-rank
Cox models,47 but a more comprehensive treatment has not been given.

The remainder of this paper is structured as follows. We start by reviewing the multistate framework in Section 2.
Section 3 recapitulates simulation of survival data in the presence of time-varying covariates on the basis of an illustra-
tive example from oncology.48,49 Here, we highlight issues regarding the previously mentioned standard procedures and
explain why multistate methodology is an appropriate alternative. Section 4 outlines “empirical simulation.” Section 5.1
provides details about the study example used for the proof of concept given in Section 5.2. It relates to a published ran-
domized clinical trial in liver cirrhosis patients. The primary objective was to show a prolonging effect on the survival
of a new hormone therapy. A relevant factor in this context is the prothrombin index measuring liver functionality. To
account for its internal time-dependent nature, we apply an illness-death multistate model with recovery dichotomizing
the index into the categories “normal” and “abnormal.”50 Section 5.3 suggests empirical simulation as a novel bootstrap
procedure in order to assess uncertainty in parameter estimation. One application may be confidence interval construc-
tion in the absence of individual patient data, which is not possible for established procedures such as Efron's bootstrap.
A conclusion is in Section 6. Mathematical proofs are deferred to the Appendix. Example code is provided as web-based
Supporting Information.

2 THE MULTISTATE FRAMEWORK

Let (Xt)t≥ 0 be a multistate process with finite state space  and fulfilling the time-inhomogeneous Markov assumption.
The hazards of an l → m transition (also called transition intensities) 𝛼lm(t) are nonnegative functions defined as

𝛼lm(t) · dt = P (Xt+dt = m|Xt− = l) , l,m ∈  , l ≠ m (1)

with cumulative counterparts

Alm(t) =

t

∫
0

𝛼lm(u)du. (2)

Here, t− denotes the time just prior to t and dt an infinitesimal small time interval. The transition intensity in (1) can
be interpreted as the “instantaneous force” to switch from state l to state m in [t + dt). State l ∈  is called “absorbing”
if no transitions out of state l are modeled and 𝛼lm(t) ≡ 0, ∀t, ∀m ∈  , m ≠ l, and “transient” otherwise. A graphical
visualization of a specific multistate model called “illness-death model without recovery” considered later on is given in
Figure 1. The Markov assumption guarantees that the probability of a future transition only depends on the current state
l and time t, but not on the entire history of the process X up to time t. We will later discuss how to relax the Markov
assumption.

The analysis of our motivating study example in Section 5 will also consider transition probabilities. Let A(t) =
(Alm(t))l,m∈ be the transition intensity matrix. Its diagonal entries are chosen such that the sum of each row is equal to
zero. Then, the matrix of transition probabilities is defined by

FIGURE 1 A joint model to assess the effect of a time-dependent covariate Y(t) ∈ {0, 1} on survival: illness-death multistate model
without recovery treating the two covariate levels as separate transient states. Transition hazards 𝛼01(t), 𝛼02(t), and 𝛼12(t) are included
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where is the product integral and I is the identity matrix.34 The fundamental nonparametric estimator of the transition

probabilities is the Aalen-Johansen estimator51

P̂(s, t) =
∏

s<u≤t

(
I + ΔÂ(u)

)
, (4)

where
∏

is a finite product over all observed transition times of any type u and ΔÂ is the matrix of increments of the
Nelson-Aalen estimators of the cumulative hazards (2) with nondiagonal entries

ΔÂlm(t) =
#{observed l → m transitions at u}

#{individuals observed in state l just prior to u}
(5)

and diagonal entries ΔÂll(t) = −
∑

l≠mΔÂlm(t). The Aalen-Johansen estimator allows the data to be subject to independent
left-truncation (delayed study entry) and right-censoring mechanisms (see, eg, the book of Aalen et al for details51). Note
that the increments of the Nelson-Aalen estimator given relation (5) will play a key role within the nonparametric variant
of the simulation algorithm proposed in Section 4. The R packages mstate52,53 or etm54 and mvna55 may be used for fast
computation of P̂ and Â.

The Markov assumption can be relaxed, allowing 𝛼lm(t) to depend on, for instance, the duration time in state l via a Cox
proportional hazards model, eg, including the state arrival times or the number of previous visits to a state in the linear pre-
dictor. The Aalen-Johansen estimator of the unconditional state occupation probabilities is still a consistent estimator56,57

in such non-Markovian situations at least under random right-censoring, whereas the estimation of the state occupa-
tion probabilities appears to be less sensitive to the Markov assumption than originally thought.58,59 An Aalen-Johansen
landmark estimator of P(s, t) for randomly right-censored non-Markov models has recently been suggested.60

3 SURVIVAL HAZARD IN THE PRESENCE OF A TIME-DEPENDENT
EXPOSURE

In order to contrast simulation from a multistate perspective with the competing approaches when time-dependent covari-
ates are incorporated, we exemplary consider one time-dependent exposure stochastic process Y(t) = 1(t > T0) ∈ {0, 1}.
Here, T0 > 0 denotes the random time-to-exposure (TTE), and 1(·) denotes the indicator function such that Y(t) becomes
a left-continuous dichotomous process with, at most, one switch over time (right panel in Figure 2). In event-driven
oncology trials, T0 commonly represents the time-to-progression. Furthermore, denote T as the time until death from any
cause or, equivalently, as overall survival (OS). Exposure-free survival (EFS) is given by the minimum of T0 and T. For
simplicity, we assume that all individuals are not exposed at the time origin and completely observed, ie, we have no cen-
soring or truncation. However, the arguments may be transferred to nondegenerated initial exposure distributions as well
as covariates Y(t) with a finite number of categories, arbitrary switches, as well as to left-truncated and/or right-censored
data. Note that, from a practical point of view, EFS ≤ OS and EFS = OS only if the patient dies without prior exposure.
In order to account for this time-dynamic pattern of events, one frequent approach is to use a Cox proportional hazards
structure for OS incorporating exposure status as a time-dependent covariate. For that purpose, let 𝛼0(t) be the survival
hazard under non-exposure and 𝛼0(t) · exp(𝛽) be the survival hazard under exposure, respectively. Here, exp(𝛽) denotes

FIGURE 2 Relation between the multistate process Xt and covariate process Y(t). Both T0 and T are random variables. X is
right-continuous, but Y is left-continuous



BLUHMKI ET AL. 3751

~ t

t

0.7

0.8

0.9

1.0

1.1

0 5 10
Time

S
ur

vi
va

l H
az

ar
d

FIGURE 3 Comparison of the survival hazards �̃�(t) for t0 = 2 specified a priori (dashed line) and the population survival hazard 𝛼(t)
resulting from the illness-death model without recovery of Figure 1 (solid line) in the presence of a time-dependent covariate with, at most,
one change over time. Details are given in Appendix B

the hazard ratio representing the effect of being exposed versus non-exposed. In Appendix A, we show that under these
specifications, the population survival hazard incorporating Y(t) can be expressed as

𝛼(t) = P(Y (t) = 0,T ≥ t)
P(T ≥ t)

· 𝛼0(t) +
P(Y (t) = 1,T ≥ t)

P(T ≥ t)
· 𝛼0(t) · exp (𝛽) , (6)

with 𝛼(t) ≡ 0 if P(T ≥ t) = 0 (see solid line in Figure 3 for an example). Note that relation (6) is a nonrandom function in
time. In other words, the survival hazard 𝛼(t) decomposes into a weighted mixture of 𝛼0(t) and 𝛼0(t) · exp(𝛽) with weights
corresponding to the prevalence of being (not) exposed at t. We aim to develop a model complying with relation (6), taking
advantage of the multistate framework of Section 2. Let Xt ∈ {0, 1, 2} be a time-inhomogeneous Markov process fulfilling
the relation

Xt− =
⎧⎪⎨⎪⎩

0, if Y (t) = 0, T ≥ t,
1, if Y (t) = 1, T ≥ t,
2, if t > T.

(7)

In other words, Y and X coincide while the individual is still alive apart from the random time T0, where X(T0) = 1, but
Y(T0) = 0 and Y(T0 + ) = 1 to make Y left-continuous (see Figure 2). The reason is that multistate processes require
right-continuous sample paths.33 The underlying death hazards are defined as 𝛼02(t) = 𝛼0(t) and 𝛼12(t) = 𝛼0(t) · exp(𝛽)
such that the Cox proportional hazards structure is satisfied. If we additionally allow for an “exposure hazard” 𝛼01(t),
we end up with an illness-death model without recovery, as illustrated in Figure 1. This formulation leads to a model
with one initial state, one intermediate state (“exposure”), and one absorbing state (“overall death”). Here, exposure is
modeled as a “competing risk” for death without prior exposure, and we allow for death after being previously exposed.
We note that the waiting time in the initial state is EFS, ie, EFS = min{t ∈ ℝ+ ∶ Xt ≠ 0}, and the waiting time until the
absorbing state is OS, ie, T = min{t ∈ ℝ+ ∶ Xt = 2}. All in all, relation (7) incorporates the values of the dichotomous
time-dependent covariate Y(t) as separate transient states and captures the random exposure behavior through 𝛼01(t). This
intuitively describes the time-dynamic development of Y and T over the course of time and highlights the connection
between multistate models and time-dependent exposures.20

In Section 4, we explain how such more complex multistate data can be generated following fundamental arguments
of Gill and Johansen.34 The appeal is that the hazard specifications and the underlying data-generating algorithm lead to
quantities having an interpretation on the population level. More precisely, the proposed approach complies with (6) and
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implies that the expected proportion of individuals becoming exposed up to time t is given by the cumulative incidence
function

P(EFS ≤ t,XEFS = 1) =

t

∫
0

exp (− (A01(u) + A02(u))) · 𝛼01(u)du. (8)

In contrast, one popular simulation technique in this setting independently generates TTE as well as dummy survival
times (called OS1 and OS2) from common parametric distributions (eg, exponential48 or Weibull49). Then, one defines EFS
as the minimum of OS1 and TTE. Finally,

OS =

{
EFS, if EFS ≠ TTE, ie, if OS1 ≤ TTE,
EFS+OS2, if EFS = TTE, ie, if TTE < OS1.

(9)

Obviously, this procedure is based on a sampling space impossible in real life with unclear interpretation: first, a patient
may die twice (at OS1 and at TTE + OS2 if TTE<OS1). Second, each individual is supposed to be exposed at some time
TTE, which may not be in line with the population quantity in relation (8). For instance, we believe that it is somehow
unrealistic (and not desired from a patient's perspective) to assume, for instance, a probability of progression in 100%
of the study cohort. Third, death may preclude (“censor”) the observation of the individual exposure time, although it
is unclear how to interpret, eg, time-to-latent-progression for a patient that has died. Another drawback is that a latent
structure does not discourage improper statistical analyses (cf Supporting Section S1). One prominent example is false
Kaplan-Meier–type analyses in competing-risk settings.61 Contrary to this, the proposed approach outlined in Section 4
exclusively generates the real-world times EFS and OS, but neither latent TTE after OS if OS = EFS nor latent OS1 if
TTE<OS1. In-depth discussions regarding the plausibility and identifiability of latent times can be found elsewhere.15-18,33

Nevertheless, a comparison of both data-generating procedures shows that they lead (on average) to the same and correct
OS specification (cf Supporting Section S1). For a mathematical proof, see elsewhere.62

Related suggestions4,6-13 formalize the survival hazard as

�̃�(t|Ȳ (t)) = 1(t ≤ T0) · 𝛼0(t) + 1(t > T0) · 𝛼0(t) · exp(𝛽), (10)

where Ȳ (t)) = {Y (u); 0 ≤ u ≤ t} is the exposure history up to time t.
As above, the algorithms first draw TTE (for instance, t0) such that (10) is interpreted individually for a given T0 = t0.

A specific realization is given as a dashed line in Figure 3. Subsequently, the survival time T is generated from

P(T > t|T0 = t0) =

⎧⎪⎪⎨⎪⎪⎩
exp

(
−

t0∫
0
𝛼0(u)du

)
, if t ≤ t0,

exp

(
−

(
t0∫
0
𝛼0(u)du +

t∫
t0

𝛼0(u) · exp(𝛽)du

))
, if t > t0,

(11)

by, for example, applying its inverse to random draws of a standard uniform distribution. Due to the same reasons as
above, we end up in a sampling space impossible in real life.

Another complication is that a translation of the survival hazard (10) into survival probabilities (11) is only reasonable
for “external” time-dependent exposures such as environmental factors, because they satisfy the formal relationship14

P(u ≤ T < u + du|T ≥ u, Ȳ (u)) = P(u ≤ T < u + du|T ≥ u, Ȳ (t)) (12)

for all u, t such that 0 < u ≤ t. In particular, the survival hazard at time u is intimately linked to the observed covariate
history up to time u, but the occurrence of a failure in [u,u + du) does not depend on the future exposure status at a later
time t. The reason is that, conditioning on the a priori generated exposure time t0 (or, equivalently, on the entire exposure
trajectory Ȳ (∞)), the conditional survival distribution (11) becomes P(T > t|Ȳ (∞)), which is equal to exp(∫ t

0 �̃�(u|Ȳ (u))du)
under model (12). The latter has the usual survival function interpretation for a given external covariate path. Note that,
in this case, (6) is the (nonrandom) expectation with respect to the distribution of T0 of the random quantity (10) (cf
Appendix A), which is one way to see why this procedure and our proposal lead to the same and correct data structure,
but interpretations of the data-generating mechanisms (particularly of the exposure hazards) differ.

In contrast, condition (12) does not hold for “internal” time-dependent exposures such as progression in oncology. The
reason is that their trajectories carry direct information about the failure time. More formally, P(T ≥ t|Ȳ (t)) = 1, provided
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that Y(t− ) exists, which means that it “requires survival of the individual for its existence” (see the book of Kalbfleisch
and Prentice14). From a simulation point of view, conditioning on Ȳ (∞) and subsequently generating T from (11) would
violate the fundamental principle to not condition on future internal exposure status.63,64 The problem is not the Cox
model structure of relation (10) but that its transformation via (11) lacks a meaningful survival function interpretation.
Appendix C shows that, in this simplified survival situation described by a Cox proportional hazard structure, simulation
via a multistate perspective and via relation (11) nevertheless (on average) leads to the same and correct OS specification
even in the presence of an internal time-dependent covariate. However, the benefits of our proposal are self-evident: the
time-dependent exposure process Y(t) is not generated a priori but part of the data-generating mechanism via 𝛼01(t). This
makes simulation more “natural” compared to the abovementioned competing approaches, because only the real-world
times (in the present example: EFS and OS) are generated, hypothetical latent times are avoided, and the natural order of
the events is guaranteed. Thus, its parsimony follows the principles of Occam's razor,42 whereas still allowing for flexible
parameterizations as in, eg, the work of Crowther and Lambert.35 Furthermore, the survival hazard (6) as well as the
cumulative incidence function (8) are population average quantities with a clear interpretation. These are the reasons
why we believe that simulating data in line with fundamental principles of the analyses—such as not conditioning on the
future—is desirable and should be preferred.

4 EMPIRICAL SIMULATION OF COMPLEX MULTISTATE DATA BASED ON
REAL DATA EXAMPLES

In order to simulate complex time-to-event data as in relation (7), we take up the hazard-based simulation algorithm
mathematically established by Gill and Johansen.34 The fundamental probabilistic result is that only the transition
hazards are required to completely regulate the stochastic behavior of the multistate process. Following the work of
Beyersmann et al,33 one multistate trajectory can be generated as follows.

Note that, in the presence of continuous hazards, the product integral given in step 3 is equivalent to exp(−Al•(t)+Al•(t∗)),
where Al•(t) = ∫ t

0 𝛼l•(u)du is the cumulative all-cause hazard out of state l. Step 4 may be realized by means of the
inversion method or more powerful procedures suggested elsewhere.4 The algorithmic perspective shows how the tran-
sition hazards (1) construct multistate processes as a successive nested series of competing risks experiments. It has to
be emphasized that the algorithm does not condition on future events and avoids latent times. The reasons are, on the
one hand, a stopping criterion when an absorbing state is reached and, on the other hand, the fact that the transition
type is determined after the event time has been generated. Consequently, the generation of (internal) time-dependent
covariate processes is not done a priori but is part of the data-generating mechanism. Independent right-censoring and
left-truncation mechanisms can straightforwardly be incorporated.33 For instance, the algorithm can be adapted to admin-
istrative censoring (type I), event-driven censoring (type II), and random censoring (ie, censoring times are stochastically
independent of Xt). State-dependent censoring can be realized by adding “censoring states” in the multistate model with
underlying state-dependent censoring hazards. If one of these states is chosen in step 5, the individual is right-censored.
Similar arguments apply to left-truncation.65

Step 1 of the algorithm typically assumes common parametric models, where we have analytical expressions for the tran-
sition hazards (cf the work of Klein and Moeschberger66 for an overview). Nontrivial parametric approaches are discussed
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in the work of Crowther and Lambert.35 However, simulation studies are often motivated by a specific data example; thus,
parameterizations may be too restrictive or methodologically expensive. Instead, we outline an “empirical” version of the
algorithm, which does not require closed forms for the hazards. The usage of nonparametric distributions provided by,
for example, histograms has already been suggested by Sylvestre and Abrahamowicz in a passing comment.19 The key
idea is to work with the estimated cumulative hazards, which may be based on published data.45,47,67 More precisely, our
proposal only needs the increments of the Nelson-Aalen estimators ΔÂlm(t) = Âlm(t)− Âlm(t−) introduced in (5) and used
instead of 𝛼lm(t)dt. They can either be derived from the original individual patient data using standard software or even
deduced from the respective cumulative hazards plots given in publications (see Section 5.2 for details). The distribu-
tion function of the transition time Fl(t) in step 3 is estimated by the empirical Kaplan-Meier–type distribution function
F̂l(t) = 1−

∏
t∗<u≤t(1−ΔÂl•(u)), whose increments are subsequently used for a multinomial experiment to determine the

event time out of state l. A practical complication is that F̂l may spend less than 100% of probability mass in the presence
of right-censoring in the original study. In that case, one assigns the remaining probability mass to a timepoint beyond
the largest observed time and always censors corresponding individuals, if this artificial time is drawn. Under the ran-
dom censorship model, other censoring times can, for instance, be derived from the censoring Kaplan-Meier estimator.
An implementation of the algorithm is in the function mssample of the R package mstate.52,53

Of course, this empirical formulation is flexible enough to account for modeling assumptions, eg, following the frame-
work of Section 3, Ã12(t) ∶= Â02(t) · exp(𝛽). Notable is the fact that the simulated transition times follow a discrete time
grid. Consequently, the distribution of the transition times becomes more and more discrete if the number of simulated
patients distinctly exceeds the original sample size.

5 APPLICATION

5.1 Study example
The following simulation studies utilize the published CSL 1 trial presented in example 1.3.12 in the work of
Andersen et al.50 It considers 488 liver cirrhosis patients from a randomized clinical trial comparing the hormone “Pred-
nisone” (n = 251) with an inactive placebo treatment (n = 237). The study aim was to assess prolonged survival in
Prednisone-treated patients. The timescale of interest was “time since randomization” in days. Individuals were followed
until death, with subjects being censored at the end of the trial. We focus on the effect of the “prothrombin index,” which is
an indicator for liver functionality. The present study dichotomizes the index into “abnormal” (state 1) and “normal” (state
0). The main practical issues are that the prothrombin status is an internal time-dependent covariate and that patients
can switch between normal and abnormal prothrombin levels for arbitrary times during follow-up. This is captured by
an illness-death multistate model with recovery, which jointly incorporates the time-dependent abnormal prothrombin
exposure and the survival outcome “death” (absorbing state 2). A graphical illustration would be as in Figure 1, but with
an additional arrow from state 1 to state 0 and corresponding hazard 𝛼10(t) to account for possible multiple prothrombin
status switches over time (see figure I.3.6 in the work of Andersen et al50).

We focus on Prednisone-treated patients. Here, 108 patients initially entered the study with normal prothrombin lev-
els and 143 patients with abnormal ones. Moreover, 92 patients died under exposure and 50 patients under no exposure,
respectively. There were 109 censored observations. In total, 290 switches between the two prothrombin levels were
observed (cf table I.3.7. in the work of Andersen et al50).

5.2 Proof of concept
A first simulation study is performed in order to investigate whether the empirical simulation technique approximately
recovers the original quantities, where the study-based Nelson-Aalen estimators act as the “true” benchmarks. In this
specific case, individual patient data are given by the prothr data set included in the R package mstate52,53 such that
the (increments of the) Nelson-Aalen estimators can directly be reconstructed (see left panel in Supporting Figure S2). If
these data had not been available, they could have been derived from figures IV.4.10 and IV.4.11 published in the work
of Andersen et al50 either manually or using developments in image processing software recently applied in the context
of survival analysis.67,68 The initial empirical proportions of patients at the time origin are 𝜋0 = 0.43 (normal) and 𝜋1 =
0.57 (abnormal).69 Although the algorithm may lead to censored observations in this example (since the original data
include censored observations such that F̂l may spend less than 100% of probability mass), we additionally superimpose
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random right-censoring times. They are generated according to the increments of the study-based censoring Kaplan-Meier
estimator (right panel in Supporting Figure S2). Censoring Kaplan-Meier estimators are typically not published, but the
number of patients at risk may be used to obtain the desired information. We simulate 2000 data sets, each including
251 patients as in the original study. For the proof of concept, we compare the estimated state occupation probabilities
obtained from the simulated data sets with the respective study-based quantities. The reason for considering state occupa-
tion probabilities is 2-fold: on the one hand, they are relevant outcomes in real practical analyses; on the other hand, they
are complex functionals incorporating the initial state distributions and the Aalen-Johansen estimator P̂(0, t) introduced
in (4). For instance, the “true” (study-based) estimated probability to be alive with normal prothrombin index is

P̂(alive and normal PI at t) = 𝜋1 · P̂10(0, t) + 𝜋0 · P̂00(0, t), (13)

where P̂lm is the (l,m)th entry of P̂. Note that if the increments of the Nelson-Aalen estimators are known, the state
occupation probabilities are directly obtained via relation (4).

In Figure 4, we separately plotted the three “true” probabilities from the study example (solid black lines) together with
the respective averages over the estimated probabilities of the simulated data sets (black dots). For illustrative purposes,
300 randomly selected simulated curves are included (gray lines). In all three subfigures, the averages over the simulated
quantities are hardly distinguishable from the true underlying quantities even for the latest timepoints. Consequently, the
proposed simulation technique, on average, generates data consistent with the original quantities. We also observe that
the simulated curves only have jumps at the original transition times, but not in between. This characteristic is triggered
by the empirical nature of the algorithm.
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FIGURE 4 Simulation algorithm—proof of concept. Solid black lines are the “true” (study-based) state occupation probabilities, and solid
gray lines are 300 randomly selected state occupation probabilities from the simulation. The averages of the simulated state occupation
probabilities are drawn as black dots. PI, prothrombin index
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TABLE 1 Simulation results in terms of coverage
probabilities for the proof of concept in Section 5.2.
Coverages are computed for each (study-based) transition
probability P̂lm(0, t) evaluated at different timepoints and
sample sizes

Coverage Probability, %
n t P̂𝟎𝟏(𝟎 , t) P̂𝟎𝟐(𝟎 , t) P̂𝟏𝟎(𝟎 , t) P̂𝟏𝟐(𝟎 , t)
50 378 94.9 92.5 93.8 94.0

1800 92.6 92.6 93.6 92.8
2700 71.5 90.7 92.7 91.5
3200 14.8 90.0 92.0 90.5

100 378 94.6 94.8 95.1 94.3
1800 93.3 94.2 93.7 93.0
2700 87.6 94.2 94.3 93.8
3200 28.5 93.0 94.0 93.1

200 378 95.2 95.0 94.5 94.9
1800 94.6 93.8 94.8 93.9
2700 92.4 94.1 94.0 94.0
3200 50.6 94.5 94.1 94.4

251 378 95.3 95.2 94.7 95.0
1800 94.0 94.4 94.6 94.2
2700 92.5 94.4 94.3 94.6
3200 59.0 93.3 94.9 93.4

500 378 96.0 93.9 94.8 93.5
1800 95.1 94.9 94.7 94.4
2700 94.0 94.4 94.4 94.2
3200 82.4 94.5 94.5 94.1

1000 378 95.2 94.6 94.5 94.7
1800 95.5 94.9 94.5 93.9
2700 94.2 94.2 95.2 95.2
3200 94.1 94.0 94.7 94.6

A second investigation addresses the coverage probabilities of confidence intervals for varying sample sizes. For that
purpose, we use the same specifications as in the previous simulation study, but additionally consider the sample sizes
50, 100, 200, 500, 1000. For each scenario, we again simulate 2000 data sets. For each transition, we check whether the
95% log-log transformed confidence interval for the transition probabilities derived from the simulated data set covers the
true study-based quantity P̂lm(0, t). The study-based estimated transition probabilities are visualized in Supplementary
Figure S3. Variance estimation is based on the Aalen-type estimator.50 Table 1 presents the resulting coverage probabilities
computed at the exemplary timepoints t = 378, 1800, 2700, and 3200 days. These times are chosen according to the 25%,
50%, 65%, and 75% quantiles of the OS time distribution provided in the lowest panel of Figure 4.

We observe that coverage probabilities for the original sample size of 251 patients nicely approach the confidence level
of 95%, except for the study-based quantity P̂01 evaluated at the latest timepoint. This is due to the fact that it is almost
zero (see Supplementary Figure S3). For the smaller sample sizes of 100 and 200 individuals, the confidence level is also
well approximated, but a further reduction yields too liberal statements. Again, results for later timepoints should not be
over-interpreted. In order to obtain approximately 95% coverage even for the latest timepoint, the sample size has to be
increased up to 1000 individuals.

5.3 Performance of bootstrapped confidence intervals for state occupation probabilities
In the previous subsection, functionals of the study-based Nelson-Aalen estimators acted as the true benchmarks. These
are generally step functions on a time-discrete grid. The present section now utilizes the proposed simulation algorithm
to build bootstrap data sets in order to assess the uncertainty for the estimated state occupation probabilities, but now
with regard to parametrically specified time-continuous hazards. For that purpose, we assume an illness-death model
with recovery as in the previous section with (true) constant hazards 𝛼01(t) ≡ 0.0005, 𝛼02(t) ≡ 0.0002, 𝛼10(t) ≡ 0.002, and
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𝛼12(t) ≡ 0.0012. The quantities correspond to the transition-specific incidence rates corresponding to the CSL 1 trial. The
initial states are determined by a binomial experiment with probabilities 0.43 (state 0) and 0.57 (state 1) in line with the
parameter values of Section 5.2. Censoring times are uniformly distributed between 0 and 4400.

We consider the sample sizes 50, 100, 200, 251, and 500 patients and timepoints t = 378, 500, 1000, 1800, 2700, 3200. For
each sample size, we simulate 1000 studies employing the non-empirical simulation algorithm described in Steps 1-6 of
Section 4. Within each study, the resulting Nelson-Aalen estimators are used to generate 1000 bootstrap data sets by means
of the proposed empirical simulation procedure. The 95% bootstrap confidence interval margins for the state occupation
probabilities P(Xt = j) are set to the corresponding 2.5% and 97.5% quantiles of the corresponding 1000 bootstrapped
state occupation probabilities.

Simulation results in terms of coverage probabilities are summarized in Table 2. We observe that bootstrap confidence
intervals show satisfactory performances for P(Xt = 1) and P(Xt = 2) and early timepoints t, even for small numbers
of simulated individuals. Corresponding intervals for P(Xt = 0) tend to be slightly too conservative. Moreover, gradu-
ally increasing the number of simulated patients lead to suitable coverages close to the confidence level of 95% even for
later timepoints. We also note that coverage probabilities are consistently smaller than 95% for the two latest timepoints
throughout all sample sizes. This is due to almost negligible true state occupation probabilities and/or the probabilities to
be at risk as a result of the simulation configuration (cf Supplementary Table S1). This generally makes prediction difficult.

Overall, we can conclude that the proposed empirical simulation algorithm may be used to assess uncertainty by means
of model-based bootstrap data sets as originally suggested.47 The novelty is that the technique does work without individ-
ual patient data, which is not the case, for example, Efron's nonparametric bootstrap requiring all individual multistate
trajectories.

TABLE 2 Coverage probabilities for the
simulation study in Section 5.3

Coverage Probability, %
n t P(Xt = 0) P(Xt = 1) P(Xt = 2)
50 378 97.4 95.1 94.0

500 97.4 94.5 94.9
1000 95.5 93.1 94.8
1800 92.9 88.8 92.3
2700 90.3 66.8 90.9
3200 89.1 68.7 91.2

100 378 97.2 94.7 94.2
500 96.5 94.3 94.9

1000 94.1 94.3 94.6
1800 93.6 92.5 94.1
2700 92.1 87.2 92.8
3200 90.3 74.8 91.9

200 378 96.8 95.4 94.9
500 95.7 95.0 95.0

1000 96.1 95.2 95.4
1800 93.8 91.9 94.2
2700 92.6 89.5 92.9
3200 94.1 89.1 93.7

251 378 97.3 94.9 94.4
500 95.4 94.5 95.9

1000 96.7 95.0 96.4
1800 94.9 92.1 95.0
2700 92.8 89.8 94.0
3200 92.3 87.6 93.2

500 378 96.8 95.3 96.4
500 96.7 95.0 95.6

1000 94.9 95.7 95.0
1800 94.9 93.9 95.8
2700 92.1 91.4 93.3
3200 91.8 89.4 91.6
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6 DISCUSSION

We have proposed an empirical resampling technique for complex time-to-event data based on an empirical multi-
variate hazard measure. Our multistate approach follows a probabilistic construction suggested in the work of Gill
and Johansen,34 which is the intuitive way of how to describe the time-dynamic pattern of (internal qualitative)
time-dependent covariates and events over time by avoiding hypothetical latent times and sampling spaces impossible in
real life. This parsimonious perspective not only complies with Occam's razor but also provides for a model specification
of time-dependent exposures and survival that has a proper interpretation as a population-level summary. Furthermore,
the algorithm can serve as an operational tool in order to explain why multistate frameworks are helpful in real data anal-
yses. Overall, we argued that simulation algorithms should be plausible (and not just the data structure) and in line with
fundamental principles of the time-to-event methodology—such as not conditioning on the future following the same
assumptions as the statistical analysis.64 These arguments are important if simulations are used for sample size calcula-
tions, eg, by adapting recent context-related proposals,44,70 and would be helpful in describing the required data-generating
model in a trial protocol.

Our application was restricted to an illness-death model with (without) recovery, jointly modeling survival in the
presence of one time-dependent dichotomous covariate. Adapting the state space, the flexibility of the multistate frame-
work allows for complex event histories, including more than one (qualitative) covariate, additional intermediate events,
and competing endpoints. Continuous covariates may be incorporated either by decomposing the values into a finite
number of categories or by sufficiently inflating the state space of the model. However, the number of states has to
be a trade-off between data availability and clinical expertise in order to guarantee a sufficiently large number of
events. A topic for future research is to simulate via “joint models” for longitudinal responses and time-to-event data.71

Another very recent work discussing the connection between time-dependent covariates and multistate models is that by
Le-Rademacher et al.25 These authors also use simulations but only report results for time-constant hazards. In addition,
details on the simulation algorithm are not given.

This paper proposed an empirical analogue of the Gill and Johansen algorithm. One attractive feature is that it may
be based on published material. The quantities that need to be extracted from the publications of medical studies are
(i) the (increments) of the estimated cumulative hazards, (ii) the initial distributions, and, ideally, (iii) information on
left-truncation and/or censoring mechanisms (eg, in terms of the censoring Kaplan-Meier estimator or the risk sets). In
standard survival settings, the Nelson-Aalen estimator can be derived from the Kaplan-Meier estimator typically pre-
sented in publications. The reason is the one-to-one relation between hazards and probabilities.33 A prominent example
is randomized clinical trials in oncology with a composite as a primary endpoint. Studies of more complex time-to-event
settings are just starting to report the transition-specific Nelson-Aalen estimators (see elsewhere for examples23,27,31,32,72,73).
The major challenge for the empirical algorithm is to construe the increments from the published figures. One possibility
is to do it manually. A topic for future research is the application of image processing software, which has recently been
applied in the context of survival analysis.67,68

Our empirical procedure enables simulation studies plausibly mimicking complex real-world time-to-event data (see
elsewhere for recent applications74,75). This may also be relevant for sample size calculations, when historical data (without
access to individual patient data) would be incorporated. Furthermore, it is a simple technique to make trial data publicly
accessible without losing its overall properties. This is a concern whenever copyright restrictions do not allow the use or
distribution of the original data. In principle, all competing simulation approaches mentioned in the Introduction may
also be applicable without individual patient data; however, the parameters should be specified such that the motivating
study is well approximated. One solution is the application of preprocessing procedures such as parametric assumptions
or smoothing techniques (applied to each single transition hazard). The disadvantage is that these may be too restrictive
and/or computationally expensive.

We found that our proposal approximates the empirical hazard measures well and can be utilized to build bootstrap
data sets in order to assess uncertainty in parameter estimation even without access to individual patient data. This is
contrary to standard resampling techniques such as Efron's nonparametric bootstrap. The time-discrete perspective used
within the algorithmic framework is a typical situation in longitudinal studies and makes it comparable to competing
approaches in terms of computational costs; however, the distribution of the event times becomes more and more discrete
if the number of simulated patients distinctly exceeds the original sample size. Although it seemed not to be an issue in
the present simulation studies, further investigations are needed to assess a deviation of the time-continuity assumption.

The framework of Gill and Johansen makes a time-inhomogeneous Markov assumption, but the flexibility of the
algorithm allows for non-Markov settings (eg, by including frailties or past information such as state arrival times in Cox
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models for the transition hazards) as well as nonproportional settings (eg, Aalen's additive model33). Our proposal has
been implemented by one of us (HP) in the R package mstate, and the code has been independently validated by a
second coauthor (TB), so that applications in more general models are readily available for users of R. Example code is
provided as web-based Supporting Information.
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APPENDIX A

SURVIVAL HAZARD IN THE PRESENCE OF AN INTERNAL TIME-DEPENDENT EXPOSURE

As in Section 3, let T be the time-to-death, and assume an internal left-continuous exposure process Y(t) ∈ {0, 1} with,
at most, one jump at the random timepoint T0 > 0. Then, the law of total probability implies

𝛼(t)dt = P (T ∈ dt|T ≥ t) =
P (T ∈ dt,Y (t) = 0) + P (T ∈ dt,Y (t) = 1)

P (T ≥ t)

= P (T ∈ dt|Y (t) = 0,T ≥ t) · P (Y (t) = 0,T ≥ t) + P (T ∈ dt|Y (t) = 1,T ≥ t) · P (Y (t) = 1,T ≥ t)
P (T ≥ t)

= P (Y (t) = 0,T ≥ t)
P (T ≥ t)

· P (T ∈ dt|Y (t) = 0,T ≥ t)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶𝛼02(t)dt

+ P (Y (t) = 0,T ≥ t)
P (T ≥ t)

· P (T ∈ dt|Y (t) = 1,T ≥ t)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶𝛼12(t)dt

.

Note that if Y(t) is external, 𝛼(t) is equal to the expectation of the right-hand side of (10) for 𝛼02(t) = 𝛼0(t) and 𝛼12(t) =
𝛼0(t) · exp(𝛽), because, for instance,

P (Y (t) = 0,T ≥ t)
P (T ≥ t)

= P (Y (t) = 0|T ≥ t) = P (Y (t) = 0) = 𝔼 (1 (t ≤ T0)) .

If we now introduce a stochastic process Xt, which is not necessarily Markov, but fulfilling relation (7), we can distinguish
the following cases.

1. If X(t) is time-inhomogeneous Markov, then 𝛼02(t) and 𝛼12(t) are the usual transition hazards defined in (1).
2. If X(t) follows an illness-death model without recovery as illustrated in Figure 1, then 𝛼02(t) is the usual transition

hazard, but 𝛼12(t) only if the process is Markov. In particular, if 𝛼02(t) = 𝛼0(t) and 𝛼12(t) = 𝛼0(t) · exp(𝛽), we end up
with relation (6).

3. In general, 𝛼l2, l ∈ {0, 1} are partly conditional transition rates76 in that, eg, P(T ∈ dt|Y(t) = 1,T ≥ t) only
conditions on the present covariate value but not on the entire covariate history of the process Y(t).

APPENDIX B

ILLUSTRATIVE EXAMPLE OF A DIFFICULT-TO-INTERPRET SURVIVAL HAZARD IN THE
PRESENCE OF AN INTERNAL TIME-DEPENDENT EXPOSURE

Following Figure 1, suppose an illness-death model without recovery with underlying multistate process Xt fulfilling
relation (7) and internal covariate process Y(t) ∈ {0, 1}. Furthermore, assume that P (Y (t) = 0) = 1, ie, all individuals
have the covariate value 0 at time t = 0. Let 𝛼02(t) = 𝛼0(t) ≡ 1, 𝛼12(t) = 𝛼0(t) · exp(𝛽) with exp(𝛽) = 0.8 and 𝛼01(t) ≡ 0.2.
Then, the waiting time distributions in states 0 and 1 can be expressed as51

P00(s, t) = exp (−1.2 · [t − s]) and
P11(s, t) = exp (−0.8 · [t − s]) .

This implies that the transition probability from state 0 to state 1 can be written as

P01(0, t) =

t

∫
0

P00(0,u) · 𝛼01 · P11(u, t)du

= −0.5 · exp (−0.8 · t) · [exp (−0.4 · t) − 1].

Then, relation (6) simplifies to

𝛼(t) = P(Y (t) = 0,T ≥ t)
P(T ≥ t)

+ 0.8 · P(Y (t) = 1,T ≥ t)
P(T ≥ t)

= P00(0, t−)
P00(0, t−) + P01(0, t−)

+ 0.8 · P01(0, t−)
P00(0, t−) + P01(0, t−)

,



BLUHMKI ET AL. 3763

which is given as a solid black line in Figure 3. For comparison, the Figure also includes the corresponding survival hazard
(10) for an exposure realization t0 = 2 (dashed black line).

APPENDIX C

FIRST SIMULATING THE TIME-DEPENDENT COVARIATE TRAJECTORY LEADS TO THE
CORRECT DATA STRUCTURE FOR TIME-DEPENDENT EXPOSURES

Let T0 > 0 be the random time-to-exposure with an absolutely continuous distribution function FT0 (t) and density
function FT0 (t). Then, the hazard rate of T0 is given by51

𝛼01(t) ∶=
𝑓T0 (t)

1 − FT0 (t)
. (C1)

As in Section 3, let T be the time-to-death with the underlying survival hazard (10). Using standard calculations, the
probability to be alive and exposed corresponding to an a priori generation of the exposure time can be expressed as

P(t < T, t < T0) =

∞

∫
0

P(t < T, t < s|T0 = s)dPT0(s)

=

∞

∫
t

P(T > t|T0 = s)𝑓T0 (s)ds

s>t
=

∞

∫
t

exp(−A02(t))𝑓T0(s)ds

= exp(−A02(t)) · (1 − FT0 (t))
(C1)
= exp(−A02(t) − A01(t)),

where A01(t) = ∫ t
0 𝛼01(u)du as defined in (2). This result is equivalent to the usual state occupation probability P(X(t) = 0)

derived from the illness-death model with recovery of Figure 1 and model (7) with exposure hazard 𝛼01(t) (cf relation
(3.71) in the book of Aalen and Gjessing51), because we have P(X0 = 0) = 1.

Similar arguments lead to

P(T0 < t < T) =

∞

∫
0

P(s < t < T|T0 = s)dPT0 (s)

=

t

∫
0

P(T > t|T0 = s)𝑓T0 (s)ds

s<t
=

t

∫
0

exp (−A02(s) − (A12(t) − A12(s))) · 𝑓T0 (s)ds

(C1)
=

t

∫
0

exp (−A01(s) − A02(s)) · 𝛼01(s) · exp (− (A12(t) − A12(s))) ds,

which is equivalent to the state occupation probability being alive and exposed from the illness-death multistate model
(cf relation (3.73) in the book of Aalen et al51).

In summary, these results suggest that simulation using a multistate perspective and the competing simulation
approach based on (11) lead to the same (and correct) data structure in terms of state occupation probabilities independent
of the type of the incorporated time-dependent covariate in our simplified setting.
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