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Zeeman-Field-Tuned 
Topological Phase Transitions 
in a Two-Dimensional Class-DIII 
Superconductor
W. Y. Deng1, H. Geng1, W. Luo1, L. Sheng1,2 & D. Y. Xing1,2

We investigate the topological phase transitions in a two-dimensional time-reversal invariant 
topological superconductor in the presence of a Zeeman field. Based on the spin Chern number theory, 
we find that the system exhibits a number of topologically distinct phases with changing the out-of-
plane component of the Zeeman field, including a quantum spin Hall-like phase, quantum anomalous 
Hall-like phases with total Chern number C = −2, −1, 1 and 2, and a topologically trivial superconductor 
phase. The BdG band gap closes at each boundary of the phase transitions. Furthermore, we 
demonstrate that the zero bias conductance provides clear transport signatures of the different 
topological phases, which are robust against symmetry-breaking perturbations.

Topological insulators (TIs) have bulk insulating energy gaps and gapless edge or surface states, which are pro-
tected by both the bulk band topology and time-reversal (TR) symmetry1–4. The two-dimensional (2D) TIs 
are also called the quantum spin Hall (QSH) systems, whose topological properties can be described by the Z2 
index5,6 or spin Chern numbers7,8. While the Z2 index and spin Chern numbers yield an equivalent description 
for TR-invariant systems, the robustness of the spin Chern numbers does not rely on any symmetries8,9. The 
spin Chern numbers have been employed to study the TIs in the presence of an exchange field, which breaks 
the TR symmetry10. In such systems, various interesting topological phases can be realized, including the quan-
tum anomalous Hall (QAH) phase11, TR-symmetry-broken QSH phase12,13, Weyl semimetal phase14. In the 
TR-symmetry-broken QSH phase, while the edge states are usually gapped, signaling the presence of backward 
scattering, an interesting measurable topological spin pumping effect from the bulk can happen, as a direct man-
ifestation of the nontrivial bulk band topology, when time-periodic gate voltage and ac electric field are suitably 
applied15.

Topological superconductors (TSCs) are the superconductor analogue to the TIs, which have gapless Andreev 
edge states on the boundary16,17. Because the zero-energy modes of the edge states, known as the Majorana fer-
mions, have potential applications in topological quantum computations18–20, TSCs have been attracting much 
theoretical and experimental attention in recent years21–23. The first type TSCs are the class D TSCs with broken 
TR symmetry24,25. A 2D system of the class D TSC is characterized by a nonzero Chern number and chiral gapless 
edge states26,27, in analogy to a quantum Hall system. Several systems have been proposed as possible candidates 
for the class D TSCs, including conventional semiconductor wires with Rashba spin-orbit coupling28–31 and the 
TIs32,33, when the s-wave superconductivity is induced in the systems through the proximity effect. Some trans-
port signatures of the existence of the class D TSCs have been observed experimentally34–37.

Another type of TSCs are the class-DIII TSCs with TR symmetry38,39. Unlike the class D TSCs, a 2D system 
of the TR invariant (TRI) TSC possesses helical gapless edge states, which are protected by the bulk topological 
invariant and TR symmetry38. The topology of the BdG bulk bands can be described by the Z2 index39, similarly 
to a QSH system. There are some proposals for realizing one-dimensional (1D) and 2D TRI TSCs by utilizing 
the proximity effect of superconductor, without assuming exotic electron-electron interactions40–44. Especially, 
Zhang et al. proposed that 1D and 2D TRI TSCs can be realized via the proximity effect between nodeless s±-wave 
iron-based superconductors and semiconductors with large Rashba spin-orbit interactions44. They also studied 
the evolution of the Majorana pairs in the 1D model in the presence of a Zeeman field, which leads to different 
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zero-bias conductance (ZBC) peaks, as an experimental signature in tunneling spectroscopy. Interestingly, they 
found that the Majorana pairs still exist in the presence of a Zeeman field along the x or z direction, before the first 
transition occurs. Because the Z2 index can not be defined in the absence of the TR symmetry, they emphasized 
that the system is essentially topologically trivial. This conclusion is however arguable, as a transition from a top-
ologically nontrivial phase to a trivial phase is in principle attributable to the change in a topological invariant. 
The phase diagram of the 2D TRI TSCs in the presence of a Zeeman field has not been investigated. Since the 
spin Chern numbers are independent of any symmetries, they are more suited to describe the topological phase 
transitions in such a system.

In this work, we investigate the topological phase transitions in a 2D TRI TSC in the presence of a Zeeman 
field. By calculation of the spin Chern numbers and BdG edge state spectra, we find that a number of topologi-
cally distinct phases can occur with changing the z component of the Zeeman field, including a QSH-like phase, 
QAH-like phases with charge Chern number C =  − 2, − 1, 1 and 2, and a trivial superconductor phase. While 
the charge Chern number vanishes in the QSH-like phase, we reveal that the QSH-like phase is topologically 
nontrivial in the bulk, characterized by nonzero spin Chern numbers C± =  ± 1 and nontrivial spectral flow of 
the spin-polarized Wannier functions (SPWFs). In particular, in the QSH-like phase, the helical edge states are 
gapless with gapped spin spectrum, if the Zeeman field is in the x or z direction. If the Zeeman field is in the y 
direction, the helical edge states are gapped with gapless spin spectrum. These results conform the general rela-
tion between edge states and bulk topological invariant in QSH systems10,45. We further show that the ZBC can 
provide clear transport signatures of the different topological phases in experiments, which are robust against 
symmetry-breaking perturbations.

Results
Model Hamiltonian and Topological Phase Transitions.  Let us start from the BdG Hamiltonian in the 
Nambu basis ψ ψ ψ ψ↑ ↓ − ↑ − ↓

† †( , , , )k k k k , which was used to describe the 2D TSC44
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Figure 1.  (a) BdG band gap Δ E, (b) spin spectrum gap Δ s, and (c) spin Chern numbers as functions of the 
Vz Zeeman field. The parameters are chosen to be μ =  − 1, λR =  0.5, Δ 0 =  − 0.2, Δ 1 =  0.2, and Vx =  Vy =  0. t is 
taken to be the unit of energy.
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Here, Ht, HR, HΔ, HZ represent the kinetic energy, Rashba spin-orbit interaction, superconducting pairing 
potential, and Zeeman field, respectively. σi and τi with i =  x, y, z are the Pauli matrices that act on the spin and 
particle-hole spaces. t is the nearest-neighbor hopping amplitude, μ is the chemical potential, λR is the strength 
of the Rashba spin-orbit coupling, and Δ 0 and Δ 1 are the s± wave pairing amplitudes, which can be induced by 
the proximity effect. In the last term, we include the Zeeman field with components Vi, which breaks the TR sym-
metry. From numerical calculation, we find that the bulk gap remains closed, when the x or y component of the 
Zeeman field is increased to be above a certain critical value, without further transitions into other topological 
phases. Therefore, we will focus on the effect of varying the z component of the Zeeman field, in order to study 
topological phase transitions.

The spin Chern numbers for the 2D system can be defined and calculated in a standard way8–10, as long as both 
the BdG band gap and spin spectrum gap stay open. The topological properties of Eq. (1) can be described by the 
spin Chern numbers associated with the operator σ τ= −ŝ x x relating to spin. We first consider the case that the 
initial state without the Zeeman field is topological (the Z2 index v =  1). The BdG band gap Δ E between the con-
duction and valence bands is plotted in Fig. 1(a) as a function of the Zeeman field Vz. It is found that with varying 
Vz, the band gap closes six times. The spin spectrum is calculated by diagonalizing the projected spin operator 

ˆPsP, where P is the projection operator into the occupied valence bands. The spin spectrum gap Δ s is always 

Figure 2.  The centers of mass of the SPWFs (horizontal axis) as functions of momentum ky (vertical) for 
different values of strength V0 of magnetic disorder and Zeeman field Vz. For clarity, only ten unit cells in the 
x direction with periodic boundary condition are displayed in the figure, where 10% of the atoms are assumed 
to be replaced by magnetic impurities. a0 is the lattice constant. The parameters are taken to be (a–d) V0 =  0 and 
Vz =  0.5, 2, 4, 5.5, (e,f) V0 =  1.5, 3 and Vz =  0.5. The other parameters are the same as in Fig. 1.



www.nature.com/scientificreports/

4Scientific Reports | 6:25503 | DOI: 10.1038/srep25503

nonzero, as plotted in Fig. 1(b). We can calculate the spin Chern numbers numerically, and the result is shown in 
Fig. 1(c). There are six topologically distinct phases characterized by (C+, C−) =  (1, − 1), (1, 1), (− 1, − 1), (1, 0), 
(0, 1), and (0, 0), respectively. We see that the points of band gap closing mark the boundaries between different 
topological phases. The case that the initial state is a trivial phase (v =  0) can be studied similarly. In that case, 
although the phase is trivial with C± =  0 for small Zeeman field, topological phases, such as C± =  1, can appear 
with increasing the Zeeman field. For simplicity, in the following, we mainly discuss the properties of the topolog-
ical phase transitions for positive Vz.

The SPWFs46,47 are the spin generalization of the conventional Wannier functions, which can also reveal the 
nontrivial bulk band topology of the system. The centers of mass of the calculated SPWFs are plotted in Fig. 2(a–d)  
for four different topological phases. In Fig. 2(a), where Vz =  0.5 and C± =  ± 1, all the Wannier centers of the 
spin-up sector move rightwards, each center shifting on average a lattice constant per cycle (ky =  − π →  π), 
and those of the spin-down sector move in the opposite direction. According to the general theory48, the total  
displacement of the spin-up (spin-down) Wannier centers per cycle divided by the length of the system is equal to 
the spin Chern number C+ (C−). The movement of the SPWFs shown in Fig. 2(a) is clearly in agreement with the 
spin Chern numbers. Similarly, the Wannier centers of both spin-up and spin-down sectors move rightwards and 
shift on average a lattice constant per cycle in Fig. 2(b), which are consistent with C± =  1 for Vz =  2. In Fig. 2(c), 
only the Wannier centers in the spin-down sector move rightwards, being consistent with the spin Chern num-
bers C+ =  0 and C− =  1 for Vz =  4. In Fig. 2(d), all the SPWFs do not shift in a cycle, corresponding to the topo-
logical trivial phase with C± =  0 for Vz =  5.5. Therefore, the spectral flows of the SPWFs are fully consistent with 
the spin Chern numbers.

In order to show the robustness of the nontrivial topological properties described by spin Chern numbers, we 
assume that magnetic impurities with random positions and classical spins oriented in the y direction exist in the 
system. The Hamiltonian of the magnetic impurities is given by σ= ∑α α α

†H V c cI y0 , where α runs over all the 
impurity sites. The magnetic impurities with spins in the y direction break both the TR symmetry and BDI sym-
metry40,44. The centers of mass of the SPWFs as functions of ky are obtained numerically for different disorder 
strengths in the topological phase C± =  ± 1, as shown in Fig. 2(e,f). We can see that in the absence of disorder, 
V0 =  0, as shown in Fig. 2(a), all the flowing paths of the Wannier centers of the spin-up or spin-down sector are 
the same due to the periodicity of the system. In the presence of disorder with strength V0 =  1.5, as shown in 
Fig. 2(e), the flowing paths of the Wannier centers have small deformations, but the nontrivial spectral flow 
remains robust. When the magnetic disorder is strong enough, as shown in Fig. 2(f), the ordered movement of the 
Wannier centers is eventually interrupted, although some centers still rearrange locally. This means that the sys-
tem becomes topologically trivial, as spin Chern numbers change to C± =  0.

Figure 3.  The BdG spectrum of a 2D ribbon running along the y direction. The Zeeman field is chosen to be 
Vx =  0.05, Vy =  0.02, (a) Vz =  0.5, (b) Vz =  2, (c) Vz =  4, and (d) Vz =  5.5. The other parameters are the same as in 
Fig. 1.
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BdG energy and spin spectra of a ribbon.  To study the edge states in each phase, we calculate the BdG 
energy spectrum of a 2D ribbon, which runs in the y direction and has a width of 100 atoms in the x direction. 
We will set nonzero Vx and Vy, but the phase diagram is almost the same as that shown Fig. 1(c), except for small 
shifts of the phase boundaries. In the C± =  ± 1 phase for Vz =  0.5, there are four edge states in the BdG spectrum, 
which are labeled as A, B, C and D at a given Fermi level, as shown in Fig. 3(a). For nonzero Vx and Vy, both the 
TR and BDI symmetries are broken, and the edge states have a small energy gap. Through the analysis of the 
spatial distribution and spin polarization of the wave functions, we find that state A has spin-up polarization 
and state D has spin-down polarization. They are mainly localized near the right boundary. State B is spin-down 
polarized and state C is spin-up polarized, being localized near the left boundary. From the slopes of the energy 
dispersion curves, it is easy to see that states A and D are counterpropagating, as well as states B and C. Therefore, 
the edge states are helical, and the C± =  ± 1 phase is a QSH-like phase.

Similar analysis can be applied to other phases. In the phase C± =  1 for Vz =  2, the BdG energy spectrum is 
shown in Fig. 3(b). There are also four different edge states labeled as A, B, C and D in the band gap. One can find 
that state A is spin-down polarized, and state C is spin-up polarized. They are located near the right boundary, 
and both propagate along the y direction. In contrary, the spin-up polarized state B and spin-down polarized state 
D are located near the left boundary, and propagate along the − y direction. Therefore, the C± =  1 is a QAH-like 
phase with total Chern number C ≡  (C+ +  C−) =  2. In the phase C+ =  0, C− =  1, as shown in Fig. 3(c), only a pair 
of chiral edge states with spin-down polarization are found in the BdG spectrum, indicating that the system is a 
QAH-like phase with C =  1. The phase C± =  ± 0 is the topologically trivial superconductor phase, as shown in 
Fig. 3(d), without edge states appearing in the BdG band gap. Therefore, the 2D system undergoes a transition 
sequence through a QSH-like phase, a C =  2 QAH-like phase, a C =  1 QAH-like phase and a topologically trivial 
phase, with increasing the z component Vz of the Zeeman field.

In a QSH system, the nontrivial band topology guarantees that edge states must appear in the bulk band gap, 
which could be gapped or gapless in energy spectrum, depending on the symmetries and local microscopic struc-
tures near the boundaries45. When the energy spectrum is gapped, the spin spectrum must be gapless on the edge. 
The BdG energy and spin spectra are plotted in Fig. 4. The spin spectrum of ˆPsP is obtained by diagonalizing the 
matrix, whose elements are given by ϕ ϕ〈 〉ˆk s k( ) ( )m y n y  with m and n running over all the occupied states ϕ(ky). 
For Vy =  0, due to the BDI symmetry, the edge states are still gapless in the absence of the TR symmetry, as shown 
in Fig. 4(a), but the spin spectrum is gapped. When the BDI symmetry is broken for Vy =  0.02, the edge states are 

Figure 4.  The BdG spectrum (upper panel) and spin spectrum of PŝP (lower panel) of a 2D ribbon. The 
parameters are chosen to be Vx =  0, Vz =  0.5, (a) Vy =  0, and (b) Vy =  0.02. The other parameters are the same as 
in Fig. 3.
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gapped, but the spin spectrum is gapless, as shown in Fig. 4(b). These numerical results are in consistence with the 
general theoretical argument that either the energy or spin spectral gap must close on the edge in a QSH phase45.

Zero bias conductance.  When the TSC is attached to a normal lead in the 1D TSC system, the ZBC is quan-
tized due to the resonant Andreev reflection49,50. The ZBC peak is 2e2/h induced by a single Majorana zero mode 
in class D TSCs and 4e2/h induced by a pair degenerate zero modes in class DIII TSCs40,44. Here, we study the ZBC 
of the 2D system with ky as a parameter, to find new features in the three topological phases for Vz >  0. We focus 
on the cases that ky =  0 and ky =  π, where zero Majorana modes may exist.

Numerical calculations were performed by using the Kwant package51. The ZBCs from the TSC to a normal 
lead as a function of the z component Vz of the Zeeman field are plotted in Fig. 5. For ky =  0 and Vy =  0, the 
quantized ZBC peak is 4e2/h in the QSH-like phase, then reduces to 2e2/h in the QAH-like phase, and turns to 
zero in the insulator phase. These are consistent with the number of zero modes at ky =  0 in the respective phases. 
Similarly, for ky =  π, there exists a non-degenerate zero mode in the QAH-like phases with C =  1 or 2, so the 
quantized ZBC peak is 2e2/h for these two phases. Especially, in the QSH-like phase, when the BDI symmetry 
is broken by nonzero Vy of the Zeeman field, the ZBC at ky =  0 deviates from the quantized value 4e2/h slightly, 
rather than drops to zero immediately as in a topologically trivial phase. This reflects the fact that the system is 
still topological, except that weak backscattering is present in the transport of the Majorana fermions.

Conclusion
In this work, we have studied the topological phase transitions in a 2D TRI TSC in the presence of a Zeeman field, 
based upon the spin Chern numbers. It is found that with varying the z component of the Zeeman field, a number 
of topologically distinct phases can appear, including a QSH-like phase, QAH-like phases with C =  ±1 and ±2, 
and a topologically trivial superconductor phase. The transitions are always accompanied by the BdG band gap 
closing. It is revealed that the nontrivial topological properties of the bulk wavefunctions remain robust against 
magnetic disorder. The BdG energy and spin spectra of the edge states calculated for a 2D ribbon are consistent 
with the topological characterization using the spin Chern numbers. Moreover, the basic characteristics of the 
ZBC are investigated, which can be used to identify the different topological phases experimentally.
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