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The mechanisms by which microbial vaccines interact with human APCs remain elusive.

Herein, we describe the transcriptional programs induced in human DCs by pathogens, innate

receptor ligands and vaccines. Exposure of DCs to influenza, Salmonella enterica and

Staphylococcus aureus allows us to build a modular framework containing 204 transcript

clusters. We use this framework to characterize the responses of human monocytes,

monocyte-derived DCs and blood DC subsets to 13 vaccines. Different vaccines induce

distinct transcriptional programs based on pathogen type, adjuvant formulation and APC

targeted. Fluzone, Pneumovax and Gardasil, respectively, activate monocyte-derived DCs,

monocytes and CD1cþ blood DCs, highlighting APC specialization in response to vaccines.

Finally, the blood signatures from individuals vaccinated with Fluzone or infected with

influenza reveal a signature of adaptive immunity activation following vaccination and

symptomatic infections, but not asymptomatic infections. These data, offered with a web

interface, may guide the development of improved vaccines.
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V
accination, the most successful preventive measure
against infectious diseases, relies on the presentation of
microbial antigens to the adaptive immune system by

antigen-presenting cells (APCs). This process leads to the
generation of protective immune responses mediated by T and
B cells1. Many vaccines that have been developed empirically
have proven effective against life-threatening infections, including
poliomyelitis, measles, pertussis, smallpox or mumps.
Nevertheless, the lack of efficacious vaccines against modern
pandemics such as human immunodeficiency virus, tuberculosis
or malaria underscores the need to better understand the
immunological mechanisms involved in vaccination.

Vaccination relies on dendritic cells (DCs) as demonstrated by
the loss of sensitization of the immune system to cell-associated
antigen in DC-depleted mice2. Multiple DC subsets have been
identified in both mice and humans in the blood, skin, lymphoid
and mucosal tissues3–13. In human blood, these include CD1cþ
DCs, which are equipped with a wide range of pattern recognition
receptors (PRRs) and are good inducers of both CD8þ and
CD4þ T-cell responses; CD141þ DCs, which efficiently cross-
present necrotic and non-self antigens to CD8þ T cells;
plasmacytoid DCs, which secrete large amounts of type-I
interferon (IFN) on challenge with viruses and nucleic acids;
and monocyte-derived inflammatory DCs, which can be found in
tissues under certain inflammatory conditions14–16. Distinct DC
subsets express different PRRs, including Toll-like receptors
(TLRs), C-type lectin receptors, nucleotide-binding
oligomerization domain-like receptors and helicases17–22. The
role of these subsets in mounting specific immune responses to
different vaccines remains mostly unexplored.

DCs respond to pathogenic signals by transcribing various sets
of genes that interact in a complex fashion, as highlighted by the
antagonism between antiviral and antibacterial pathways23–26.
Systems biology approaches such as genome-wide microarrays
provide molecular snapshots of perturbed pathways27,28. Previous
studies in blood leukocytes and tissues have demonstrated the
applicability of microarrays to characterize the molecular
mechanisms involved in infection, cancer, autoimmunity29–37

and vaccination38–40, leading to diagnostic and therapeutic
advances. DC transcriptional programs at steady state or in
response to various pathogen-associated molecular patterns have
been examined in vitro and in vivo, using combinations of
microarrays and small interfering RNA in mammalian cells41–45.
The interpretation of these complex data sets has been simplified
by dimension-reducing approaches such as gene co-expression
module frameworks46. Concurrently, systems vaccinology has
emerged47–50 as a discipline that leverages systems biology
approaches to study the mechanisms of action of vaccines, and
identify immunological correlates of protection. Despite these
efforts, a significant gap of knowledge remains in the under-
standing of how vaccines interact with human DC subsets, and
how this leads to the development of protective immunity.

Herein, we used a multi-step approach to understand human
DC responses to vaccine challenge in vitro. We built a novel
transcriptional modular framework from in vitro-generated DCs
stimulated with pathogens and validated this framework in an
independent data set of DCs stimulated with microbial compo-
nents and inflammatory cytokines. We then applied this frame-
work to characterize the early response of human DCs and their
precursors to 13 microbial vaccines, thereby identifying common
and specific transcriptional networks to each pathogenic challenge.

Results
DC transcriptional responses to pathogens. First, we defined the
transcriptional changes elicited in DCs exposed to different

pathogens over time. To this end, we generated DCs by culturing
monocytes with granulocyte-macrophage colony-stimulating
factor (GM-CSF) and either interleukin-4 (IL-4; hereafter IL-4
DC) or IFN-a (hereafter IFNa DC). IL-4 DCs display the most
immature DC phenotype51, whereas IFNa DCs display a
phenotype of DCs activated in viral infections or certain
immune disorders such as systemic lupus erythematosus52. IL-4
and IFNa DCs from three healthy donors were exposed in vitro
for 1, 2, 6, 12 and 24 h to either a virus (Influenza H1N1 Brisbane,
2007), a Gram-negative bacterium (Salmonella enterica) or a
Gram-positive bacterium (Staphylococcus aureus). One-way
analysis of variance yielded 13,919 transcripts differentially
expressed across DCs, pathogens and time points. Figure 1a
shows an overview of transcriptional changes in IL-4 and IFNa
DCs in response to the three pathogens by hierarchical clustering.
Principal variance component analysis (PVCA) combined with
further cluster analysis demonstrated that the main contributor to
transcriptional profile heterogeneity is the type of pathogen, that
is, virus or bacteria (proportion variance: 0.18) followed by time
point and population (proportion variances: 0.15 and 0.10;
Fig. 1b, Supplementary Fig. 1). At later time points, differences
between DCs in response to H1N1 could be detected. This
variance between DCs in response to virus, as well as S. enterica,
is further illustrated by principal component analysis (Fig. 1c). To
quantitate these differences, we developed the molecular distance
to medium (MDTM, see Methods), a numerical score of a
sample’s transcriptional changes as compared to control. This
approach identified significant quantitative differences between
DCs’ response to pathogens at various time points (Fig. 1d). IFNa
DCs showed the highest magnitude of response to S. aureus and
S. enterica, while IL-4 DCs showed the highest magnitude of
changes in response to H1N1 and S. enterica. The MDTM also
highlighted differences in transcriptional kinetics, revealing that
in both DCs, S. enterica elicited the most rapid response.

Thus, unsupervised gene-level analysis combined with quanti-
fication of signatures by MDTM reveals a broad spectrum of
unique and common transcriptional responses to pathogens over
time. However, the complexity of interpretation of these multi-
parametric profiles necessitates novel analytical approaches.

A modular framework to study DC transcriptomics. To facil-
itate the biological interpretation of this dataset, we generated an
unbiased analysis framework that groups transcripts co-expressed
across pathogens, time points and DCs into clusters (modules).
Starting from the transcript-level data, the construction of mod-
ules proceeds from the most conserved patterns of expression
across all conditions to the most specific ones (Supplementary
Fig. 2). Briefly, co-expression clusters are first identified for each
of the 40 stimulus groups (two cell populations, five time points,
four stimuli). All pairs of transcripts considered are then assigned
a score between 0 and 40 based on the number of stimulus groups
in which they co-cluster and a weighted co-cluster matrix is built.
Finally, a graph theory approach is used to organize groups of
probes connected by the largest score into cliques, through
multiple rounds of selection that go from the most conserved to
the most specific clustering pattern across stimulus groups. Each
clique identified forms a module, and a transcript can only appear
in one module. Modules are annotated using both knowledge-
based and data-driven approaches (Supplementary Table 1, see
Methods). Finally, modular fingerprints are derived for all sam-
ples using their control as reference (Fig. 1e). These data-driven
co-expression modules cover three major parameters including
time, pathogen type and DC population.

In this fashion, 204 modules covering 6,278 transcripts altered
in pathogen-stimulated DCs were identified and clustered
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(Pearson correlation, Fig. 2a). The scale of the module expression
represents the percentage of transcripts that change twofold up
(red) or down (blue) with raw data difference of at least 100 as
compared with control. These fingerprints, represented as grids of
modules (Fig. 2b), reduce the dimensionality of the data from
47,000 transcripts to 204 modules, facilitating the biological
interpretation of altered pathways. These include the IFN
response (16 modules), inflammation (10 modules), antigen
processing and presentation (two modules), DC maturation and
T-cell activation (two modules), motility, glycolipid metabolism,

protein translation and histone regulation, extracellular signal-
regulated kinase signalling and macrophage differentiation (five
modules). The annotation legend of the module fingerprint is
available in Fig. 2c. To facilitate public access to this framework,
we developed a web application to browse the data presented in
this manuscript (http://dcmodules.com).

Unbiased classification of modules into DC-related functions.
To enable further characterization of modular expression
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Figure 1 | Transcriptional profiles of human DCs exposed to viral and bacterial pathogens over time. (a) Heatmap of the 13,919 genes differentially

expressed in DCs stimulated in vitro with influenza H1N1, S. enterica (SE) or S. aureus (SA) for 1, 2, 6, 12 or 24 h. (b) PVCA of the 13,919 genes identified in a,

including DC population, pathogen, pathogen family, time point and their interacting terms. (c) Principal component analysis of the 13,919 genes

differentially expressed in this data set, coloured by DC population and pathogen for 1, 6 and 12 h. (d) Bar chart representing the mean MDTM induced by

the three pathogens in IL-4 and IFNa DCs at all time points as compared with medium control. Error bars represent the s.d. (three replicates). (e) Workflow

describing the modular framework development process. Transcript-level data from IL-4 and IFNa DC stimulated with pathogens were automatically

processed for module extraction (see Methods). Modules were annotated using a combination of knowledge-based and data-driven approaches. Finally,

module fingerprints were generated for each condition studied and represented as grids or heatmaps.
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Figure 2 | A modular transcriptional framework derived from human DCs exposed to viral and bacterial pathogens. (a) Hierarchical clustering

(Pearson) of the 204 modules in the pathogen dataset. (b) Example of module grids, representing signatures induced in IL-4 DCs after 24 h challenge with

H1N1 influenza or S. aureus. (c) Module functional interpretation key. (d) Bar charts representing the average longitudinal transcriptional profiles identified

by SOTA for each cluster of modules. (e) IPA networks for transcripts from the module clusters C2 and C11 in IFNa DCs stimulated with S. enterica

for 6 h. Cluster transcripts are represented on the outer circle, with representative transcripts highlighted. Predicted cytokines and transcription regulators

up or downstream of SOTA clusters are represented on the inner circle. Molecules are coloured according to their fold change in the condition represented

as compared with medium control.
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patterns, we conducted self-organizing tree analysis (SOTA) on
the 86 modules (representing 2,319 transcripts) overexpressed at
least once in response to pathogens (Z40%; Supplementary
Fig. 3). Eleven super clusters of modules were identified, which
could be broadly divided into three categories: response to H1N1
(SOTA cluster 1 (SC1) to SC4), early response to bacteria (SC9 to
SC11, with induction as early as 1 h after stimulation) and late
response to bacteria (SC5 to SC8, with induction at 12 h after
stimulation; Fig. 2d, Supplementary Fig. 4, Supplementary
Table 2). The histogram patterns indicated that DCs responded
differently to H1N1 Influenza, with IFNa DCs displaying the
overexpression of a set of type-I IFN and antiviral modules (SC1),
while IL-4 DCs overexpressed histones and ribosomal proteins
(SC3 and SC4). In contrast, the two DC populations responded
similarly to bacterial challenge, although IL-4 DCs displayed
increased macrophage differentiation profile in response to S.
aureus (SC7).

SOTA clusters were further analysed by Ingenuity Pathway
Analysis (IPA) to confirm biological associations between the
transcripts represented. Here transcripts from each SOTA cluster
were grouped, and transcription factors and cytokines activated
both upstream and downstream of these genes were identified in
silico. The predicted regulatory pathways were represented as
circular networks, with the SOTA cluster transcripts on the
circumference and the transcription factors and cytokines
obtained by in silico IPA network growth in the centre (Fig. 2e,
Supplementary Fig. 5). For example, the cluster SC2 involved in
antiviral responses and containing many known IFN-regulated
genes, was predicted to be regulated by type-I and type-II IFNs,
IFN-regulatory factors 1, 3 and 5 and STAT 1 and 2. In contrast,
the cluster SC11, involved in early antibacterial responses and
containing proinflammatory molecules such as NFKB2, serpi-
nases, CD40 or TRAF1, was connected to major inflammatory
molecules, including IL-1, IL-6, tumour-necrosis factor a (TNFa)
and NF-kB.

Thus, SOTA clustering combined with canonical pathway
analysis and in silico predictions helped identify groups of
modules with similar behaviour in response to pathogens,
improving functional annotations and regulatory understanding
of modules.

Using modules to dissect pathogen-induced signatures. We
then used the annotated modules to analyze the DC transcrip-
tional response to pathogen components and inflammatory
mediators including TLR ligands, cytoplasmic receptor ligands
and cytokines (Supplementary Table 3). First, we selected the 59
modules that were overexpressed at least once (Z40%) in
response to any pathogen in any DC at 6 h (Fig. 3a). They were
then analysed in DCs exposed for 6 h to purified ligands (Fig. 3b).
Spearman correlation analysis revealed that in IFNa DC, the
H1N1 signature best correlated with R837, a TLR7 agonist. The
S. enterica signature best correlated with Escherichia coli lipopo-
lysaccharide (LPS, TLR4 ligand), CL097 (TLR7/TLR8 ligand) and
R837, while the S. aureus signature best correlated with PAM3-
CSK4 (TLR2 ligand), E. coli LPS and CL097. In IL-4 DC,
signatures from S. enterica and S. aureus correlated with TNF-a,
flagellin, IL-1b and muramyl dipeptide (MDP). Interestingly,
none of the microbial components and cytokines tested were able
to induce the ribosomal protein modules induced by H1N1 in
IL-4 DCs (Fig. 3c).

To compare the responses of different DCs, scatterplots of
module expression in IL-4 (x axis) and IFNa DCs (y axis) were
drawn, and the slope of the best-fit line (linear regression) was
calculated (Fig. 3d). Both DCs responded similarly to PAM3
(s¼ 1.13), LPS (s¼ 0.86) and CL097 (s¼ 1.11). However, IFNa

DCs responded more to poly(I:C) (s¼ 1.26) and R837 (s¼ 1.87),
which target TLR3 and TLR7, respectively. Conversely, IL-4 DCs
responded more to molecules involved in bacterial infection, such
as flagellin (s¼ 0.27), MDP (s¼ 0.14), TNFa (s¼ 0.39) or IL-1b
(s¼ 0.45). This observation was supported by IL-4 DC’s increased
baseline transcriptional expression of TLR5, nucleotide-binding
oligomerization domain 2 and IL1R2 (Supplementary Fig. 6). As
they do not express TLR9, both DCs responded poorly to CpG.
Thus, different DCs are geared up to respond to distinct
pathogens. This approach therefore helps unravel the biology of
different DC populations.

Furthermore, this strategy can be applied to characterize the
upstream microbial and immune regulators of various modules.
Indeed, the modular response to IL-10 was associated with the
downregulation of proinflammatory and type-I/II IFN-related
modules in IL-4 DC, but the overexpression of modules
containing ribosomal proteins and type-III IFNs. In contrast,
recombinant IFNa downregulated proinflammatory modules, but
upregulated both type-I/II and type-III IFN modules in IL-4 DCs
(Fig. 3b). Thus, looking at modules elicited or repressed by
purified ligands enhances our understanding of the outcome of
receptor–ligand interactions.

Specialization of APC subsets’ responses to vaccines. We then
compared the responses of various APC populations with 13
commercially available vaccines, including inactivated bacterial,
inactivated viral and live attenuated viral vaccines (Table 1).
Circulating monocytes, IL-4 DCs, CD1cþ DCs and CD141þ
DCs from four or five donors were stimulated with vaccines for
6 h, and their transcriptional fingerprints assessed by microarray.
Transcripts (23,060) were detected in the combined data set
incorporating the four APC populations. Hierarchical clustering
revealed two groups of transcriptionally active conditions, one
enriched for alum-containing vaccines and one enriched for poly-
saccharide-containing bacterial vaccines (Supplementary Fig. 7).

We then used the modules to analyze vaccine-elicited
signatures. Forty-two modules were differentially expressed
forming four groups (I–IV) of transcriptionally active conditions
(Fig. 4). Group I included responses to viral vaccines such as
Fluzone (Influenza season 09/10, FZ) and Gardasil (Human
Papilloma virus, HPV), and was characterized by IFN and
antiviral responses. Group II included responses to vaccines
containing polysaccharides from both Gramþ and Gram�
bacteria such as Menomune (Neisseiria meningitis, MGL), ActHib
(Haemophilus influenza, HIB) or Pneumovax (Pneumococcus,
PVX) in IL-4 DCs and CD1cþ DC. These signatures were
characterized by the overexpression of both proinflammatory
(NF-kB, inflammasome) and type-II IFN responses, with
additional type-I IFN modules (M19.1, M22.2, M24.4, M26.4)
detected in response to Gram� vaccines (MGL, HIB). Group III
included responses to PVX, HIB and Varivax (Varicella, VAR) in
monocytes only, highlighting APC-specific responses. These
signatures were characterized by inflammatory (M16.1, M34.4,
M35.8) and type-II IFN responses (M20.2, M29.8), with no
induction of type-I IFN response modules. Finally, group IV was
enriched for responses to alum-containing vaccines Havrix
(Hepatitis A, HEPA), Engerix-B (Hepatitis B, HEPB) and Ixiaro
(Japanese encephalitis, JPE). These signatures were present in
monocytes, IL-4 DCs and CD1cþ DC, and were characterized by
modest upregulation of the inflammasome (M29.9), macrophage
differentiation (M37.12) and downregulation of both DC
maturation (M34.5, M34.14) and the IFN response.

MDTM analysis further showed that HEPA, JPE, HPV, FZ,
HIB, MGL and PVX vaccines elicited significant transcriptional
changes in at least one of the four APC populations considered
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Figure 3 | Signatures induced by pathogen components and cytokines characterize the microbial and immune regulators of module activity.

(a) Hierarchical clustering of the 59 modules overexpressed at least once (Z40%) in DCs in response to pathogens at 6 h (average of three donors).

(b) Induction of these 59 modules in IFNa and IL-4 DCs by microbial components and cytokines at 6 h (average of three donors). (c) Hierarchical

clustering of Spearman R value from correlation analysis between profiles induced by whole pathogens and profiles induced by microbial components.

(d) Density scatterplots representing the expression of the 204 modules in IL-4 DCs (x axis) or IFNa DCs (y axis). The red line represents the linear

regression of the profiles obtained with the estimated slope in red.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms6283

6 NATURE COMMUNICATIONS | 5:5283 | DOI: 10.1038/ncomms6283 | www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


(Fig. 5a). The response to MGL vaccine, presumably driven by
LPS, was similar between monocytes, IL-4 DCs and CD1cþ DC.
The alum-containing vaccines HEPA and JPE induced high

MDTM in monocytes and CD1cþ DCs but not in IL-4 DCs.
Interestingly, three vaccines displayed population-specific trans-
criptional changes. HPV induced a high MDTM in CD1cþ DCs

Table 1 | Vaccine list.

Pathogen Vaccine Abbreviation Type Alum (mg ml� 1) Stimulation concentration (ll ml� 1)

Haemophilus influenza ActHib (Sanofi) HIB Inactivated bacterial 0 30
Hepatitis A Havrix (GSK) HEPA Inactivated viral 0.5 60
Hepatitis B Engerix-B (GSK) HEPB Inactivated viral 0.5 60
Herpes Zoster (Shingles) Zostavax (Merck) HER Live attenuated viral 0 30
Human Papilloma virus Gardasil (Merck) HPV Inactivated viral 0.45 30
Influenza Fluzone 09-10 (Sanofi) FZ Inactivated viral 0 6
Japanese encephalitis Ixiaro (Novartis) JPE Inactivated viral 0.5 60
Neisseiria meningitis Menomune (Sanofi) MGL Inactivated bacterial 0 60
Pneumococcus Pneumovax (Merck) PVX Inactivated bacterial 0 60
Polio virus Ipol (Sanofi) POL Inactivated viral 0 60
Rabies Imovax (Sanofi) RAB Inactivated viral 0 60
Tetanus, Diphteria, Pertussis Adacel (Sanofi) TDAP Inactivated bacterial 0.66 6
Varicella Varivax (Merck) VAR Live attenuated viral 0 60
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Figure 4 | Transcriptional profiles of monocytes, IL-4 DCs, CD1cþ and CD141þ DCs stimulated with vaccines in vitro. Hierarchical clustering

(Pearson) of the 42 modules overexpressed at least once (Z40%) in vaccine-stimulated IL-4 DCs, monocytes, CD1cþ DC or CD141þ DC.

Each column represents the module expression for the four healthy donors as a group.
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Figure 5 | Population-specific transcriptional changes in response to PVX, FZ and HPV vaccines. (a) Bar chart representing the MDTM derived from the
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Figure 6 | Vaccines display a broad range of CD1cþ DCs maturation capacity. (a) Histograms representing the expression of CD40, CD80, CD83 or

CD86 on the surface of CD1cþ DCs in response to vaccine stimulation. The grey area represents the marker’s baseline expression after sort. (b) Line

chart representing the ratio of geometric mean fluorescence intensity for CD40, CD80, CD83 and CD86 in response to each vaccine as compared with

medium control for live CD1cþ DCs, measured by flow cytometry. (c) Boolean gating analysis of CD40, CD80, CD83 and CD86 expression for

three vaccines representative of different DC maturation levels. The proportion of live CD1cþ DC expressing 0, 1, 2, 3 or 4 markers is represented as a pie

chart on the right. Error bars represent the s.d.
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only, while FZ and PVX induced a high MDTM in IL-4 DCs and
monocytes, respectively. While we could only test two vaccines in
CD141þ DCs due to the low numbers that could be isolated
from blood, it is noticeable that both PVX and FZ elicited very
restricted transcriptional responses in these cells.

To further analyze these responses, the 22 modules induced by
FZ, PVX or HPV in IL-4 DCs, monocytes or CD1cþ DCs were
selected. While FZ induced four IFN response modules in
monocytes, IL-4 DCs and CD1cþ DCs, it additionally induced
proinflammatory, antiviral and type-II IFN response modules in
IL-4 DCs only. PVX induced modular signatures in monocytes
only, including IL-1-, NF-kB- and type-II IFN-related modules.
Finally, HPV induced type-I and type-II IFN responses as well as
proinflammatory modules in CD1cþ DCs only (Fig. 5b). The
specific signatures observed in these three populations were
highly reproducible between donors (Supplementary Fig. 8) and
confirmed at the transcript level through regulatory pathway
analysis (Fig. 5c–e).

Thus, different vaccines activate different APC populations.

Vaccines induce various DC maturation profiles. To comple-
ment transcriptional analyses, we assessed the capacity of vac-
cines to induce maturation of CD1cþ DCs after 24 h
stimulation. To this end, we measured the surface expression of
the hallmark DC maturation and T-cell co-stimulation markers
HLA-DR, CD40, CD80, CD83 and CD86 by flow cytometry.
After 24 h in culture, most DCs upregulated CD86, regardless of
activation conditions (Fig. 6a). The LPS-containing MGL and
HIB were the most potent at increasing the expression of these
activation markers on the surface of CD1cþ DCs, while HEPA
and JPE, two alum-adjuvanted vaccines, decreased their expres-
sion when compared with medium control, in particular that of
CD40 (Fig. 6b, Supplementary Fig. 9). Differences between
combinations of markers induced were also observed by Boolean
gating. While PVX and FZ induced CD40, CD83 and CD86
expression to comparable levels, FZ induced more CD80þ DCs.
Boolean gating further revealed the DC maturation capability of
each vaccine. MGL induced the expression of all maturation
markers on CD1cþ DCs, while HPV led to intermediate levels of

H3N2-infected 
asymptomatic individuals (7)

In vivo whole blood In vivo whole blood

Fluzone 09/10 vaccinated individuals

In vivo whole bloodIn
vivo

In
vitro

0 
h

1.
5 

h

3 
h

5 
h

6 
h

9 
h

12
 h

15
 h

21
 h

24
 h

29
 h

36
 h

45
 h

48
 h

53
 h

60
 h

69
 h

72
 h

77
 h

84
 h

93
 h

10
1 

h

10
8 

h

16
8 

h

0

1,000

2,000

3,000

4,000

Asymptomatic infection

Symptomatic infection

Fluzone vaccine

M
ol

ec
ul

ar
 d

is
ta

nc
e 

to
 h

ea
lth

H3N2-infected 
symptomatic individuals (9)

M16.1 - Inflammation

M24.3 - Inflammation

M22.3 - Inflammation

M33.3 - Inflammation

M20.2 - IFN-gamma response

M29.8 - IFN-gamma response

M29.1 - IFN response
M34.14 - DC activation/maturation

M33.8 - IFN response

M40.9 - IFN Type I

M38.11 - IFNa-induced
M39.17 - Antiviral/ubiquitination

M37.15 - Antiviral response
M32.11 - Type I IFN response
M22.2 - IFN response / antigen processing
M24.4 - IFN response
M19.1 - IFN response
M26.4 - IFN response

0 
h

5 
h

12
 h

21
 h

29
 h

36
 h

45
 h

53
 h

60
 h

69
 h

77
 h

84
 h

93
 h

10
8 

h
10

1 
h

IL
-4

 D
C

m
on

oc
yt

es

d0
 m

on
o

d1
 m

on
o

0 
h

1.
5 

h
3 

h
6 

h
9 

h
12

 h
15

 h
24

 h
36

 h
48

 h 3 
d

7 
d

10
 d

14
 d

21
 d

28
 d 0 
h

5 
h

12
 h

21
 h

29
 h

36
 h

45
 h

53
 h

60
 h

69
 h

77
 h

84
 h

93
 h

10
8 

h
10

1 
h

C
D

1c
+

C
D

14
1+

18
 M

od
ul

es

% Expression

–1
00 0

10
0

–8
0

–6
0

–4
0

–2
0 80604020

Figure 7 | Transcriptional signatures induced by fluzone in APC in vitro are detectable in vivo in the blood of fluzone-vaccinated individuals and

H3N2-infected individuals. (a) Module fingerprints induced in vitro by fluzone in isolated monocytes or whole blood of healthy subjects vaccinated with

fluzone. (b) Fingerprints from the modules from a in asymptomatic (average of seven donors, left panel) and symptomatic (average of nine donors,
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DC maturation, inducing only CD80 and CD86. Finally, HEPA
led to low levels of DC maturation, with the majority of cells
triple negative for CD40, CD80 and CD83 (Fig. 6c,
Supplementary Fig. 10). The induction of these maturation
markers was also confirmed at the transcriptional level at 6 h
(Supplementary Fig. 11a), and highly correlated with their geo-
metric mean fluorescence intensity protein change ratio at 24 h
(Supplementary Fig. 11b).

Altogether, these observations highlight significant differences
between vaccines in their capacity to directly activate and induce
maturation of DCs.

Vaccine signatures in individuals exposed to influenza. We
applied our in vitro-derived module framework to analyze the
blood transcriptional profiles of subjects exposed to flu vaccines
and influenza. Modular fingerprints were generated from blood
transcriptional profiles of 15 healthy individuals from three
cohorts vaccinated with Fluzone, obtained at 16 time points after
vaccination (0, 1.5, 3, 6, 9, 12, 15, 24, 36, 48 h, 3, 7, 10, 14, 21 and
28 days)40. The five IFN modules induced in vitro by FZ in
monocytes, IL-4 DCs and CD1cþ DCs were detected in vivo in
monocytes isolated 24 h after vaccination. In whole blood from
vaccinated individuals, these modules were overexpressed as early
as 15 h after vaccination, and returned to baseline expression by
day 3 (Fig. 7a). The dynamics of this signature were supported by
the quantitative changes measured by molecular distance to
health analysis (Fig. 7c). This suggests that vaccination with
Fluzone elicits temporary transcriptional changes in the
circulating myeloid compartment.

To determine the expression of DC modules during flu
infection, we generated modular fingerprints from publicly
available blood transcriptional profiles of nine symptomatic and
seven asymptomatic individuals inoculated with live influenza
(H3N2/Wisconsin) and monitored at 15 different time points over
108 h (ref. 34). Of note, our Illumina-based modular framework
enabled the analysis of signatures generated with Affymetrix
arrays, highlighting cross-platform usability. Asymptomatic
individuals displayed a mild signature similar to that of
individuals vaccinated with Fluzone, with the overexpression of
three IFN response modules between 29 and 60 h post inoculation
(Fig. 7b, left panel). Conversely, symptomatic individuals
displayed much stronger modular response, with most modules
overexpressed by 36 h and sustained up until 108 h post
inoculation, including modules linked to IFNa and antiviral
responses (Fig. 7b, right panel). The intensity and sustainability of
this response was confirmed by molecular distance to health
analysis (Fig. 7c). Interestingly, at 15 h, vaccinated individuals
displayed the upregulation of modules linked to NF-kB-driven
inflammation (M22.3), IFN-g response (M29.8), TNF and CD40
signalling (M33.3). These pathways, involved in T-cell activation
and development of adaptive immunity, were detected in
symptomatic individuals, but not asymptomatic ones.

These observations show that our APC module-based
approach permits the dissection of transcriptional responses in
whole blood in vivo, highlighting commonalities and differences
between immune responses to asymptomatic and symptomatic
flu infections and flu vaccination.

Discussion
The rapidly progressing field of systems biology has enabled the
identification of predictors of vaccine immunogenicity and is
offering insights into the mechanisms of action of vac-
cines38,50,53,54. Furthermore, comparing systemic immune
responses elicited by different vaccines has enhanced our
understanding of the immune mechanisms underpinning

successful vaccination40,50. However, vaccines against a number
of infectious agents are still not effective and even successful
vaccines are not effective in all individuals. This, for example, is
well documented in the elderly46. Thus, the rational design of
next-generation vaccines, including antigen choice, delivery
method and adjuvant selection, would benefit from better
understanding how vaccines interact with both the innate and
adaptive arms of the immune system.

Herein, we provide a systems biology-based characterization of
human APC transcriptional responses to vaccines. To interpret
the signatures obtained, we generated a modular framework
based on the transcriptional responses of DCs to pathogens over
time. The modules were further dissected in a data-driven fashion
by identifying known microbial components and human
cytokines affecting their expression. We applied this framework
to study the early transcriptional responses of IL-4 DCs, CD1cþ
DCs, CD141þ DCs and monocytes to 13 vaccines in vitro. We
observed polarization of CD1cþ DC response to Gardasil
(HPV), IL-4 DCs response to Fluzone (influenza) and monocyte
response to Pneumovax (pneumococcus), suggesting that
responses to different vaccines may be mediated through unique
APC subsets. Finally, we applied these modules to analyze blood
transcriptional profiles from individuals vaccinated with Fluzone
and individuals with symptomatic and asymptomatic H3N2
infections. To facilitate further dissemination and cooperative
analysis of the data presented herein, we developed an interactive
web application available at http://dcmodules.com.

We detected strong modular signatures in blood transcrip-
tional profiles from individuals vaccinated with Fluzone,
supporting that this approach can complement our previously
described whole-blood modular analysis40 by providing increased
resolution of altered myeloid signals in distinct immunological
states. We could also derive DC module fingerprints from blood
profiles of individuals infected with H3N2, which were generated
using a different microarray platform. While we found the most
transcriptional similarities between vaccinated individuals and
individuals with asymtomatic H3N2 infections, vaccinated
individuals shared adaptive immune system activation profiles
with infected symptomatic individuals. This approach may thus
enable the segregation of immune pathways required for
vaccination from those that drive pathogenesis during infection.
Identifying the ‘good’ pathways from the ‘bad’ should help in the
development of more efficacious and safer vaccines.

We recently reported the early induction of the IFN response
by Fluzone in the blood of vaccinated subjects40. The IFN
signature of monocytes isolated from the blood of individuals
vaccinated with Fluzone is remarkably similar to that of Fluzone-
stimulated monocytes in vitro, suggesting that this population
may play an important role in the process of vaccination.
Interestingly, inflammatory monocytes suppressed vaccine
immunity in a mouse model of ovalbumin and hemagglutinin
vaccination55. Whether these transcriptionally activated
monocytes affect the outcome of Fluzone vaccination in human
remains to be established.

In this study, vaccines induced a wide range of maturation
profiles in CD1cþ DC. MGL and HIB vaccines were the most
potent at inducing mDC maturation, corroborating recent studies
by Li et al.50 These two vaccines contain detectable levels of
LPS (data not show), which is known to induce DC maturation
through a TLR4-dependent mechanism. FZ and PVX also
induced DC maturation, albeit to a lower extent. Noticeably,
alum-adjuvanted vaccines including HEPA, HEPB, JPE,
TDAP and HPV were poor inducers of DC maturation.
Transcriptionally, most of these vaccines weakly activated the
inflammasome56,57, as well as lipid metabolism and hypoxia
programs. Interestingly, they downregulated a DC maturation
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module containing CD86 and MHC Class I molecules, which are
essential for antigen presentation to CD8þ T cells. This suggests
that alum does not directly activate DCs, but conducts its
immunogenic activity through the recruitment of alternate
inflammatory cell populations. Interestingly, HPV was the only
alum-adjuvanted vaccine that could elicit both IFN and
proinflammatory response in CD1cþ DCs at 6 h, and the one
that could induce CD80þ and CD83þ cells. This suggests that
the HPV vaccine contains other immunogenic components,
detected only by CD1cþ DCs. Altogether, these observations
bring into perspective the selection of adjuvant during vaccine
design, which in addition to global immunogenicity and
activation of APC, should consider the specific type of immune
responses induced in APC. In this context, the development of
vaccines specifically targeted to DCs and combined with
adjuvants such as specific TLR ligands may improve long-term
protective immunity against pathogens.

The DC subset-specific transcriptional profiles obtained in
response to FZ, PVX and HPV are presumably driven by
differences in PRRs expressed in each cell type. Using APC
populations with well-defined phenotypes may help us further
decorticate the effect of each vaccine component on immune
cells. For example, Langerin, which is transcriptionally over-
expressed in CD1cþ DCs as compared with monocytes or IL-4
DCs (Supplementary Fig. 12), is a known receptor for the HPV
protein HPV16, present in Gardasil. This interaction may be
involved in the onset of the inflammatory cascade observed at 6 h.
Monocytes express a variety of lectins that detect large
polysaccharides, which may explain why they respond more to
PVX stimulation. Our data demonstrate that IL-4 DCs respond
differently than monocytes or circulating DCs to vaccines. While
monocyte-derived DCs remain a useful and amenable in vitro
model to define pathogen-induced molecular changes, our results
highlight the importance of considering the specific functions of
DCs circulating in vivo. Similarly, we can presume that skin-
resident DCs such as Langerhans cells and dermal DCs, which
may first detect vaccine antigen, will display distinct response
patterns to vaccines, and should therefore be included in future
studies.

Systems biology approaches generate high-dimensional data
sets that require trained analysts and computational tools to
extract biologically relevant information. A major goal behind the
development of co-expression frameworks is the reduction of
data dimensionality46. Such tools should provide investigators
with accelerated paths to biological discovery, through intuitive
data computation and visualization. Herein, we let the data
generated from DCs stimulated with pathogens, microbial
components and human cytokines guide the development and
interpretation of the identified modules. These modules
recapitulate some of the transcriptional programmes previously
described in APC41,58, including the IFN response, the NFkB-
driven inflammation or the inflammasome, which serves as a
validation of this approach. In addition, the modules permit
further stratification of these major innate immunity networks.
For example, the modules can distinguish between type-I, -II and
-III IFN responses, which show distinct induction profiles in
response to different pathogens. We were intrigued by the type-II
IFN modules, since the production of IFNg by human DCs
remains a subject of debate. It is likely that these modules can also
be induced by other inflammatory mediators, such as TNFa or
IL-1b (Fig. 3), highlighting the redundancy of innate signalling
networks and the challenges in functional annotations.

Finally, the unbiased grouping of transcripts according to
similar expression patterns across conditions permits the
expansion of known networks and the formulation of testable
hypotheses about the role of new molecules in these pathways.

Knowledge-based network connectivity analyses permit the
identification of major known regulators (cytokines and tran-
scription factors) of these modules, as shown in Fig. 2e,
highlighting molecular hubs controlling the activation/repression
of DC function. As expected, IFNAs, IFNB1, IRF1-3-5 and
STAT1-2 were connected with the main group of IFN modules
(SC2), while IL1B, IL-6, NFKB2, STAT3 and TNF were connected
to proinflammatory modules (SC11). It will be interesting to look
at the connectivity within other module groups, including SC3
and SC4, which combine ribosomal proteins, histones and type-
III IFNs for example (Supplementary Fig. 5). Future studies
should assess how the interruption of major transcription
regulators identified in silico affects each module, and how
vaccines can be designed to activate/repress these molecules.

Overall, the characterization of DC transcriptional responses to
current vaccines improves our understanding of their mechan-
isms of action, by identifying the activation signals they elicit in
specific APC populations. Vaccine components such as antigens
and adjuvants can be further tested to determine APC maturation
ability and the type of adaptive immunity subsequently induced.
This will yield essential information for the development of the
next-generation preventive and therapeutic vaccines, where
targeting of specific APC populations through surface receptors
will permit the induction of highly specific cellular and/or
humoral adaptive immune responses.

Methods
Ethical statement. All protocols were reviewed and approved by the Institutional
Review Board (IRB 012-089) at Baylor Research Institute (Dallas, TX). Written
informed consent was obtained from all healthy donors.

Monocyte-derived dendritic cell cultures. Monocytes were obtained from frozen
fraction 5 from healthy donor apheresis. Cells were thawed and resuspended in
PBS. Cells were spun at 350 g for 7 min, washed with 1� PBS, counted, washed
again and resuspended in PBS/2% fetal bovine serum/1 mM EDTA at 5� 107

cells ml� 1. Monocytes were enriched using the EasySep Human Monocyte
Enrichment Without CD16 Depletion Kit (StemCell Technologies) according to
the manufacturer’s protocol. Once enriched, cells were resuspended in serum-free
CellGenix DC medium (CellGenix, Germany)/1% penicillin/streptomycin at 106

cells ml� 1. GM-CSF (Leukine, Genzyme Corporation) was added at 200 ng ml� 1.
For IL-4 DC, recombinant IL-4 was added at 50 ng ml� 1 and cells were fed a full
dose of GM-CSF and IL-4 at day 2 and day 4 of a 6-day culture. For IFNa DC,
IFNa was added at 500 U ml� 1, and cells were fed a full dose of GM-CSF and
IFNa at day 1 of a 3-day culture. Cell suspensions were injected into 72 ml sterile
culture bags (AFC, Gaithersburg, MD). Cells were cultured at 37 �C in 5% CO2

atmosphere.

CD1cþ and CD141þ DC isolation. Human blood DCs were isolated from
PBMCs using leukapheresis products. DCs were first enriched using human Pan-
DC Pre-Enrichment Kit (StemCell Technologies) and then stained with fluor-
ochrome-conjugated specific antibodies including Lineage cocktail 1-FITC (BD,
dilution: 1:10), CD11c-V450 (B-ly6, BD, dilution: 1:50), CD1c/BDCA1-PerCp-
Cy5.5 (L161, Biolegend, dilution 1:25), HLA-DR-APC-eFlour780 (LN3,
eBioscience, dilution: 1:50), CD303/BDCA-2-PE (AC144, Mitenyi Biotec, dilution:
1:25) and CD141/BDCA3-APC (AD5-14H12, Mitenyi Biotec, dilution: 1:25). After
washing with PBS, DCs were sorted as Lineage-HLA-DRþCD11cþ cells differ-
entially expressing CD1c and CD141 using FACSAria II with Diva software (BD).

Monocyte-derived dendritic cell stimulation. After culture, cells were collected,
washed in PBS and resuspended in complete RPMI (1 l RPMI, 10 ml penicillin/
streptomycin, 10 ml L-glutamine, 10 ml non-essential amino acids, 10 ml sodium
pyruvate, 25 ml HEPES, 500 ml b-mercaptoethanol 1,000� ) at 106 cells ml� 1.
Stimulations were conducted in 96-well 1-ml deep-well plates (Greiner Bio-One) in
500 ml (5� 105 cells). All stimuli used are summarized in Supplementary Table 3.
At the end of stimulation, cells were spun at 350g for 7 min, washed with PBS, spun
again and lysed in 600ml (for 1� 106 cells) or 350ml (for 5� 105 cells) of RLT
buffer, Qiagen). Cell lysates were stored at � 80 �C until extraction.

Influenza virus propagation. Madin Darby Canine Kidney cells were grown to
80% confluence in 75 cm2 flask. The cells were infected with A/Brisbane/59/2007
IVR 148 (H1N1) strain at a ratio of 1:100 for 1 h. The cells were washed twice and
incubated for 48–72 h with media (Opti-MEM, Life Technologies). Supernatant
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was harvested post infection. The virus titre from the supernatant was assessed by
plaque assay. Experiments were performed under BSL-3 laboratory conditions.

Salmonella enterica culture. Bacteria were thawed and plated on a nutrient agar
(Difco) plate with a sterile 10 ml inoculating loop, incubated overnight at 37 �C and
subsequently stored at 4 �C. A single colony was picked up from the agar plate and
inoculated in 6 ml Difco nutrient broth (in 15 ml Falcon tube), and cultured
overnight at 37 �C on a shaker. After expansion, bacteria were brought in log phase
by culturing 500 ml of bacterial preparation in 4.5 ml fresh broth for 1.5 h at 37 �C
on a shaker. Bacteria were heat killed for 30 min in 72 �C water bath and stored at
� 80 �C until use.

Monocyte-derived dendritic cell stimulation with pathogens. IL-4 and IFNa
DCs were stimulated in vitro for 1, 2, 6, 12 or 24 h with either live influenza virus
H1N1 Brisbane (multiplicity of infection 5:1), heat-killed Salmonella enterica
(108 c.f.u. ml� 1, ATCC# 14028) or heat-killed Staphylococcus aureus
(108 c.f.u. ml� 1, Invivogen) at 37 �C in 5% CO2 atmosphere. All pathogen sti-
mulations were conducted in 96 deep-well plates as described above. At the end of
incubation time, cells were washed twice with PBS, lysed in the plate 350 ml RLT
buffer (RNeasy Kit, Qiagen) and stored at � 80 �C.

mRNA preparation and hybridization. Total RNA was isolated from cell lysates
using the RNeasy Mini-Kit (Qiagen) according to the manufacturer’s instructions.
Following extraction, an Agilent 2100 Bioanalyzer (Agilent, Palo Alto, CA) was
used to measure RNA Integrity Numbers for each sample. All samples with RNA
Integrity Number values greater than 7 were retained for further processing. RNA
concentration was measured using a Nanodrop 1000 (Nanodrop Technologies,
Wilmington, DE). RNA (250 ng) from all samples passing quality control were
amplified and labelled using the Illumina TotalPrep-96 RNA amplification kit
(Ambion, Austin, TX). Amplified labelled RNA (750 ng) were hybridized overnight
to Illumina HT12 V3 or V4 beadchips (Illumina, San Diego, CA). Chips were
scanned on an Illumina BeadStation 500 following the manufacturer’s protocols.

PVCA. The weighted average proportion variance was calculated with the R/Bio-
conductor package ‘pvca’59 following the author’s instructions. The factors ‘cell
population’, ‘pathogen’, ‘pathogen family’ and ‘time point’ were considered. The
threshold used for the minimum amount of the variabilities explained by the
selected principal components was 0.5. The PVCA was run on the normalized data,
using the 13,919 transcripts differentially expressed in DCs stimulated with
pathogens.

MDTM/health. The MDTM is calculated for all samples as the sum of absolute
fold-changes Z2 as compared with the samples’ medium reference control for an
arbitrary gene list. Herein, we chose the list of genes present at least once according
to Illumina detection P value (Po0.01 in at least one sample), and over or
underexpressed twofold at least once in the data set analysed. The molecular dis-
tance to health is the in vivo counterpart of the MDTM, where the reference
controls come from healthy individuals.

Module construction algorithm and fingerprints. The module construction
process is summarized in Supplementary Fig. 2. To derive modular fingerprints, the
expression of each module is calculated independently. For each gene belonging to
a module, we assess whether that gene is overexpressed (Z twofold up, 100 raw
data difference as compared with reference sample), underexpressed (Z twofold
down, 100 raw data difference) or unchanged. For ex vivo whole blood, monocytes
and neutrophil modular signatures, we used 1.2-fold threshold, as the global
intensity of transcription profiles is dimmer. The percent of transcripts over-
expressed and underexpressed are calculated and subtracted from each other. For
each sample, a percent expression score is assigned to each module (between � 100
and 100%) and represented on a grid. The module expression is represented as
coloured circles (red: overexpression, blue: underexpression) and the intensity of
the color represents the percentage (bright B100% to dim B0%). The modular
fingerprints are represented on two-dimensional grids with module extraction
rounds as rows, and modules extracted per round as columns. Module 14.1 is the
cell on row 14, column 1 (Fig. 2b).

Module annotations. To better interpret fingerprints, modules were associated
with known functions or molecular pathways. We first annotated modules
according to their enrichment in transcript linked to the IFN response (IFNs and
IFN-inducible transcripts) or the inflammatory response (NF-kB-inducible tran-
scripts, inflammasome, TNF signalling)41. Modules were further annotated using
gene ontology enrichment, IPA, Genemania and BioGPS. A legend is available on
Fig. 2c.

To provide an unsupervised data-driven functional interpretation of modules,
we classified them according to their level of expression following DC activation
with known pathogen-associated molecular patterns and cytokines (Supplementary
Table 3).

Vaccines and working vaccine concentrations. We selected 13 commercially
available vaccines that are delivered in soluble form intradermally or intra-
muscularly. The vaccines used are summarized in Table 1, including manufacturer,
alum content and working concentration. To assess vaccine activation con-
centration, we cultured IL-4 DCs with three different concentrations of each
vaccine for 24 h and assessed DC viability and activation status by flow cytometry.
DC and monocyte purity were assessed with the following panel: FITC-CD16,
PerCP-Cy5.5-CD14, PE-CD141, ECD-CD19, PE-Cy7-CD56, APC-CD1c, Alexa
Fluor 700-HLA-DR, APC-H7-CD8 and V450-CD3. The purity analysis gating
strategy is summarized in Supplementary Fig. 13a. Viability was assessed by the
incorporation of Live/Dead Fixable Yellow dye (Life Technologies; Supplementary
Fig. 13b,c). DC activation/maturation was assessed with the following panel: FITC-
CD56, PerCP-Cy5.5-CD14, PE-CD1a/b/c, ECD-CD16, PE-Cy7-CD40, APC-CD83,
Alexa Fluor 700-CD3/CD19/CD20, APC-H7-CD80, V450-CD86 (Supplementary
Fig. 14). We selected the stimulation concentration that best activated IL-4 DCs
while retaining elevated viability, and used these concentrations for CD1cþ DC
maturation experiments. The stimulation concentrations are summarized in
Table 1.

Web interface and GSEA geneset. All module data presented in this manuscript
can be browsed online at http://dcmodules.com. The application was developed in
Ruby, using the Ruby on Rails web development framework, with Postgresql
database support, and is hosted in the cloud. The application lists all samples
generated and analysed in this manuscript. It lists the 204 modules composing the
analytical framework described, with annotations and transcript composition. It
provides multiple ways for the user to visualize data, including individual module
maps, multi-sample module heat maps, line charts and scatterplots. In addition, it
allows the user to filter the module expression data based on module expression
across experiments or subsets of samples. In addition, we provide the module
framework as a. gmx file (Supplementary Material) for Gene Set Enrichment
Analysis.
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