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ABSTRACT In this Commentary, we will discuss some of the current trends and
challenges in modeling microbiome metabolism. A focus will be the state of the art
in the integration of metabolic networks, ecological and evolutionary principles, and
spatiotemporal considerations, followed by envisioning integrated frameworks incor-
porating different principles and data to generate predictive models in the future.
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The past 2 decades have seen significant increases in the technical ability of meta-
bolic models to more accurately represent the underlying metabolic dynamics in

biological systems. What started as models of simple organisms, representing only a
subset of their genes (1), has now evolved into multicompartmental human models
(2). This positive trend in experimental and modeling capability has also allowed for
the construction of multiorganism, microbiome systems with significant nuance. This
Commentary describes the state of the art in metabolic modeling (especially as it
relates to microbiomes) and entertains a selection of considerations that, we believe,
are highly relevant to continued progress in the field (Fig. 1).

GENOME-SCALE METABOLIC NETWORK

A hallmark approach in metabolic modeling is genome-scale metabolic modeling
(GEM). The goal of a GEM is to depict the metabolic structure of a cell using the ge-
nome sequence as a blueprint, allowing for a complete mapping of reactions in a cell.
On top of this blueprint is layered the known metabolic reactions, gene data, and bio-
chemical data to generate a curated reaction network (Fig. 1A). Within this framework,
the cell system is framed as a stochiometric matrix (Fig. 1B). By applying steady-state
mass balance across the system and constraining the reaction directionality based on
thermodynamics, a solvable system of linear equations can be optimized for a given
cellular objective function, e.g., biomass production, to obtain a set of flux distributions
across all reactions in the cell. This forms the basis of flux balance analysis (FBA) (3).

The GEM approach described above has shown significant success in human sys-
tems (e.g., references 4 and 5). A sex-specific, organ-resolved GEM that incorporates
;80,000 metabolic reactions with relevant anatomical and physiological data was
recently published (2). For the microbial counterpart, GEMs have provided a mechanis-
tic framework connecting the chemical environment to microbial metabolism. GEMs
can accurately predict metabolic phenotypes and engineering strategies for rewiring
microbial metabolism for various biomedical and biotechnological applications, e.g.,
biochemical production. One important recent advance is the development of auto-
mated reconstruction tools (6), such as KBase and CarveMe, that allow for massive
rapid model reconstruction in large-scale studies. For example, AGORA2 generates
draft models for .7,000 strains using KBase (7). It is currently the largest gut microbial
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model collection and can be used to simulate drug metabolism affected by human gut
microbes. The history and state of the art are reviewed elsewhere in greater detail (8).
When extending to modeling microbiomes, however, there are still significant limita-
tions and challenges, e.g., insufficient taxonomic resolution and biochemical knowl-
edge for nonmodel organisms, computational scalability from single-organism to com-
munity models, and more general evolutionary principles governing communities
needed. These are all related, and here we will look into this from the perspective of
integrating ecological and evolutionary principles.

ECOLOGICAL AND EVOLUTIONARY PRINCIPLES

A decade of constructing microbial community GEMs has made it clear that differ-
ent model structures and algorithms have different assumptions and answer different
questions. In this context, there are three relevant questions that must be addressed.
The first is whether to use a computationally efficient supraorganism model (micro-
biome as a single organism) or a dynamically more accurate community model (micro-
biome as multiple-assembled organism genomes). A second important consideration
is whether static versus dynamic simulations will be used (discussed below) (9). A third
relevant question is whether to use a single-level or multilevel objective optimization
approach. Each of these considerations involves different ecological and evolutionary
principles and assumptions (Fig. 1C and D). We will take a deeper look at the second
and third questions.

Static, single-level frameworks. Single-level approaches optimize across the entire
community (e.g., by assuming group selection and optimizing the total fitness of the
community, instead of individuals). Evolutionary biologists could be critical of this
approach because it bypasses selection at the individual level. Indeed, FBA omits cer-
tain stable interactions within communities and can be prone to unrealistic altruistic
predictions (10). Community FBA was proposed to implement an equal growth rate
constraint across the community. This framework allows for a population steady-state

FIG 1 Integrating genome-scale metabolic models (A and B), population (C) and evolutionary (D) dynamics, spatial structures (E) (image adapted from PLoS
Computational Biology [19]), and omics data (F) for predicting microbiome metabolism.
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assumption to be followed in stable communities (11). We have proposed a reformu-
lated algorithm, called SteadyCom, that is able to perform flux variability analysis (FVA)
and demonstrated its scalability to large community models. Through this approach,
we were able to predict the gut microbiota relative abundance profile given an aver-
age American diet (10).

Static, multilevel frameworks. In contrast, multilevel approaches try to find solu-
tions in which each individual member of a community maximizes its fitness function.
This approach is closer to the accepted theory of natural selection/adaptation but ele-
vates the computational demand. OptCom was the first bilevel optimization paradigm
to consider both individual and community fitness (12). Building on this concept, we
have recently proposed a new bilevel algorithm, called NECom, to formally implement
the concept of Nash equilibrium (NE) in microbial metabolic models (13). NE is a con-
cept from evolutionary game theory in which no individual microbe can increase its fit-
ness unilaterally and thus each microbe is maximizing its fitness function simultane-
ously. We showed the superior predictive capability of NECom in a large-scale data set
of mutualistic alga-yeast cocultures compared to FBA, with a 70% improvement in pre-
diction of member growth rates under ;500 uptake conditions (13).

Evolutionary dynamic frameworks. Dynamic flux balance analysis (dFBA) juxta-
poses the steady-state assumptions of FBA (14). dFBA models the time-dependent
extracellular metabolite concentrations by solving FBA-embedded differential equa-
tions. In each time step, uptake constraints in FBA are updated to solve for new
exchange fluxes. However, we recently showed that dFBA cannot predict the coevolu-
tion of community members, e.g., the complementation of amino acid auxotrophic
Escherichia coli pairs, because each can act only upon metabolites present in their envi-
ronments (13). That is, a microbe is unable to “know” what other microbes in the sys-
tem are capable of and act accordingly. Therefore, coevolved, stable, mutualistic inter-
actions favored by natural selection may be missing.

This dFBA deficiency is partially addressed by a recent algorithm based also on NE
by Zomorrodi and Segrè (15) in which mutants from the same species with alternative
metabolic strategies are predefined and simulated until an NE is reached. By solving
only linear programs, the algorithm is computationally efficient but requires prede-
fined strategies. In contrast, the NECom algorithm predicts NE using network structures
alone but is computationally demanding (solving bilevel programs). An evolutionary
dynamic framework with evolving strategies for individual microbes similar to that
used in reference 16 could have the advantages of both.

Spatiotemporal dynamics. dFBA has achieved success in ground truthing models
to experimental data and allowed for introducing spatiotemporal dynamics to micro-
bial ecosystems. This is possible through the addition of differential equations for spa-
tial dynamics and/or compartmentalization based on spatial structures to produce a re-
alistic picture. We were able to capture the observed differential relative abundance
profiles of microbiota radially, from the intestinal lumen to the mucosal layer, and lon-
gitudinally, along the intestinal tract, by proposing a dynamic model of the mucosal
cell layer shedding into the lumen directing flow into the succeeding intestinal section
and combining SteadyCom and dFBA (17). Explicit spatial dynamics further improves
the resolution. COMETS incorporates concentration-based diffusion dynamics to model
the global spatiotemporal dynamics. It is able to predict nonintuitive competition-mu-
tualism dynamics that match experimental results (18). BacArena (19) (Fig. 1E) and
IndiMeSH (20) are also important examples of platforms that allow investigators to spa-
tially resolve microbial populations and molecular signatures in different matrices.

DATA-DRIVEN INTERACTION INFERENCE AND HYPOTHESIS TESTING

Algorithms have been developed to integrate omics data into the metabolic net-
work structure to identify interactions and test mechanistic hypotheses (Fig. 1F). In our
previous work, we have tested the validity of mechanistic hypotheses, e.g., bile salt hy-
drolase activity in the Clostridia causing observed gut microbial metabolomic change
after drug treatment (21), and tested which microbes are likely to be responsible for
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the observed fecal metabolomic changes in infants during initial microbial colonization
(22). More sophisticated techniques, such as machine learning (ML) algorithms, have
helped in generating, maintaining, and integrating experimental data into models to
help infer the phenome and other information about the system. For example, ML has
been successful in supporting investigators to better annotate genomes, fill gaps in
GEMs, choose constraints for models, and integrate omics data into GEMs (23).
Increases in the scale and complexity of data only support the continuation of this
trend to better understand and integrate data.

THE FUTURE—INTEGRATION OF PRINCIPLES AND HETEROGENEOUS DATA SET

We have seen how GEMs can capture biological observations with very few parame-
ters and meanwhile how machine learning can improve the accuracy of predictions
based on observed data. We believe that seamless integration of the aforementioned
(ecological, evolutionary, and spatiotemporal) principles in a systematic modeling
framework with parameters learned through rigorous model inference techniques will
connect theory and data to enhance the usefulness of GEMs for studying complex
microbiomes. This process of integration includes gathering heterogenous data sets
where myriad supervised and unsupervised methods can be used to concatenate,
transform, or model to create algorithm-based models (24). For example, one can train
uptake kinetic parameters and resource allocation constraints in a community dFBA
model that is evolutionarily stable and cross-validated by concentration, relative abun-
dance data, and other omics data. Further, these models can be used as an analytical
framework as well as to suggest microbial/genetic/nutritional/spatial perturbations
that alter the evolutionary fate of the community.

Within the set of experimental techniques to generate these data sets, there are
two flavors: bottom-up versus top-down. As an alternative to the more commonly
used bottom-up synthetic community approach, top-down approaches to study
smaller communities of a complex microbiome are emerging. A recent study decon-
structed the soil microbiome into functional modules through targeted enrichment of
desired metabolic traits. It allows for investigating a community with significantly less
complexity and drawing mechanistic conclusions (25). Another promising approach is
to culture the “unculturable” organism in a microbiome using microfluidic droplets as
localized, nanoliter-sized bioreactors. By encapsulating organisms from human fecal
samples this way, metagenome-assembled genomes of uncharacterized gut commen-
sals with high resolution can be recovered (26). New modeling tools should be ready
to integrate these data to gain new insights into the microbiome.
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