Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(E)-3-(4-Chlorophenyl)-1-(2-furyl)prop-2en-1-one

Hoong-Kun Fun,^a* P. S. Patil,^b Samuel Robinson Jebas^a‡ and S. M. Dharmaprakash^b

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bDepartment of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574 199, India Correspondence e-mail: hkfun@usm.my

Received 2 July 2008; accepted 14 July 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.047; wR factor = 0.126; data-to-parameter ratio = 35.9.

In the title molecule, $C_{13}H_9ClO_2$, the benzene and furyl rings are slightly twisted from each other with a dihedral angle of 5.1 (1)°. An intramolecular C-H···O hydrogen-bond interaction generates an S(5) ring motif. In the crystal structure, molecules are stacked along the *b* axis and the crystal packing is stabilized by weak intermolecular C-H···O hydrogen bonds.

Related literature

For related literature on the biological and nonlinear optical properties of chalcone derivatives, see: Agrinskava et al. (1999); Chopra et al. (2007); DiCesare & Lakowicz (2000); Patil et al. (2006, 2007); Gu, Ji, Patil & Dharmaprakash (2008); Gu, Ji, Patil, Dharmaprakash & Wang (2008). For bond-length data, see: Allen et al. (1987). For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995).

Experimental

Crystal data

$C_{13}H_9ClO_2$	V = 1047.25 (5) Å ³
$M_r = 232.65$	Z = 4
Orthorhombic, Pna21	Mo $K\alpha$ radiation
a = 21.3399(7) Å	$\mu = 0.34 \text{ mm}^{-1}$
b = 3.7912 (1) Å	T = 100.0 (1) K
c = 12.9444 (4) Å	$0.40 \times 0.29 \times 0.21 \text{ mm}$

‡ Permanent address: Department of Physics, Karunya University, Karunya Nagar, Coimbatore 641 114, India.

Data collection

```
Bruker SMART APEXII CCD
  area-detector diffractometer
Absorption correction: multi-scan
  (SADABS; Bruker, 2005)
  T_{\min} = 0.875, T_{\max} = 0.931
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.047$	H-atom parameters constrained
$wR(F^2) = 0.126$	$\Delta \rho_{\rm max} = 0.58 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.08	$\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$
5209 reflections	Absolute structure: Flack (1983),
145 parameters	2227 Friedel pairs
1 restraint	Flack parameter: 0.07 (6)

13568 measured reflections

 $R_{\rm int} = 0.025$

5209 independent reflections

4211 reflections with $I > 2\sigma(I)$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C7-H7A\cdots O2$	0.93	2.52	2.8411 (17)	101
С15—П15А…02	0.93	2.40	5.2555 (18)	140

Symmetry code: (i) -x, -y, $z - \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/ PFIZIK/613312. SRJ thanks the Universiti Sains Malaysia for a postdoctoral research fellowship. This work was supported by the Department of Science and Technology (DST), Government of India (grant No. SR/S2/LOP-17/2006).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2657).

References

- Agrinskaya, N. V., Lukoshkin, V. A., Kudryavtsev, V. V., Nosova, G. I., Solovskaya, N. A. & Yakimanski, A. V. (1999). Phys. Solid State, 41, 1914-1917.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chopra, D., Mohan, T. P., Vishalakshi, B. & Guru Row, T. N. (2007). Acta Cryst. C63. o704-o710.
- DiCesare, N. & Lakowicz, J. R. (2000). Tetrahedron Lett. 43, 2615-2618.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Gu, B., Ji, W., Patil, P. S. & Dharmaprakash, S. M. (2008). J. Appl. Phys. 103, 103511.
- Gu, B., Ji, W., Patil, P. S., Dharmaprakash, S. M. & Wang, H. T. (2008). Appl. Phys. Lett. 92, 091118.
- Patil, P. S., Dharmaprakash, S. M., Fun, H.-K. & Karthikeyan, M. S. (2006). J. Cryst. Growth, 297, 111-116.
- Patil, P. S., Dharmaprakash, S. M., Ramakrishna, K., Fun, H.-K., Sai Santosh Kumar, R. & Rao, D. N. (2007). J. Cryst. Growth, 303, 520-524.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

supplementary materials

Acta Cryst. (2008). E64, o1530 [doi:10.1107/S1600536808021934]

(E)-3-(4-Chlorophenyl)-1-(2-furyl)prop-2-en-1-one

H.-K. Fun, P. S. Patil, S. R. Jebas and S. M. Dharmaprakash

Comment

Chalcone derivatives continue to attract the interest of chemists, biologists and physicists due to their remarkable biological and nonlinear optical properties (Chopra *et al.*, 2007; DiCesare & Lakowicz, 2000; Patil, *et al.*, 2006, 2007; Agrinskaya *et al.*, 1999; Gu, Ji, Patil & Dharmaprakash, 2008; Gu, Ji, Patil, Dharmaprakash & Wang, 2008). We have synthesized the title compound (I) and its structure is reported here.

The bond lengths and bond angles in (I) have normal values (Allen *et al.*, 1987). The benzene and furyl rings in the molecule are essentially planar with the maximum deviation from planarity being -0.003 (18)Å for atom C12 and -0.004 (14)Å for atom O1 respectively. The dihedral angle between the benzene and the furyl rings is $5.1 (1)^\circ$, indicating that they are only slightly twisted from each other.

An intramolecular C—H···O hydrogen bond generates an S(5) ring motif (Bernstein *et al.*, 1995). In the crystal structure, the molecules are are stacked along the *b* axis. The crystal packing is consolidated by C—H···O hydrogen bond interactions.

Experimental

The compound (I) was synthesized by the condensation of 4 -chlorobenzaldehyde (0.01 mol, 1.49 g m) with 2-acetylfuran (0.01 mol, 1.01 ml) in methanol (60 ml) in the presence of a catalytic amount of sodium hydroxide solution (5 ml, 30%). After stirring (6 h), the contents of the flask were poured into ice-cold water (500 ml) and left to stand for 5 h. The resulting crude solid was filtered and dried. Then precipitated compound was recrystallized from N, *N*-dimethylformamide (DMF).

Refinement

H atoms were positioned geometrically [C—H = 0.93 Å] and refined using a riding model, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme. The dashed line indicates a hydrogen bond.

Fig. 2. The crystal packing of the title compound, viewed along the b axis. Hydrogen bonds are shown as dashed lines.

(E)-3-(4-Chlorophenyl)-1-(2-furyl)prop-2-en-1-one

Crystal data

C ₁₃ H ₉ ClO ₂	$F_{000} = 480$
$M_r = 232.65$	$D_{\rm x} = 1.476 {\rm ~Mg} {\rm ~m}^{-3}$
Orthorhombic, <i>Pna2</i> ₁	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: P 2c -2n	Cell parameters from 4886 reflections
a = 21.3399 (7) Å	$\theta = 2.5 - 37.2^{\circ}$
<i>b</i> = 3.79120 (10) Å	$\mu = 0.34 \text{ mm}^{-1}$
c = 12.9444 (4) Å	T = 100.0 (1) K
$V = 1047.25 (5) \text{ Å}^3$	Block, colourless
Z = 4	$0.40 \times 0.29 \times 0.21 \text{ mm}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer	5209 independent reflections
Radiation source: fine-focus sealed tube	4211 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.025$
T = 100.0(1) K	$\theta_{\text{max}} = 38.2^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.5^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2005)	$h = -31 \rightarrow 37$
$T_{\min} = 0.875, T_{\max} = 0.931$	$k = -6 \rightarrow 6$
13568 measured reflections	$l = -22 \rightarrow 19$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.047$	$w = 1/[\sigma^2(F_o^2) + (0.0686P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.126$	$(\Delta/\sigma)_{\rm max} < 0.001$
<i>S</i> = 1.08	$\Delta \rho_{max} = 0.58 \text{ e} \text{ Å}^{-3}$
5209 reflections	$\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$
145 parameters	Extinction correction: none
1 restraint	Absolute structure: Flack (1983), 2216 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.07 (6)
Secondary atom site location: difference Fourier map	

Special details

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cl1	0.249271 (17)	0.53749 (9)	0.21078 (5)	0.02637 (9)
01	0.03179 (5)	0.2805 (3)	0.94149 (7)	0.0225 (2)
O2	0.00152 (6)	0.1062 (3)	0.74067 (9)	0.0266 (2)
C1	0.06091 (7)	0.3896 (4)	1.02879 (11)	0.0246 (3)
H1A	0.0454	0.3557	1.0952	0.030*
C2	0.11562 (8)	0.5548 (4)	1.00653 (12)	0.0243 (3)
H2A	0.1437	0.6536	1.0533	0.029*
C3	0.12135 (7)	0.5463 (4)	0.89712 (12)	0.0215 (3)
H3A	0.1540	0.6388	0.8581	0.026*
C4	0.06937 (7)	0.3752 (4)	0.86037 (10)	0.0192 (2)
C5	0.04991 (6)	0.2723 (4)	0.75621 (9)	0.0198 (2)
C6	0.09349 (7)	0.3737 (4)	0.67253 (10)	0.0202 (2)
H6A	0.1274	0.5190	0.6875	0.024*
C7	0.08493 (6)	0.2600 (4)	0.57564 (10)	0.0188 (2)
H7A	0.0496	0.1223	0.5633	0.023*
C8	0.12568 (6)	0.3314 (4)	0.48732 (9)	0.0178 (2)
C9	0.18485 (6)	0.4918 (4)	0.49906 (11)	0.0188 (2)
H9A	0.1984	0.5579	0.5645	0.023*
C10	0.22299 (7)	0.5524 (4)	0.41438 (11)	0.0192 (2)
H10A	0.2621	0.6577	0.4223	0.023*
C11	0.20160 (7)	0.4524 (4)	0.31741 (11)	0.0186 (2)
C12	0.14356 (7)	0.2960 (4)	0.30286 (10)	0.0198 (2)
H12A	0.1301	0.2333	0.2370	0.024*
C13	0.10594 (6)	0.2350 (4)	0.38834 (9)	0.0185 (2)
H13A	0.0670	0.1284	0.3797	0.022*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
Cl1	0.02847 (16)	0.02869 (17)	0.02196 (14)	-0.00201 (13)	0.00812 (11)	0.00173 (17)
01	0.0200 (4)	0.0321 (6)	0.0156 (4)	0.0000 (4)	0.0017 (3)	0.0021 (4)
O2	0.0241 (5)	0.0361 (6)	0.0196 (4)	-0.0065 (4)	0.0001 (4)	0.0017 (4)
C1	0.0265 (7)	0.0314 (8)	0.0161 (5)	0.0055 (6)	-0.0005 (5)	-0.0023 (5)
C2	0.0268 (7)	0.0249 (7)	0.0211 (6)	0.0033 (5)	-0.0045 (5)	-0.0027 (5)
C3	0.0201 (6)	0.0220 (7)	0.0223 (6)	0.0000 (5)	-0.0018 (5)	0.0026 (5)

supplementary materials

C4	0.0201 (5)	0.0218 (6)	0.0157 (5)	0.0029 (5)	0.0008 (4)	0.0019 (4)
C5	0.0204 (6)	0.0236 (6)	0.0153 (5)	0.0028 (5)	0.0010 (4)	0.0013 (4)
C6	0.0196 (5)	0.0224 (6)	0.0185 (5)	-0.0008 (5)	0.0010 (4)	0.0006 (5)
C7	0.0186 (5)	0.0197 (6)	0.0181 (5)	-0.0006 (5)	0.0004 (4)	0.0011 (4)
C8	0.0171 (5)	0.0209 (6)	0.0153 (5)	0.0020 (5)	-0.0006 (4)	-0.0002 (4)
C9	0.0191 (5)	0.0212 (6)	0.0160 (5)	0.0004 (5)	-0.0007 (4)	-0.0011 (4)
C10	0.0181 (6)	0.0187 (6)	0.0208 (5)	-0.0012 (5)	-0.0005 (4)	0.0003 (5)
C11	0.0209 (6)	0.0166 (6)	0.0185 (5)	0.0013 (5)	0.0031 (4)	0.0016 (4)
C12	0.0217 (6)	0.0212 (6)	0.0164 (5)	-0.0006 (5)	-0.0006 (4)	-0.0014 (4)
C13	0.0173 (5)	0.0218 (6)	0.0164 (5)	-0.0001 (5)	-0.0023 (4)	0.0004 (4)

Geometric parameters (Å, °)

Cl1—C11	1.7446 (14)	С6—Н6А	0.9300
01—C1	1.3543 (18)	С7—С8	1.4617 (18)
O1—C4	1.3691 (16)	C7—H7A	0.9300
O2—C5	1.2261 (18)	C8—C13	1.3974 (17)
C1—C2	1.356 (2)	C8—C9	1.410 (2)
C1—H1A	0.9300	C9—C10	1.384 (2)
C2—C3	1.422 (2)	С9—Н9А	0.9300
C2—H2A	0.9300	C10—C11	1.388 (2)
C3—C4	1.370 (2)	C10—H10A	0.9300
С3—НЗА	0.9300	C11—C12	1.386 (2)
C4—C5	1.4637 (18)	C12—C13	1.3865 (18)
С5—С6	1.4786 (18)	C12—H12A	0.9300
C6—C7	1.3388 (18)	C13—H13A	0.9300
C1C4	106.93 (11)	С6—С7—Н7А	116.9
01—C1—C2	111.03 (13)	C8—C7—H7A	116.9
01—C1—H1A	124.5	C13—C8—C9	118.80 (12)
C2—C1—H1A	124.5	C13—C8—C7	119.30 (12)
C1—C2—C3	105.97 (14)	C9—C8—C7	121.90 (11)
C1—C2—H2A	127.0	C10—C9—C8	120.85 (12)
С3—С2—Н2А	127.0	С10—С9—Н9А	119.6
C4—C3—C2	106.68 (14)	С8—С9—Н9А	119.6
С4—С3—НЗА	126.7	C9—C10—C11	118.51 (12)
С2—С3—НЗА	126.7	C9—C10—H10A	120.7
O1—C4—C3	109.39 (12)	C11—C10—H10A	120.7
O1—C4—C5	118.06 (12)	C12—C11—C10	122.24 (12)
C3—C4—C5	132.51 (13)	C12—C11—C11	119.52 (11)
O2—C5—C4	121.81 (12)	C10—C11—C11	118.23 (11)
O2—C5—C6	122.90 (13)	C11—C12—C13	118.71 (12)
C4—C5—C6	115.27 (12)	C11—C12—H12A	120.6
С7—С6—С5	121.11 (13)	C13—C12—H12A	120.6
С7—С6—Н6А	119.4	C12—C13—C8	120.89 (12)
С5—С6—Н6А	119.4	C12—C13—H13A	119.6
С6—С7—С8	126.29 (13)	C8—C13—H13A	119.6
C4—O1—C1—C2	0.69 (17)	С5—С6—С7—С8	-177.75 (13)
O1—C1—C2—C3	-0.41 (18)	C6—C7—C8—C13	-171.24 (14)
C1—C2—C3—C4	-0.02 (18)	C6—C7—C8—C9	9.4 (2)

C1—O1—C4—C3	-0.69 (16)	C13—C8—C9—C10		-0.2 (2)
C1—O1—C4—C5	177.19 (12)	C7—C8—C9—C10		179.11 (14)
C2—C3—C4—O1	0.44 (17)	C8-C9-C10-C11		0.2 (2)
C2—C3—C4—C5	-177.02 (15)	C9-C10-C11-C12		0.2 (2)
O1—C4—C5—O2	0.0 (2)	C9-C10-C11-Cl1		178.75 (11)
C3—C4—C5—O2	177.28 (16)	C10-C11-C12-C13		-0.6 (2)
O1—C4—C5—C6	-178.30 (12)	Cl1—C11—C12—C13		-179.09 (11)
C3—C4—C5—C6	-1.0 (2)	C11—C12—C13—C8		0.5 (2)
O2—C5—C6—C7	-6.2 (2)	C9—C8—C13—C12		-0.2 (2)
C4—C5—C6—C7	172.11 (14)	C7—C8—C13—C12		-179.49 (13)
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
С7—Н7А…О2	0.93	2.52	2.8411 (17)	101
C13—H13A····O2 ⁱ	0.93	2.48	3.2535 (18)	140

C13—H13A···O2ⁱ Symmetry codes: (i) -x, -y, z-1/2. Fig. 1

Fig. 2