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Integrating biomedical research and electronic
health records to create knowledge-based
biologically meaningful machine-readable
embeddings
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In order to advance precision medicine, detailed clinical features ought to be described in a
way that leverages current knowledge. Although data collected from biomedical research is
expanding at an almost exponential rate, our ability to transform that information into patient
care has not kept at pace. A major barrier preventing this transformation is that multi-
dimensional data collection and analysis is usually carried out without much understanding of
the underlying knowledge structure. Here, in an effort to bridge this gap, Electronic Health
Records (EHRs) of individual patients are connected to a heterogeneous knowledge network
called Scalable Precision Medicine Oriented Knowledge Engine (SPOKE). Then an unsu-
pervised machine-learning algorithm creates Propagated SPOKE Entry Vectors (PSEVs) that
encode the importance of each SPOKE node for any code in the EHRs. We argue that these
results, alongside the natural integration of PSEVs into any EHR machine-learning platform,
provide a key step toward precision medicine.
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he rate at which the ever growing body of world data is

being transformed into information and knowledge in

some areas (e.g., banking, e-commerce, etc.) far exceeds the
pace of such process in the medical sciences. This problem is
widely recognized as one of the limiting steps in realizing the
paradigm of precision medicine, the application of all available
knowledge to solve a medical problem in a single individuall-2,

In order to address this issue, several efforts to integrate these
data sources in a single platform are ongoing®*. The basic pre-
mise of data integration is the discovery of new knowledge by
virtue of facilitating the navigation from one concept to another,
particularly if they do not belong to the same scientific discipline.
One of the most promising approaches to this end makes use of
heterogeneous networks. Heterogeneous networks are ensembles
of connected entities with multiple types of nodes and edges; this
particular disposition enables the merging of data from multiple
sources, thus creating a continuous graph. The complex nature
and interconnectedness of human diseases illustrates the impor-
tance of such networks®. Even bipartite networks, with only two
types of nodes, have furthered our understanding on disease-gene
relationships, and provided insight into the pathophysiological
relationship across multiple diseases®.

In an attempt to address one of the most critical challenges in
precision medicine, a handful of recent studies has started to
merge basic science-level data with phenotypic data encoded in
electronic health records (EHRs) to get a deeper understanding of
disease pathogenesis and their classification to enable rational and
actionable medical decisions. One such project is the Electronic
Medical Records and Genomics (eMERGE) Network. The
eMERGE consortium collected both DNA and EHRs from
patients at multiple sites. eMERGE and subsequent studies
showed the advantages of using EHRs in genetic studies’—?.
Another project-linked gene expression measurements and EHRs,
an approach through which researchers were able to identify
possible biomarkers for maturation and aging!0. While these
studies illustrate the benefits of combining data from basic science
with EHRs, no efforts connecting EHR to a comprehensive
knowledge network have been yet reported. This study builds
upon these concepts and utilizes a heterogeneous network called
Scalable Precision Medicine Oriented Knowledge Engine
(SPOKE) to interpret data stored in EHRs of more than 800,000
individuals at The University of California, San Francisco
(UCSF). SPOKE integrates data from 29 publicly available data-
bases, such as the GWAS catalog, STARGEO, ChEMBL, LINCS,
and GeneOntology, and contains over 47,000 nodes of 11 types
and 2.25 million edges of 24 types, including disease-gene,
drug-target, drug-disease, protein—protein, and drug-side effect
(Supplementary Tables 1, 2)1112,

In this work, we describe a method for embedding clinical
features from EHRs onto SPOKE. By connecting EHRs to
SPOKE, we are providing real-world context to the network thus
enabling the creation of biologically and medically meaningful
“barcodes” (i.e., embeddings) for each medical variable that maps
onto SPOKE. We show that these barcodes can be used to recover
purposely hidden network relationships, such as Disease-Gene,
Disease-Disease, Compound-Gene, and Compound-Compound.
Furthermore, the correct inference of intentionally deleted edges
connecting SideEffect to Anatomy nodes in SPOKE is also
demonstrated.

Results

Embedding EHR concepts in a knowledge network. The main
strategy of this work is to embed EHRs onto the SPOKE
knowledge network utilizing a modified version of PageRank, the
well-established random walk algorithm!3. These embeddings,

called Propagated SPOKE Entry Vectors (PSEVs), can be created
for any group of subjects with a particular characteristic (ie.,
patient cohort). Here, we describe the creation of PSEVs for
patient cohorts selected using either discrete or continuous EHR
variables. PSEVs are vectors in which each element corresponds
to a node in SPOKE. Therefore, the length of each PSEV is equal
to the number of nodes in SPOKE. Furthermore, the value of each
element in a PSEV encodes the importance of its corresponding
node in SPOKE for a given patient cohort.

De-identified structured EHR data from 816,504 patients were
obtained from the UCSF Medical Center through UCSF Informa-
tion Technology Services Academic Research Systems. These
records were then filtered to only include patients that had been
diagnosed with at least one of the 137 complex diseases currently
represented in SPOKE, leaving 292,753 patients for further analysis.
Select structured data tables from the EHR were used to identify
EHR concepts that can be directly linked a node in SPOKE. These
points of overlap between the EHRs and SPOKE are called SPOKE
Entry Points (SEPs). The data tables were then used to create 3233
PSEVs, one for each identified SEP (see the Methods section). Each
structured EHR table contains codes, referred to as EHR concepts,
that can be linked to standardized medical terminology. EHR
concepts can be diagnostic codes (ICD9CM or ICD10CM),
medication order codes (translated to RxNorm), or lab codes
(LOINC). Although 3233 represents a sizable proportion (7.5%) of
all nodes in SPOKE, most nodes are not directly reachable, thus
potentially diluting the power of the network’s internal connectivity.
To address this challenge, a modified version of the random walk
algorithm was used to propagate all 3233 SEPs through the entirety
of the knowledge network, thus creating a unique PSEV (ie,
medical profile) for each of the selected clinical features in
the EHRs.

In the original random walk algorithm, a walker is placed onto
a given node in a network, and it can move from one node to
another as long as there is an edge connecting them. The
algorithm was adjusted in a way similar to topic-sensitive
PageRank!4, by weighing the restart parameter (1 - damping
factor) of the random walker toward nodes that are important for
a given patient population (cohort used for PSEV creation).
Hence, the importance of a given SEP (SEP;) is equivalent to the
proportion of patients in the cohort that had an EHR concept in
their records that mapped to SEP;. This modified version of
PageRank can be applied to any patient cohort.

Benchmarking PSEVs with BMI. To demonstrate that these
vectors capture biologically meaningful information, PSEVs were
created using body mass index (BMI = weight x height™2) (an
ubiquitous variable in the EHR) as the basis to define cohorts.
BMI is typically used to classify patients into four standard classes
(underweight, normal, overweight, and obese). Decades of
research have provided deep insight into both the phenotypic and
mechanistic manifestation of obesity. However, only the top-level
(phenotypic) information (i.e., BMI class) is captured in the
EHRs. We hypothesized that by using this method it would be
possible to integrate mechanistic and biological level data, thus
gaining additional insight into the characteristics of people clas-
sified into each obesity class.

When examining the distribution of BMIs across the UCSF
patient population, four groups are clearly distinguishable. These
natural subpopulations were used to separate patients into four
cohorts that aligned well with the standard BMI classes (Fig. 1a).
Since the BMI thresholds only differed from that of the standard
classes by —0.5 BMI, the four cohorts will be reference using the
names of the corresponding standard classes (underweight,
normal, overweight, and obese).
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patient BMIs at UCSF. Four BMI cohorts were created using the natural

boundaries of the BMI distribution (boxes I-1V: <18, 18-24.5, 24.6-29.5, and >29.6). Arrows at the bottom correspond to the BMIs that separate the

standardize weight classes. b Step 1: find the overlapping concepts betwee

n SPOKE and the patient data (EHRs). These are called SPOKE Entry Points

(SEPs). Step 2: choose any code or concept in the EHR to make cohort. Here, we have chosen patients with a high BMI (Cohort V). Then connect each
patient in the cohort to all of the SEPs in their records. Step 3: perform PageRank such that the walker restarts in the patient cohort. Iterate until desired
threshold is reached. Step 4: final node ranks are then used to create the weights in the Propagated SPOKE Entry Vector (PSEV)

Figure 1b illustrates the modified PageRank algorithm using
patients in the obese BMI cohort. First, the records from all
100,187 patients in the obese BMI cohort were extracted. Second,
connections were created between each of those patients and all
of their additional SEPs. By definition, this means connections to
any medication, diagnosis, or laboratory result that was present in
both that patient’s record and SPOKE. Third, a random walker
was initialized and allowed to either move to a neighboring node
(optimized damping factor = 0.9) or randomly jump to any SEP
with probability 8 (optimized § = 0.1). However, § was not evenly
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distributed among the SEPs (as in the original algorithm), but was
instead weighted based on how important each SEP was for the
cohort (Supplementary Fig. 1). This weight is akin to having the
random walker jumping to a random patient in the cohort and
traversing to one of that patient’s SEPs (Supplementary Fig. 1A).
Each iteration resulted in a rank vector that reflects the
proportion of time the walker spent on each node in the network.
In practice, for each iteration, this was calculated by taking the
dot product of the transition probability matrix and the rank
vector from the previous iteration (see the Methods section).
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Once the algorithm converged, the rank vector from the final
iteration was returned (bottom vector). This final rank vector is
called a PSEV.

We imagine SPOKE as a set of interconnected water pipes and
the SEPs as input valves. Then, the percentage of obese patients
that also have type 2 diabetes in their EHRs will determine how
much water is allowed to flow through the type 2 diabetes SEP
valve (a measure of its importance). Once all of the valves have
been calibrated to fit the obese patient population, water can then
flow to downstream nodes in SPOKE. Once the water reaches an
almost steady state, differential water flow will highlight
intersections of pipes (SPOKE nodes) that are significant for
obese patients. It should be noted that separating patients using
other unbiased methods for separating patients or simply treating
BMI as a continuous variable would lead to the same results
(Supplementary Fig. 2). Therefore, a priori knowledge about a
cohort is not necessary to create a meaningful PSEV.

Identifying phenotypic traits in PSEVs. The final PSEV is
representative of how important each SPOKE node is for a given
EHR concept based on both the connections in SPOKE and the
patients with that concept in their EHR. Therefore, a PSEV was
generated for each of the four BMI cohorts. Since each element in
a PSEV corresponds to a single node in SPOKE, it is now possible
to determine how important each SPOKE node is for each of the
BMI cohorts. To examine the significance of this observations,
values of the Disease elements in the PSEVs were compared for
each of the four BMI cohorts. The top Diseases in the PSEV of the
obese cohort were obesity, hypertension, type 2 diabetes mellitus,
and metabolic syndrome X. While not unexpected, the identifi-
cation of these diseases as the most important conditions for this
group of patients, without any reference to the mechanisms
underlying obesity present in the EHR, is noteworthy. These
diseases also correlated well with average BMI (r =0.75-0.95)
and when their ranks were plotted against average BMI, they
displayed some of the steepest slopes (slope = 5.4-6.7), suggesting
they were causally related.

To learn more about the relationships between BMI and these
potentially associated diseases, for each BMI class, we plotted the
average BMI (mean BMI per cohort) against the rank of these
Disease elements in the four respective PSEVs (Fig. 2a). The most
noticeable differences in the rank were observed for the Disease
element hypertension between the underweight and normal
cohorts (rank increases from 136 to 17), and the Disease element
obesity between overweight and obese (rank increases from 132
to 1). These makes sense given that hypertension was the most
prevalent disease in UCSF cohort, and many of the factors that
contribute to hypertension risk are also related to increasing BMI
and the BMI classification of obesity is very similar to the
threshold for our obese cohort. In addition, there was a major
difference (111 positions) in the rank of the type 2 diabetes
mellitus between the normal and overweight cohorts. This change
suggests that type 2 diabetes mellitus became associated with BMI
once patients have reached overweight status, and that an
increased BMI was one phenotypic manifestation of this
condition. Finally, metabolic syndrome X was highly ranked
(position 4) only in the obese cohort. However, it differed from
obesity in that the progression in rank between normal and
overweight was gradual, suggesting increased BMI as a risk factor
in metabolic syndrome X. In contrast, the rank of celiac and
Crohn’s disease progressively diminishes 116 and 108 positions,
respectively, between the underweight and obese cohorts. This
trend could be explained by the fact that weight loss is
symptomatic of both celiac and Crohn’s disease. Another Disease
that progressively moves down in rank with increased BMI was
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Fig. 2 PSEVs contain phenotypic and genotypic information. a BMI cohort
versus Disease rank. The top fourranked Diseases in the in cohort 1V's PSEV
were obesity, hypertension, type 2 diabetes mellitus, and metabolic
syndrome X. All four show a positive relationship with BMI. The opposite
trend was observed for celiac disease, Crohn's disease, and attention-deficit
disorder which were highly ranked in cohort I's PSEV. b FTO gene was
positively correlated with BMI. ¢ The number of overlapping genes between
the GWAS catalog for increased BMI (n =365) and the top 365 Genes in
each BMI cohort PSEV

attention-deficit hyperactivity disorder (ADHD). This negative
correlation was due to the fact that most of the medications used
to treat ADHD have side effects related to weight loss and loss of
appetite. These results show that the algorithm correctly
upweights phenotypes associated with high BMI in the PSEVs
for the overweight and obese cohorts while also downweighting
those phenotypes in the underweight and normal cohorts.
Furthermore, these results were replicated treating BMI as a
continuous variable instead of discrete classes (Supplementary
Fig. 2). This replication shows the robustness of this approach,
and is important given that most continuous variables in the
EHRSs are not associated with a fixed number of classes. It should
be noted that up until this point, BMI has been treated as a
continuous variable used to simply split patients into groups, and
the algorithm has been blind to the standardized classes
associated to those groups. BMI was chosen to illustrate the
utility of PSEVs because the consequences/traits of an abnormal
BMI are very well known. However, since a PSEV can be created
for any variable in the EHRs, they can also be used to reveal
phenotypic traits associated with less well-understood variables
and phenotypes.

PSEVs reveal genotypic traits and biological mechanisms. To
test whether the same trend was seen at the genotypic level, linear
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regressions were computed on the average BMI versus Gene rank.
Again, the genes that positively correlated with average BMI
(mean BMI of a cohort) were given the top prioritization in the
high BMI (obese) PSEV. An example of a gene that was positively
correlated with BMI is alpha-ketoglutarate-dependent dioxygen-
ase (FTO), also known as fat mass and obesity-associated protein,
is shown in Fig. 2b. To check if these genes were genetically
related to BMI, genes associated with increased BMI (not
necessarily obesity, just an average increase) were extracted from
the GWAS catalog (n = 365 mapped genes) and compared them
to the top 365 ranked genes in the PSEVs. Remarkably, the PSEV
for the obese cohort was significantly enriched in known BMI-
associated genes (p = 2.19E—10, binomial test; Fig. 2c). The PSEV
for the overweight cohort was also significant, while the BMI
cohorts corresponding to underweight and normal BMIs showed
no significant enrichment. Therefore, Gene elements that were
highly ranked in the overweight or obese BMI PSEVs had a
higher probability of harboring a susceptibility variant. These
results illustrate that PSEVs can learn new biologically mean-
ingful relationships.

PSEV:s preserve original SPOKE edges. After identifying that the
obese BMI PSEV was able to preserve the known gene expression
edges in SPOKE, we decided to check this with other concepts in
a high-throughput manner. To do this, we utilized the fact that
SEPs are SPOKE nodes that can be directly mapped to EHR
concept(s) to extract 3233 patient cohorts from the diagnosis,
medication order, and lab tables in the EHRs. PSEVs were then
generated for each of the cohorts. Then the top ranked nodes
(ranked per type) in each PSEV were examined (Supplementary
Fig. 1A-C). The majority of top ranked nodes in a given PSEV
were also first neighbor relationships in SPOKE. For example, the
multiple sclerosis (MS) Disease node is connected to 39 Anatomy
nodes (such as MS-LOCALIZES_DIA-Central Nervous System) in
SPOKE. Notably, there is 100% overlap between the top 39
ranked Anatomy elements in the MS PSEV and all actual MS
Anatomy neighbors (n=39). Similarly, for Symptom nodes
connected to MS (such as MS-PRESENTS_DpS-Fatigue), 80% of
first neighbor relationships are maintained in the top n-Symptom
elements of the MS PSEV. This means that although most of the
top nodes were the same, new relationships were prioritized based
on the symptoms experienced by individual MS patients at UCSF.
Next, the prioritizations of nodes that were not directly connected
in SPOKE were considered (Supplementary Fig. 3C). For
instance, multiple nodes related to the response to interleukin-7
were ranked among the top ten BiologicalProcess nodes and the
node for the structural constituent of myelin sheath in the top ten
MolecularFunction nodes. Though there was an abundance of
evidence supporting these relationships, there was neither direct
relationship in SPOKE nor was this information stored in
the EHRs, thus they must be learned during PSEV creation. These
results illustrate the ability of PSEVs to preserve the original
information from SPOKE while expanding its significance
in a biologically meaningful manner by reaching out to more
distant but biologically related nodes. Furthermore, this demon-
strates that PSEVs describe each EHR concept in multiple
dimensions and is true to the hierarchical organization of com-
plex organisms.

After identifying and implementing a method to embed EHR
onto the knowledge network, we sought to verify in a rigorous
manner that the obtained vectors were biologically meaningful
(i.e., that the expanded set of variables stemming from the EHRs
result in a network of related medical concepts). Next, we
demonstrate that the PSEV ability to learn genetic relationships
can be applied in a high-throughput fashion. In addition, a series

of benchmarks (Supplementary Note 1, Supplementary Figs 4-7)
show that PSEVs ability to learn connections can be applied to
other edge types, such as Disease-Disease (edges from MEDLINE
co-occurrence) and Compound-Compound similarity (edges
DICE similarity), Compound to drug-protein (molecular targets;
edges from DrugBank, DrugCentral, BindingDB), and SideEffect-
Anatomy (edges from MEDLINE co-occurrence).

PSEVs uncover specific Disease-Gene relationships. Because of
the multitude of concepts present in SPOKE, multiple paths can
connect any two nodes, thus providing redundancy. Thus, we
hypothesized that unknown relationships, like the GWAS genes
recovered in the high BMI PSEV, could still be inferred even if
some of the information was missing because the random walker
would traverse similar paths during PSEV computation. To
address this point, all of the Disease-Disease (e.g., MS-RESEM-
BLES_DrD-Amyotrophic Lateral Sclerosis) and Disease-Gene
edges  (MS-ASSOCIATES_DaG-IL7R  and  MS-DOWN-
REGULATES-PALLD) in SPOKE were removed and the PSEVs
were recomputed the Disease PSEVs (PSEVADD, ADG),

The resulting Disease PSEVs (PSEVAPD: ADG) were visualized
in a heatmap and clustered by Diseases and Genes (Fig. 3a).
Clearly defined groups of diseases can be identified in the
heatmap, many of which are known to share associated or
influential genes. For example, disease Cluster 4 contains mainly
neurological diseases, such as multiple sclerosis, Alzheimer’s
disease, narcolepsy, autistic disorder, and attention-deficit
hyperactivity disorder. The Gene cluster most characteristic of
Disease Cluster 4 contains 197 genes (Fig. 3b). Within this gene
cluster, 96 Genes were associated with at least one Disease in
Disease Cluster 4 (enrichment fold change = 2.0), 33 Genes were
associated with at least two diseases (enrichment fold change =
3.9), and 15 Genes were associated with at least three diseases
(enrichment fold change = 5.4; Fig. 3¢, d). These results support
the hypothesis that PSEVs encode deep biological meaning.

To validate that the recomputed PSEVs (generated without the
critical edges) were able to uncover genetic relationships among
the complex diseases in SPOKE, a Disease-Gene networks (DG)
using the top K Gene nodes for each Disease in PSEVAPD: ADG yyag
created, where K was equal to the number of known gene
associations for a given disease. In SPOKE, the ASSOCIATES_-
DaG edges represent known associations between Diseases and
Genes and were obtained from the GWAS Catalog!®, DISEASES!®,
DisGeNET!718, and DOAF!®. DG networks were generated using
either the original PSEVs (DGFSEV, blue) or the incomplete,
benchmarking PSEVADD. ADG (DG PSEVADD, ADG, green Fig, 4a).
These networks were compared against networks created using
three random matrices as a way to generate a null distribution:

PSEVRANDOM (DGRANDOM, pink distribution Fig. 4a), PSEV-
SPOKE SHUFFLED (DGSPOKE SHUFFLE, red), and PSEVSEP SHUFFLED

(orange, DGSEP SHUFFLE) Next, the number of overlapping edges
between each of the DG networks and the gold standard Disease-
ASSOCIATES_DaG-Gene (DGSPOKE)  edges (n=12,623) in
SPOKE were compared. When selecting the top K Genes using
only Genes with at least one ASSOCIATES_DaG edge (n = 5392),
both DGPSEV and DGPSEVADD, ADG ghared significantly more
edges with DGSPOKE than with any of the random networks
(Fig. 4a; average fold change 15.2 and 2.4 accordingly). This
suggests that redundancy in SPOKE paths can be used to infer
genetic relationships even when the original (direct) associations
are removed.

These results were even more striking when selecting the top
K genes using all genes in SPOKE (Fig. 4a inset; n = 20,945;
average fold change 40.6 and 4.5 accordingly). It should also
be noted that, unlike PSEVADPD: ADG| both PSEVSEP SHUFFLED
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Fig. 3 Disease cluster by genetic similarity. a Heatmap generated with the Disease PSEVADD. ADG (only using elements of Genes that associate with at least
one disease). The heatmap shows the Gene ranks (columns) within each of the 137 Disease PSEV's (rows). Both Diseases and Genes were clustered. Disease
cluster 4 (n =18) was enriched in neurological diseases and shown in dark purple. b Magnification of the 197 Genes found in a top Gene Cluster (Cluster 6)
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and PSEVSPOKE SHUFFLED yrere created without deleting the
Disease-Disease and Disease-Gene edges from SPOKE, therefore
the correct edges were present at least some of the time even in
the permuted networks, thus providing a higher level of
stringency.

Learning rate differs between edge types. One of the main
challenges with knowledge networks is that as long as our
knowledge is incomplete, the networks will suffer from missing
edges. The benchmark shown here illustrates the most severe
scenario, in which 100% of our knowledge about the relationships
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Fig. 4 Recovering deleted Disease-Gene edges. Prior to PSEVADD, ADG calculation, all of the Disease-Gene and Disease-Disease edges were deleted from
SPOKE. a The gold standard Disease-Gene network was made from the deleted edges in SPOKE. Plots show the number of Disease-Gene relationships using
each of the PSEV matrices that overlap with the gold standard networks. The pink distributions show the results from the permuted PSEV matrices

(PSEVRandom- 1000 iterations), while the arrows show the results from the original PSEV (blue), PSEVADD. ADG (green), PSEVSPOKE SHUFFLED (red), and
PSEVSEP SHUFFLED (orange). a The top K genes were selected from the set of genes in the gold standard network or (A inset) the entire set of gene nodes in
SPOKE. b The breakdown of top disease-gene relationships as knowledge (edges) were added back to the network. € To uncover how the deleted Disease-
Gene associations were recovered using the PSEVs, we retraced the shortest path between the most important SPOKE Entry points (SEPs) and the desired
Gene. Patients with Disease X put pressure on the SEPs (top). The SEPs that receive the most significant amount of pressure are colored by node type.
Information then flows through other nodes in SPOKE (middle) before reaching the Gene that was genetically associated to Disease X (bottom). d In the
GWAS catalog, schizophrenia and CSMD1 are associated. As outlined in b, the information flows from the significant SEPs of patients with schizophrenia

to CSMD1

among Diseases and between Diseases and Genes is removed. To
evaluate performance of the algorithm as the network gains
knowledge, edges were slowly added back to the network. We
found that the PSEVs learned well-established (ASSOCIATES
from the GWAS Catalog, DisGeNET, DISEASES, or DOAF)
Disease-Gene edges before the noisier (UP(DOWN)REGULATES
from StarGEO) edges (Fig. 4b). This is most likely due to the fact
that well-established (associated) Genes are necessarily drivers of
(not reacting to) a Disease. In practice, this would cause the
random walker keep going back to BiologicalProcess, Cellu-
larComponent, MolecularFunction, and Pathway nodes that are
important for a given Disease and thereby push information to
Genes involved in those activities. Alternatively, the random
walker could travel to Anatomy nodes that express Genes that are
associated with a Disease or through Compounds that are used to
treat (or even those that exacerbate) a Disease. This further
demonstrates that the relationships inferred within PSEVs are
biologically meaningful.

Retracing the path between SEP and genes. Finally, to under-
stand how the patient population at UCSF influenced the PSEVs
to correctly rank Disease-Gene associations, the shortest paths
were retraced between the significant SEPs of a given Disease and
the associated Gene (Fig. 4c; Methods). For example, the locus
containing CSMDI is associated with schizophrenia in the GWAS
Catalog. Figure 4d shows why the éene CSMD1 was one of the top
ranked genes in the PSEVADPD: ADG for schizophrenia. The weight
from the EHRs of schizophrenia patients at UCSF drives infor-
mation toward Anatomy, in which CSMDI is expressed or regu-
lated and Compounds that bind or regulate Genes that interact or
regulate with CSMD1. The combined weight highlights CSMDI as
a gene that is associated with schizophrenia. This example high-
lights the fact that inferences made with this method are not black
box predictions, but the information used to make the inference
can be traced back to the exact concepts. We believe that
knowledge-based clear-box algorithms, such as the one presented
here, will be pivotal in the advancement of precision medicine.
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Discussion

Uncovering how different biomedical entities are related to each
other is essential for speeding up the transformation between
basic research and patient care. When deciding the best ther-
apeutic management strategy for a patient, physicians often need
to think about the symptoms they present, their internal bio-
chemistry, and potential molecular impact and adverse events of
drugs simultaneously. A well-trained and experienced doctor will
likely prescribe the best course of action for that patient. How-
ever, significant heterogeneity is seen even across the best hos-
pitals on what best course of action means for a given patient,
resulting in poor consistency, a labyrinth of solutions, and ulti-
mately lack of evidence-based medicine. Since it is naturally
impossible for a single person to retain and recall all the necessary
and relevant information, an efficient manner to incorporate this
knowledge into the health-care system is needed. We argue that
since PSEVs can be created for any code or concept in the EHRs,
it is possible they could provide such solution. Using PSEVs, we
were able to integrate what we have learned from the last five
decades of biomedical research into the codes used to describe
patients in the EHRs. As a result, these embeddings serve as a first
step to bridging the divide between basic science and patient data.

Our method for the integration of EHRs and a comprehensive
biomedical knowledge network is based on random walk. Ran-
dom walk has been applied to a wide variety of biological topics,
such as protein—protein interaction networks2?, gene enrichment
analysis?!, and ranking disease genes??~24, In addition, random
walk has been used to infer missing relationships in large
incomplete knowledge bases?®>. Our method includes the gen-
eration of PSEVs, as a way to embed medical concepts onto the
network. The entire patient population at UCSF was used to
determine how important each node in SPOKE is for a particular
code. Therefore, each PSEV describes EHR codes in both a high-
level phenotypic and deeper biological manner.

We demonstrated that not only do PSEVs carry the original
relationships in SPOKE, but also were able to infer new con-
nections. This was illustrated by ability of PSEVs to recover
deleted Disease-Disease, Disease-Gene, Compound-Compound,
and Compound-Gene edges as well as to infer new relationships
between SideEffect and Anatomy nodes. Other than just showing
that PSEVs can learn relationships between different types of
nodes, these tests illustrated that PSEVs can learn relationships
between nodes at a variety of lengths apart from one another. By
correctly inferring the Disease-Gene and Compound-Gene edges,
we demonstrated that PSEVs could uncover higher-order rela-
tionships, such as those between a cohort and SPOKE. At the
same time, correctly inferring Disease-Disease and Compound-
Compound edges demonstrated that PSEVs could uncover rela-
tionships among EHR concepts themselves. Finally, by inferring
SideEffect-Anatomy edges, we proved PSEVs could find SPOKE-
level relationships. These tests served as our proof of principle
that PSEVs can learn multiple types of new relationships.

Furthermore, these results illustrate that, unlike black box
methods, PSEVs are capable of embedding phenotypic traits, such
as risks, co-morbidities, and symptoms. Other vectorization
methods like word2vec are able to learn relationships, however,
since the elements within the vector are unknown they cannot be
traced back to a given trait in the EHRs. Similarly, though it is
possible to identify these phenotypic traits using a statistical
analysis of a single cohort, the benefit to using PSEVss is that these
traits are identified in a high-throughput fashion for every con-
cept in the EHRs and outputs them in a format that can be used
in machine-learning platforms. PSEVs, and other clear-box
algorithms, allow us to integrate knowledge into data, therefore
generating deeper, informed characterizations that can be
understood by both humans and machines.

The main limitations of this approach mostly stem from the
potential inaccuracies in the EHRs and the incompleteness of the
knowledge networks (SPOKE). First, while maintaining the trust
and privacy of patients remains paramount, it has also made it
difficult for institutions to share even de-identified records. Not
being able to openly share data means that the patient population
used may not be representative of the general population, espe-
cially in terms of race, ethnicity, education, and income. Second,
many institutions do not use standardized medical terminology,
thus making it challenging to accurately map EHR concepts to
SPOKE. That being said, institutions that use EHR formats that
utilize standard terminologies, like the Observational Medical
Outcomes Partnership (OMOP) Common Data Model, can easily
implement this in their own system. While we did not use OMOP
in this work, efforts by our group and others are ongoing in this
direction. Finally, we are limited by the fact that as long as our
biomedical knowledge is incomplete, the same will be true for our
knowledge networks. In this regard, SPOKE is continually under
development and future versions will increase in complexity and
completeness. However, our results show that adding context
with the EHRs actually enabled us to learn new relationship in the
network, thereby growing our biomedical knowledge. We believe
that these limitations are inherent to this field of study and that
the development of tools, such as the one presented here, can
spur collaboration between institutions and help overcome these
limitations.

The potential uses of PSEVs are vast. We recognize that several
associations in EHRs can be uncovered using clinical features
alone, and several machine-learning approaches are already being
utilized to that end?®. However, since PSEVs describe clinical
features on a deeper biological level, they can be used to explain
why the association is occurring in terms of Genes, Pathways, or
any other nodes in a large knowledge network, like SPOKE.
Consequently, PSEVs can be paired with machine learning to
discover new disease biomarkers, characterize patients, and drug
repurposing. With implementation of some of these features, we
anticipate that PSEVs or similar methods will constitute a critical
tool in advancing precision medicine.

Methods

Electronic health records. UCSF supplied the EHRs in this paper through the
Bakar Computational Health Sciences Institute. Almost one million people visited
UCSF between 2011 and 2017. Out of 878,479 patients, 292,753 had at least one of
the 137 complex diseases currently represented in SPOKE. The EHRs were de-
identified to protect patients’ privacy. No IRB approval was required for this
research. For this paper, we collected the information on the cohort of patients with
complex diseases using de-identified LAB, MEDICATION_ORDERS, and DIAG-
NOSES tables. The LAB table contains the lab test orders and results, including the
actual measurements and the judgment of whether the results were abnormal. The
MEDICATION_ORDERS table contains prescriptions with dose, duration, and
unit. The DIAGNOSES table contains diagnosis and symptoms with ICD9 and
ICD10 codes. These tables are linked by Patient IDs (one unique ID for each
patient) and Encounter IDs (one unique ID for each encounter a given patient has
with our medical system).

Scalable precision medicine oriented knowledge engine. SPOKE is a hetero-
geneous knowledge network that includes data from 29 publicly available databases,
representing a significant proportion of information gathered over five decades of
biomedical research!2. This paper was powered by the first version of SPOKE, which
contains over 47,000 nodes of 11 types and 2.25 million edges of 24 types. The
nodes (Anatomy, BiologicalProcess, CellularComponent, Compound, Disease,
Gene, PharamacologicalClass, SideEffect, and Symptom) all use standardized ter-
minologies and were derived from five different ontologies. The sources and counts
of each node and edge type are detailed in Supplementary Tables 1 and 2.

Connecting EHRs To SPOKE. EHRs were connected to SPOKE Disease, Symptom,
SideEffect, Compound, and Gene nodes. To connect to Disease nodes, ICD9/10%7
codes in the EHRs were translated to Disease Ontology identifiers?82°. Since this
relationship was used to select the patient cohort, we manually curated the map-
pings. The connection to Symptom and SideEffect nodes was also made from
translating the ICD9/10 codes via MeSH identifiers and CUI, respectively. The
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relationship between Compound nodes and EHRs was derived by mapping
RxNorm to the FDA-SRS UNIIs (unique ingredient identifiers) to DrugBank
Identifiers. Lab tests were connected to multiple node types in SPOKE using the
Unified Medical Language System (UMLS) Metathesaurus®®. The LOINC3! codes
in the EHRs were mapped to CUI and then mapped to a second CUI (CUI2) using
UMLS relationships. A connection between LOINC and SPOKE would be made if
CUI2 could be translated to a node in SPOKE. CUIs with nonspecific relationships
were excluded. From the UCSF EHRs, 10,499 unique codes, found in the Diagnosis,
Medication Orders, and Labs tables, were mapped to 3527 nodes in SPOKE. Of
these, 3233 were seen in the complex disease cohort and were used as the SEPs.

Generating PSEVs. First, we initialized a n x n SEP transition matrix (where n =
the number of SEPs) and set every value to zero. Then for each patient in the
complex disease cohort, we created a binary vector of the SEPs in their EHRs and
divided it by the sum of the vector. This patient vector was then added to the rows
of the SEP transition matrix that corresponded to the SEPs found in the patient’s
EHRs. Once every patient was accounted for, the SEP transition matrix was
transposed and divided by the sum of the columns.

Next, we made an adjacency matrix using the edges in SPOKE to create a
SPOKE transition probability matrix (TPM), in which each column sums to 1. The
SPOKE TPM was then multiplied by 1—f where  equals the probability of
random jump. An extra row was then added to the SPOKE TPM and filled with 8.

Last, the PSEVs were generated using a modified version of the PageRank
algorithm!314, In this version of PageRank, for each PSEV, the random walker
traverses the edges of SPOKE until randomly jumping out of SPOKE (at
probability ) to the given SEP. The walker will then enter back into SPOKE
through any SEP using the probabilities found in the corresponding column of the
SEP transition matrix. The walker will continue this cycle until the difference
between the rank vector in the current cycle and the previous cycle is less than or
equal to a threshold (a). The final rank vector is the PSEV and contains a value for
every node in SPOKE that is equivalent to the amount of time the walker spent on
each given node.

Genes were selected from the GWAS Catalog if they were associated with an
increase in BMI and were genome wide significant.

Generating Disease PSEV matrix for benchmark. We created Disease benchmark
PSEV matrix (PSEVADPD: ADG) by removing the Disease-Disease and Disease-Gene
relationships in SPOKE prior to PSEV creation. We then used z-scores to nor-
malize the PSEVAPD: ADG and ranked the elements for each type of node.

Random Disease matrix. In order to test the importance of the edges between
SEPs and SPOKE as well as SPOKE’s internal edges, we generated three types of
random PSEVs. First, we created a completely random PSEV matrix by using the
Fisher-Yates method to permute the SPOKE nodes for each Disease PSEV
(PSEVTandom) Second, for each edge type in SPOKE, we randomly shuffled the
edges prior to PSEV creation (PSEVshuffled SPOKE) Third, we shuffled the edges
between the SEPs and SPOKE prior to PSEV creation (PSEVshuffled_SEP) 1t should
be noted that when creating PSEVshuffled SEP 4]] SPOKE relationships were
maintained. In addition, SEP-SPOKE edges were only shuffled once and therefore
any relationships coming directly from the merged EHRs to the SEPs would be
conserved. Once random PSEV's were created, they were normalized using z-scores.

Inferring Disease-Gene relationships from PSEVs. In addition to looking at
Disease-Disease relationships, we examined the ability of PSEVs to rank the Dis-
ease-ASSOCIATES_DaG-Gene relationships from SPOKE. The Disease-ASSO-
CIATES_DaG-Gene edges (n = 12,623) in SPOKE come from four sources: the
GWAS Catalog!®, DISEASES!®, DisGeNET!7-18, and DOAF'.

After z-score normalizing the PSEV matrix, within each Disease PSEV, Genes
were ranked 1 to 5392 or 20,945 when using only Genes that are associated with at
least one Disease or the full set of Genes accordingly, such that a Gene ranked 1
would denote the most important Gene for a given Disease based on the PSEV
matrix. Then for each Disease PSEV, K Genes were selected where K was equal to
the number of Genes are associated with a given Disease. The p-values (binomial
test) for ability of each Disease PSEV to correctly rank, the associated Genes were
then combined using Fisher’s method?2. This evaluation was applied to the original
PSEV, benchmark PSEV, and all three random networks (Fig. 4a, b).

Creating Disease-Gene heatmap. The PSEVADD; ADG matrix was filtered such
that it only contained Disease PSEVs and the gene elements that are associated
with at least one disease in SPOKE (m = 137, n = 5392). This was then used as
input into the seaborn clustermap package in python with the settings method =
“average” and metric = “euclidean”. Here, method refers to the method used to
calculate the linkage and metric is the way in which we calculate the distance
within the method.

Shortest paths between SEP to target nodes. To understand how the PSEVs
were able to recover deleted relationships, we traced from the target node back to
the contributions of each SEP. To achieve this, we z-score normalized the original

SEP transition matrix used to calculate the PSEVs. Then we created a SPOKE only
PSEV matrix (PSEVSPOKE-only) that forces the random walker to randomly restart
(B =0.33) from a single SEP. The PSEVSPOKE-only matrix was created using
SPOKE with deleted Disease-Disease and Disease-Gene edges or
Compound-Compound and Compound-Gene edges when recovering the paths for
PSEVADD; ADG 3nq PSEVACG ACG jccordingly. The PSEVSPOKE-0nly matrix allows
to identify the contribution of an individual SEP to any of the downstream nodes.
We then took the product of a given Disease or Compound transposed vector from
the SEP transition matrix with the PSEVSPOKE-only t4 generate contributions of
each SEP to the target node. The most important SEP were selected if they were in
the top 0.1 percentile of contributors. We then found the shortest paths between
the important SEPs and the target node.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The version of SPOKE used in the research is available on neo4j and github. The PSEV's
are available on the PSEVexplorer and github.

Code availability

The code used to create these PSEVs, as well as some example patient data, is available on
github. The code is written in python. Please read the README for information on
downloading and running the code.
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