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Abstract: The common vetch (Vicia sativa L.) seed is an ideal plant-based protein food for humans,
but its edible value is mainly limited by the presence of cyanogenic glycosides that hydrolyze to
produce toxic hydrogen cyanide (HCN), and the genes that regulate HCN synthesis in common
vetch are unknown. In this study, seeds from common vetch at 5, 10, 15, 20, 25, 30, and 35 days after
anthesis were sampled, and the seven stages were further divided into five developmental stages, S1,
S2, S3, S4, and S5, based on morphological and transcriptome analyses. A total of 16,403 differentially
expressed genes were identified in the five developmental stages. The HCN contents of seeds in
these five stages were determined by alkaline titration, and weighted gene coexpression network
analysis was used to explain the molecular regulatory mechanism of HCN synthesis in common
vetch seeds. Eighteen key regulatory genes for HCN synthesis were identified, including the VsGT2,
VsGT17 and CYP71A genes, as well as the VsGT1 gene family. VsGT1, VsGT2, VsGT17 and CYP71A
jointly promoted HCN synthesis, from 5 to 25 days after anthesis, with VsGT1-1, VsGT1-4, VsGT1-11
and VsGT1-14 playing major roles. The HCN synthesis was mainly regulated by VsGT1, from 25
to 35 days after anthesis. As the expression level of VsGT1 decreased, the HCN content no longer
increased. In-depth elucidation of seed HCN synthesis lays the foundations for breeding common
vetch with low HCN content.

Keywords: common vetch; seed development; HCN; transcriptome

1. Introduction

The global demand for protein is predicted to increase by 50% by 2050 [1,2]. As
the global population increases, the demand for protein from animal sources has grown.
With the expansion of livestock farming, overgrazing has contributed to a reduction in
terrestrial biodiversity and increased greenhouse gas emissions, climate change and global
warming [1]. To meet the increasing protein demand and to protect the ecosystem, more
sustainable protein foods are needed to partially replace animal sources of protein. Inex-
pensive plant proteins, such as legume seeds, can address the shortage of protein supply
and are environmentally friendly, making them ideal for developing countries with rapidly
growing populations [3].

Common vetch (Vicia sativa L.), a self-pollinated annual legume, with a genome size
of 1.5 Gb, is drought- and cold-tolerant and is widely grown as food for humans and
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livestock and used extensively for soil improvement. Common vetch is one of the most
genetically and phenotypically variable species of Vicia, with great variability in plant
morphology, maturity, stem length and thickness, leaf width, pod setting, pod and seed
size, and nutritional indicators [4–6]. It is certainly an attractive source of plant-based
protein for many regions of the world, especially for dryland agriculture [7]. Common
vetch has been found to have been food for early humans in archaeological investigations of
Neolithic and Bronze Age sites, as well as ancient Roman settlements in Europe. During the
famine years, people in certain regions of Europe and the Middle East detoxified common
vetch for consumption in brine [8]. Common vetch contains a high concentration of crude
protein in the seeds, ranging from 24% to 32% [2]. This concentration is comparable to
those in lentils (Lens culinaris M.) and chickpeas (Cicer arietinum L.) [9]. Common vetch
seeds contain 18 amino acids, with an essential amino acid/nonessential amino acid ratio of
approximately 0.7, which is much higher than the 0.38 recommended by the World Health
Organization [10]. In addition to its nutritional value, common vetch contains a large
number of chemical components with pharmacological activity [8,11]. However, common
vetch cannot be fed in large quantities to monogastric animals and is currently used mainly
as a feed for ruminants. It can be argued that a higher value return can be observed by
using it as a food crop for humans [2]. The market circulation of common vetch seeds as
edible legumes is hampered by a series of antinutritional factors. Chief among these factors
is a class of cyanogenic glycosides, named vicianin, which hydrolyze to produce hydrogen
cyanide (HCN) [12].

As a secondary metabolite with defense functions, cyanogenic glycosides have been found
in more than 3000 higher plants, including ferns, gymnosperms and angiosperms [13,14].
Cyanogenic glycosides are stored in vacuoles. When herbivores or pathogens damage
cyanogenic plant tissues, β-glucosidase and α-hydroxynitrile lyase degrade cyanogenic
glycosides in cells, generate and release toxic HCN, glucose, aldehydes or ketones, and
produce chemical defense reactions [15]. Cyanogenic glycosides have many structural phe-
notypes in different plants, such as amygdalin, dhurrin [16], linamarin and lotaustralin [17],
and vicianin [12]. The biosynthesis of cyanogenic glycosides in plants involves three kinds
of enzymes, including two cytochrome P450 genes, belonging to the CYP79 and CYP71
families, and a glucose transferase, UGT85B1 [18].

However, HCN synthesis in common vetch has rarely been reported. Moreover, which
genes are involved in the synthesis of HCN in common vetch is unknown. Therefore, in
this study, common vetch seeds at seven different developmental stages were sampled and
combined with transcriptomic data, HCN assay and weighted gene coexpression network
analysis (WGCNA) to establish a coexpression network of HCN synthesis genes. The
main regulatory genes of HCN synthesis during common vetch seed development were
identified. The molecular regulatory mechanism of HCN synthesis in common vetch seeds
was elucidated, which could provide a theoretical basis for breeding new common vetch
cultivars with low HCN content.

2. Results and Discussion
2.1. Morphological and Physiological Changes during Seed Development

Seven developmental stages of common vetch seeds, from generation to maturity,
were selected to study the gene expression patterns during seed development. From 5 days
to 25 days after anthesis (DAA), seed size (length, width and area) and weight gradually
increased, and seed water content gradually decreased, especially during the period of 15
to 25 DAA. The seed size and weight gradually decreased and tended to be stable as the
seed matured after 25 DAA (Figure 1A,B,D). The seed began to have viability after 15 DAA,
and its germination rate increased first and then decreased (Figure 1C). The germination
rate was the highest at 25 DAA, decreased gradually, and became stable after 30 DAA,
indicating that hard seeds appeared with the development and maturity of the seed coat
(Figure 1C) between 25 and 35 DAA. During the period of 5 to 15 DAA, the seeds were
dark green, changed to light green at 20 DAA, and turned to light brown from 25 DAA,



Int. J. Mol. Sci. 2022, 23, 2275 3 of 15

and black spots of different sizes appeared on the surface. After 30 DAA, the seeds turned
dark brown and were unchanged in later stages (Figure 1D).
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Figure 1. Morphology changes during seed development. (A) Changes in length, width and area
of seeds. (B) Changes in fresh weight, dry weight and water content of seeds. (C) Changes in the
germination rate of seeds. (D) Morphological changes at different developmental stages from 5 DAA
to 35 DAA in the seeds of common vetch. Scale bar = 5 mm.

Seed size and weight gradually increase as the cotyledons emerge and fill all areas of
the seed coat, prior to seed maturation. With seed maturity, water loss in the seed results
in decreases in seed size and weight until the seed is fully mature [19–21]. In the early
stage of seed development, the germination rate gradually increases as the seed embryo is
well developed. Then, the germination rate decreases after the seeds begin to mature. It
has been reported that the germination rate is negatively correlated with lignin content,
probably because the lignin-rich seed coat prevents the seed from absorbing water and
nutrients [22,23]. In this study, the germination rate of common vetch seeds was the highest
at 25 DAA, suggesting that harvesting seeds at this stage may reduce the hardness rate of
common vetch seeds.

2.2. Illumina Sequencing, Assembly and Functional Annotation

RNA-Seq was carried out with RNA, from seven stages of seed development (5 to
35 DAA), to gain an overall view of seed development at the transcriptional level. Analyses
were performed with three biological replications at each stage. After removing low-
quality data from each library, 137.63 Gb of clean data were generated (Table S1). The
Q30 of the raw data has a quality rating of 93.89% to 95.75%, suggesting high-quality
reads that are worth investigating further. Since common vetch had no available reference
genome, 144,277 transcripts and 44,934 unigenes were assembled by de novo assembly
of all 458,744,514 reads (Table S2). Eight candidate unigenes were randomly selected for
qRT–PCR validation, to verify the accuracy and repeatability of the transcriptome analysis
in the present study (Table S3). The FPKM values were significantly correlated with the
expression levels of these unigenes (Figure S1), indicating that the transcript data generally
matched the qRT–PCR results in the current study.

Pearson’s correlation coefficient was used to test the biological reproducibility of this
study, which showed that there was a high correlation between samples taken from the
same biological replicates, with values ranging from 0.812–0.927. However, the correlations
were different between the samples, with values ranging from 0.190 to 0.896, except at
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5 DAA and 10 DAA, 30 DAA and 35 DAA (Figure 2A). All samples collected during seed
development were subjected to principal component analysis (PCA). Consistent with the
correlation analysis, samples from different biological replicates were clustered separately,
with 5 DAA and 10 DAA, 30 DAA and 35 DAA clustered together. The seven stages
were classified into five developmental stages, S1 (5–10 DAA), S2 (15 DAA), S3 (20 DAA),
S4 (25 DAA) and S5 (30–35 DAA), based on correlation and principal component analyses
(Figure 2B).
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Figure 2. (A) Correlation analysis and (B) principal component analysis (PCA) of all samples during
seed development. The seven stages were classified into five developmental stages, S1 (5–10 DAA),
S2 (15 DAA), S3 (20 DAA), S4 (25 DAA) and S5 (30–35 DAA), based on correlation and principal
component analyses.

The 44,934 unigenes were annotated by performing BLASTX searches against the
sequences in the NR, SwissProt, GO, COG, and KEGG databases. As a consequence,
33,433 unigenes (74.40% of all unigenes) were assigned one or more putative functions
from these databases (Figure S2A, Table S4). A total of 28,696 unigenes were annotated
from the NR database. Further analysis of the matched sequences revealed that the com-
mon vetch transcripts were similar to those of Medicago sativa (34.7%), Trifolium pretense
(16.6%), Trifolium subterranean (14.6%) and Cicer arietinum (13.1%) (Figure S2B). Within
biological process classifications, unigenes were involved in cellular processes, metabolic
processes, and biological regulation. In biological process classifications, unigenes were
associated with cellular processes and metabolic processes. Cellular anatomical entities and
intracellular components constituted the most common classifications of cellular compo-
nents. In the classification of molecular functions, binding and catalysis were predominant
(Figure S3). The key GO terms corresponded to the fact that cells divide frequently during
seed development.

Because of the lack of sequencing data for Vicia species, the number of annotated
unigenes in all databases (NR (National Center for Biotechnology Information, MD, USA),
SwissProt (Expasy, Swiss Institute of Bioinformatics, Lausanne, Switzerland), GO (Golang,
Orlando, FL, USA), COG (National Library of Medicine, MD, USA), and KEGG (Kanehisa
Laboratories, Tokyo, Japan)) accounts for 74.4% of the total number of unigenes, which
should be sufficient. In previous studies, in other species, such as Dendrocalamus latiflorus
and Gardenia jasminoides, annotated single genes accounted for 55% and 69% of the total
number of unigenes, respectively [24,25]. Functional classification of common vetch genes,
based on GO annotations, identified genes related to ‘biological processes’, ‘cellular com-
ponents’ and ‘molecular functions’. Genes identified as ‘biological processes’ during seed
development in common vetch were also identified in Glycine max, Fagopyrum tararicum and



Int. J. Mol. Sci. 2022, 23, 2275 5 of 15

Artemisia sphaerocephala [20,26,27], indicating that these genes have significant metabolic
activity during seed development.

2.3. Differentially Expressed Genes during Seed Development

There were 16,403 DEGs identified by DESeq, based on FPKM values, of which 956,
3554, 6149 and 12,811 DEGs were identified in S2 vs. S1, S3 vs. S1, S4 vs. S1 and S5 vs.
S1; 560, 1890, 2940 and 6441 upregulated, and 396, 1664, 3245, and 6370 downregulated,
respectively (Figure 3A,B). The results indicated that the expression levels of genes dif-
fered significantly between stages of development in common vetch seeds. More than
10,000 unigenes were assembled, and thousands of DEGs were identified in the current
study, which is consistent with the results of previous studies with different varieties or
tissues of common vetch under different treatments [28,29].
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Figure 3. Summary of differentially expressed genes (DEGs) identified in the common vetch seed
transcriptomes. (A) Venn diagrams of DEGs detected in S2 vs. S1, S3 vs. S1, S4 vs. S1, and S5 vs.
S1. (B) Numbers of DEGs identified in S2 vs. S1, S3 vs. S1, S4 vs. S1, and S5 vs. S1. (C) KEGG
enrichment analysis with the DEGs during seed development. The * represents significantly enriched
pathways. (D) Gene expression patterns of the four pathways significantly enriched in DEGs of
common vetch seed.

KEGG pathways were identified to comprehensively understand the metabolic path-
ways involved in DEGs (Table S5). A total of 16,403 DEGs were annotated into 120 pathways,
of which the following four pathways were significantly enriched (q-value < 0.05): plant hor-
mone signal transduction, starch and sucrose metabolism, phenylpropanoid biosynthesis,
and flavonoid biosynthesis (Figure 3C).

Plant hormones are important signals that control seed development, maturation and
nutrient accumulation [30]. Previous studies have shown that plant hormones affect seed
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size and shape, [31–33] auxin biosynthesis and signaling, [34,35] starch biosynthesis, seed
coat development, [36,37] seed yield, and embryo growth [38]. Starch is the major form of
carbohydrate accumulation during seed development and is the main nutrient that enables
seed expansion [26]. Genes in the starch biosynthesis pathway, including SUS, UGPase,
AGPase, GBSS, SS, BE, and DBE, have been fully characterized [39]. Phenylpropanoids are
the largest component of plant secondary metabolites during seed development [40,41].
Flavonoids are one of the most widely studied nutrients in seeds, and common vetch is rich
in flavonoids [8,26]. In this study, the four significantly enriched pathways of plant hormone
signal transduction, starch and sucrose metabolism, phenylpropanoid biosynthesis, and
flavonoid biosynthesis included 118, 112, 88, and 32 DEGs, respectively (Figure 3D). Similar
pathways have been previously reported to be enriched, suggesting that genes in these
pathways play important roles in seed development [26,30,41].

2.4. HCN Content in Seed and WGCNA of HCN Synthesis Genes

As the seeds developed, the HCN content was observed to increase rapidly, from
2.58 mg/kg in S1 to 18.36 mg/kg in S3, which was the highest, with an increase of 85.95%
from S1 to S3. It then decreased slightly and reached 16.30 mg/kg at S5 (Figure 4), which
is higher than the safe level of 10 mg/kg, set by the World Health Organization (Geneva,
Switzerland) for cyanide content in cassava foods [42].
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“a, b, c” indicate significant differences at p < 0.05. S1 to S5 indicate the five developmental stages.

Among the DEGs of common vetch seeds at different developmental stages, a total of
745 HCN synthesis-related genes were identified (Table S6). To construct a weighted gene
coexpression network consisting of five modules, named green, turquoise, brown, blue
and yellow, WGCNA was used (Figure 5A). There were 27, 529, 45, 90, and 41 genes in
the green, turquoise, brown, blue and yellow modules, respectively. Another 13 genes in
the gray module were excluded (Figure 5B). Further analysis revealed that the correlation
coefficients between the modules and HCN content ranged from -0.783 to 0.455. In the five
modules, the turquoise module had the highest correlation coefficient with HCN content
and was significantly correlated (p < 0.001), suggesting that the turquoise module plays
a major role in HCN synthesis (Figure 5B). A correlation analysis between the module
membership (MM) and gene significance (GS) of the five modules was performed, in
which a significant correlation between MM and GS of the turquoise module was found
(R = −0.940, p = 3.13 × 10−257) (Figure S4). In the turquoise module, genes with high
MM tended to have high GS, and GS and MM exhibited a very significant correlation,
implying that genes of the turquoise module also tend to be highly correlated with HCN
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content. The above results indicated that the turquoise module played a critical role in the
gene network of HCN synthesis. The high correlation between the brown and turquoise
modules suggests that some genes in the brown module may also be involved in the
synthesis of HCN. Furthermore, WGCNA was used to search genes with similar expression
patterns to identify genes that may be involved in biological processes. In a previous study,
the coexpression network of seed mucilage-forming genes of Artemisia sphaerocephala was
successfully constructed using WGCNA, and a key module was identified [43].

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 7 of 15 
 

 

that genes of the turquoise module also tend to be highly correlated with HCN content. 
The above results indicated that the turquoise module played a critical role in the gene 
network of HCN synthesis. The high correlation between the brown and turquoise mod-
ules suggests that some genes in the brown module may also be involved in the synthesis 
of HCN. Furthermore, WGCNA was used to search genes with similar expression patterns 
to identify genes that may be involved in biological processes. In a previous study, the 
coexpression network of seed mucilage-forming genes of Artemisia sphaerocephala was suc-
cessfully constructed using WGCNA, and a key module was identified [43]. 

 
Figure 5. (A) Weighted gene coexpression network analysis (WGCNA) of HCN-forming genes. (B) 
Correlation of modules and sample. 

2.5. Key Regulatory Pathways for HCN Synthesis 
The KEGG pathway analysis of key module genes showed that the top ten pathways 

with gene numbers were phenylpropanoid biosynthesis, starch and sucrose metabolism, 
cyanoamino acid metabolism, flavonoid biosynthesis, brassinosteroid biosynthesis, 

Figure 5. (A) Weighted gene coexpression network analysis (WGCNA) of HCN-forming genes.
(B) Correlation of modules and sample.

2.5. Key Regulatory Pathways for HCN Synthesis

The KEGG pathway analysis of key module genes showed that the top ten pathways
with gene numbers were phenylpropanoid biosynthesis, starch and sucrose metabolism,
cyanoamino acid metabolism, flavonoid biosynthesis, brassinosteroid biosynthesis, flavone
and flavonol biosynthesis, isoflavonoid biosynthesis, cutin, suberine and wax biosynthesis,
zeatin biosynthesis, and stilbenoid, diarylheptanoid and gingerol biosynthesis, whose gene
numbers were twenty, nineteen, twelve, six, five, four, three, three, two and two, respec-
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tively (Table 1). Among the top ten KEGG pathways of key genes, flavonoid biosynthesis,
flavone and flavonol biosynthesis, isoflavonoid biosynthesis, and stilbenoid, diarylhep-
tanoid and gingerol biosynthesis belonged to secondary metabolite synthesis. Starch
and sucrose metabolism belonged to carbohydrate metabolism, and cyanoamino acid
metabolism belonged to amino acid metabolism. The above results were consistent with
the fact that cyanogenic glycosides are naturally occurring plant secondary metabolites,
derived from amino acids, which consist of a sugar moiety with an α-hydroxynitrile-type
aglycone attached to it [44,45]. Plant hormones are important factors in regulating sec-
ondary metabolite biosynthesis, and the application of jasmonic acid has been reported
to enhance cyanogenesis in lima bean (Phaseolus lunatus L.) by inducing the expression
of biosynthetic pathway genes [46]. In this study, hormone biosynthesis (brassinosteroid
biosynthesis and zeatin biosynthesis) was another key regulatory pathway affecting HCN
synthesis, suggesting that hormones can also regulate HCN synthesis in common vetch.
The specific mechanism of hormone regulation of HCN synthesis needs to be further in-
vestigated. Phenylpropanoids contribute to plant responses to biotic and abiotic stimuli,
and they are not only indicators of plant stress responses under different treatments but
also key mediators of plant resistance to pests [40]. The presence of the phenylpropanoid
biosynthesis pathway in the current study confirmed that the nature of HCN synthesis in
common seeds was a chemical defense.

Table 1. Top ten pathways of HCN synthesis genes.

Pathway Ko Pathway Gene Number

Phenylpropanoid biosynthesis ko00940 20
Starch and sucrose metabolism ko00500 19
Cyanoamino acid metabolism ko00460 12

Flavonoid biosynthesis ko00941 6
Brassinosteroid biosynthesis ko00905 5

Flavone and flavonol biosynthesis ko00944 4
Isoflavonoid biosynthesis ko00943 3

Cutin, suberine and wax biosynthesis ko00073 3
Zeatin biosynthesis ko00908 2

Stilbenoid, diarylheptanoid and gingerol biosynthesis ko00945 2

Genes with a greater GS and intramodular connectivity (kIN) play a more significant
role in modules [47]. In the present study, eighteen key regulatory genes were identified
from the key modules, using GS < −0.7 and kIN > 280 as criteria (Table S7). These eighteen
key regulatory genes were from four gene families, including glycosyltransferase family 1
(GT1), glycosyltransferase family 2 (GT2), glycoside hydrolase family 17 (GT17) and CYP71A,
and were designated VsGT1-1 to VsGT1-15, VsGT2, VsGT17 and VsCYP71A. In addition,
the expression patterns of eight of the key regulatory genes were selected and validated by
qRT–PCR (Table S3, Figure 6).

During hydrocyanic acid synthesis, the transformation of amino acids to aldoxime
is catalyzed by the P450 enzyme CYP79, and another P450 enzyme CYP71A is responsi-
ble for the subsequent conversion of aldoxime to hydroxynitrile. Hydroxynitrile is then
glycosylated and stabilized by UDP-glycosyltransferase (UGT85B1), resulting in the for-
mation of vicianin. When herbivores or pathogens damage plant tissues, β-Glucosidase
in the tissue meets and degrades vicianin, followed by α-Hydroxynitrile lyase, which
degrades intracellular vicianin, generating and releasing toxic HCN, as well as aldehyde,
i.e., a chemical defense reaction (Figure 7). The expression trends of genes related to HCN
synthesis were consistent and trended downward (Figure 8A). Among the fifteen VsGT1
genes, VsGT1-1, VsGT1-4, VsGT1-7 and VsGT1-14 were expressed at higher FPKM values
and decreased from 42.78, 44.18, 70.74 and 11.96 to 3.03, 1.49, 2.28 and 1.86 from S1 to S5,
respectively. Overall, VsGT1-1 and VsGT1-7 were expressed at higher levels in S1–S3 and
rapidly decreased from S3 to S5, and the remaining thirteen VsGT1 genes were expressed
at higher levels from S1 to S2 and rapidly decreased from S2 to S5. VsGT2, VsGH17 and
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VsCYP71A decreased from 22.37, 84.89 and 23.79 in S1 to 0.33, 0.16 and 1.06 in S5, respec-
tively. The expression levels of key regulatory gene families were analyzed (Figure 8A).
The VsGT1 gene family had the highest expression levels from S1 to S3, with 219.05, 148.48
and 47.94, respectively, which was consistent with the rapid synthesis of HCN in S1–S3
(Figures 4 and 8B). The expression levels of VsGT1, VsGT2, VsGH17 and VsCYP71A all
decreased continuously in S3–S5, with the expression levels of VsGT2, VsGH17 and Vs-
CYP71A decreasing more rapidly (Figure 8B). The above results indicated that VsGT1,
VsGT2, VsGT17 and CYP71A together, promoted HCN synthesis in S1–S3, with VsGT1-1,
VsGT1-4, VsGT1-11 and VsGT1-14 playing major roles. HCN synthesis was mainly regu-
lated by VsGT1 from S3 to S5. As the expression level of VsGT1 decreased, the HCN content
no longer increased.
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glycosyltransferase.
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3. Materials and Methods
3.1. Plant Materials

Healthy and plump seeds of the common vetch cultivar ‘Lanjian No. 3’ were provided
by Lanzhou University (Lanzhou, Gansu, China). All the seeds were sown in the exper-
imental field of Lanzhou University, at an elevation of 1520 m, with an average annual
precipitation of 350 mm and an average annual temperature of 6.7 ◦C. The plants were
single planted in a plot, and the row spacing and plant spacing were 50 cm. The flowers in
full bloom with dorsal petal fully expanded were marked, and then seeds were harvested
every five days until 35 days [28]. Finally, seeds at seven different developmental stages
(5–35 DAA) were collected. The seeds collected from three plants were mixed as a single
sample with three biological replications in each developmental stage. A total of 21 samples
were collected and immediately frozen with liquid nitrogen and then stored at −80 ◦C for
total RNA extraction.

3.2. Morphological and Physiological Characteristics of Seeds

Fifty seeds were randomly harvested from three plants for the determination of seed
length, width and area, and repeated three times. The seed length, width and area were
measured by VideometerLab 4 (Videometer, Horsholm, Denmark).

The seeds were harvested using the same method as above for the determination
of fresh weight, dry weight and germination rate. The fresh weight of each seed was
measured immediately after the seeds were harvested. Then, the seeds were dried at
60 ◦C to measure the dry weight of each seed, and the water content was calculated by
water content (%) = (fresh weight-dry weight)/fresh weight × 100. The dried seeds were
sterilized with 1.0% (v/v) sodium hypochlorite for five minutes and then washed with
distilled water three times. The seeds were placed on double-layer sterile filter paper
soaked in distilled water and placed in a 9-cm Petri dish. Then, the cells were germinated
at 20 ◦C and supplemented with distilled water every 24 h. The radicle protruding from
the seed coat was regarded as germination, and seeds that did not become imbibited after
14 days were counted as hard seeds.

3.3. HCN Content Determination

The HCN content in common vetch seeds was determined by alkaline titration. Twenty
grams of air-dried common vetch seeds were ground with a blender and transferred to a
Kjeldahl flask, and 200 mL water was mixed with the sample. The solution was distilled
after two hours. A flask containing 20 mL of 2.5% NaOH solution was used to collect
the distillation until it reached a definite volume. After adding 8 mL of 6 M NH4OH and
2 mL of 5% KI solution into the distillation, 0.02 M AgNO3 was used for titration with a
microburette. The HCN content was calculated as follows: HCN content (mg/kg) = mL of
0.02 M AgNO3 × 50/1.08 [48].

3.4. RNA Sequencing and Transcriptome Analysis

Total RNA was isolated using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) accord-
ing to the manufacturer’s instructions. Agarose gel electrophoresis and a NanoPhotometer
spectrophotometer (IMPLEN, Westlake Village, CA, USA) were used to determine the
concentration, quality and integrity of the isolated RNA. RNA samples meeting the re-
quirements (total RNA ≥ 1.0 µg, RNA concentration ≥ 50 ng/µL) were sent to Novogene
Co. Ltd. (Tianjin, China) for transcriptome sequencing on the Illumina HiSeq platform.
Quality control analysis of the raw reads was first performed with FastQC (Babraham
Institute, Cambridge, UK). Reads containing adapters, reads containing poly-N and low-
quality reads were removed from the raw data to obtain clean data (clean reads). The
Q20, Q30, GC content and sequence duplication level were also calculated for the clean
data. All downstream analyses were based on clean data with high quality. All 21 libraries
(5–35 DAA, three replicates per treatment) were merged into one library. De novo assem-
bly of the common vetch seed transcriptome was generated using Trinity software. All
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assembled unigenes were annotated in the Nr (NCBI nonredundant protein sequences), Nt
(NCBI nonredundant nucleotide sequences), Pfam (Protein family, European Molecular
Biology Laboratory, Barcelona, Spain), KOG (Health Sciences Communities, Pittsburgh,
PA, USA)/COG (Clusters of Orthologous Groups of proteins), Swiss-Prot (a manually
annotated and reviewed protein sequence database), KO (KEGG Ortholog), and GO (Gene
Ontology) databases.

Fragments per kilobase per million (FPKM) were used to estimate gene expression
levels. Principal component analysis of samples was performed on regularized logarithmic
reads. The DEseq package was used to identify differentially expressed genes (DEGs).
Unigenes with adjusted p-values < 0.05 and absolute value of log2 fold change ≥2 were
designated DEGs. ClusterProfiler was employed to perform GO and KEGG enrichment
analyses to infer the putative functions of DEGs.

3.5. Establishment of the Gene Coexpression Network

The R package (The R Foundation, Vienna, Austria) WGCNA V1.41-1 was used to
perform the WGCNA. An applicable soft-threshold power based on the scale-free topology
criterion was used to transform the correlation matrix between all genes into a signed
weighted adjacency matrix for calculating the topological overlap matrix (TOM). All genes
were then clustered using dynamic tree cuts to form modules with a minimum module size
of 20 genes.

3.6. qRT–PCR Analysis

Transcript-specific primers were designed with Primer 6 (Table S3) and synthesized
by Tsingke Biotechnology (Xi’an, China) in this study. Following this, qRT–PCR was
performed using 2xSG Fast qPCR Master Mix (Sangon Biotech, Shanghai, China) on a
CFX96 Touch™ Real-Time PCR Detection System (Bio-Rad, Hercules, CA, USA) under the
following parameters: 95 ◦C for 30 s, 39 cycles of 95 ◦C for 5 s and 60 ◦C for 30 s. The
common vetch actin gene (Unigene68614) was selected as an internal standard to calculate
relative expression levels by the 2−∆∆Ct method [28].

3.7. Statistical Analysis

Duncan’s multiple test (p < 0.05) was performed using SPSS software (version 21.0,
IBM, Amonk, NY, USA). Data were obtained from at least three independent biological
replicates. Heatmaps were generated using TBtools software [49].

4. Conclusions

In conclusion, eighteen key genes for HCN synthesis were identified, and the molec-
ular mechanism of HCN synthesis in common vetch seeds was proposed in this study.
During the development of common vetch, VsGT1, VsGT2, VsGT17 and CYP71A jointly
promoted HCN synthesis, from 5 to 25 days after anthesis, with VsGT1-1, VsGT1-4, VsGT1-
11 and VsGT1-14 playing major roles. We found that HCN synthesis was mainly regulated
by VsGT1 from 25 to 35 days after anthesis. As the expression level of VsGT1 decreased, the
HCN content no longer increased. This study provides a theoretical basis for the cultivation
of common vetch with low HCN content and provides a new solution to the growing
protein demand.
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