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A B S T R A C T

Mild traumatic brain injury (mTBI) can result in symptoms that affect a person's cognitive and social abilities.
Improvements in diagnostic methodologies are necessary given that current clinical techniques have limited
accuracy and are solely based on self-reports. Recently, resting state functional network connectivity (FNC) has
shown potential as an important imaging modality for the development of mTBI biomarkers. The present work
explores the use of dynamic functional network connectivity (dFNC) for mTBI detection. Forty eight mTBI pa-
tients (24 males) and age-gender matched healthy controls were recruited. We identified a set of dFNC states and
looked at the possibility of using each state to classify subjects in mTBI patients and healthy controls. A linear
support vector machine was used for classification and validated using leave-one-out cross validation. One of the
dFNC states achieved a high classification performance of 92% using the area under the curve method. A series
of t-test analysis revealed significant dFNC increases between cerebellum and sensorimotor networks. This
significant increase was detected in the same dFNC state useful for classification. Results suggest that dFNC can
be used to identify optimal dFNC states for classification excluding those that does not contain useful features.

1. Introduction

Mild traumatic brain injury (mTBI) symptoms can affect a person's
cognitive and social faculties. Although symptoms might resolve within
the first three months after the trauma, some patients continue having
related deficits that may persistent through their life (Levin and Diaz-
Arrastia, 2015). Mild TBI complications include chronic headaches,
dizziness, vertigo, difficulty concentrating, depression, irritability, and
impulsiveness (DeKosky et al., 2010). In spite of the important influ-
ence of mTBI in patients, misdiagnosis is common (Kristman et al.,
2014). According to the World Health Organization and the National
Academy of Neurology existing mTBI diagnosis methods provide lim-
ited evidence of their validity (Borg et al., 2004; Ruff et al., 2009).
Alternative diagnosis methods, some based on magnetic resonance
imaging, are motivating current research efforts that promise better
detection of mTBI (Huisman et al., 2004; Lipton et al., 2012; Narayana
et al., 2015; Vergara et al., 2017). Further refinement of these new
technologies is important to achieve performances applicable in clinical
settings.

An important observation in mTBI is the existence of

microstructural axonal injuries affecting white matter in areas in-
cluding genu and splenium of the corpus callosum, the corona radiata,
and the internal capsule (Arenth et al., 2014; Holli et al., 2010;
Huisman et al., 2004; Ling et al., 2012). Consequently, white matter
injuries can also affect the connectivity among grey matter areas,
translating into dysfunctional connectivity (Hillary et al., 2014; Mayer
et al., 2015a; Sharp et al., 2014). Dysfunctions have been found in mTBI
patients in the default mode network (DMN) (Mayer et al., 2011; Sours
et al., 2013; Zhou et al., 2012). A set of weaker functional connectivity
observations have been found between several pairs of brain areas in-
cluding DMN-basal ganglia, attention-sensorimotor, attention-frontal,
and within the sensorimotor networks (Vakhtin et al., 2013). The tha-
lamus, as an important area of information relay, has been involved in
abnormal functional connectivity including thalamo-thalamo, thalamo-
frontal, and thalamo-temporal circuits (Tang et al., 2011; Zhou et al.,
2014). Slobounov et al. found connectivity disruptions among primary
visual, hippocampal, and dorsolateral prefrontal cortexes (Slobounov
et al., 2011). In contrast, increased connectivity has been observed in
the cerebellum (Nathan et al., 2015). These findings show a picture of
important dysfunctions distributed through cerebrum and cerebellum
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that might be used as important features for the detection of mTBI.
Since abnormal connectivity in mTBI might not be specific to a brain
area, previously observed dysfunctions might need to be treated as an
ensemble rather than considering separate parts of the brain.

Our group has found evidence that including a large ensemble of
functional connectivity differences in one analysis can be promising for
the development of mTBI biomarkers (Vergara et al., 2017). Ad-
ditionally, the same study found that changes in static functional net-
work connectivity (sFNC) were statistically significant among cere-
bellum, precuneus, temporal and supplementary motor area (SMA) in
mTBI patients during the semi-acute stage. However, high accuracy in
discriminating mTBI was only achieved after including a large set of
functional connectivity assessments with relatively weak group differ-
ences. The sFNC study was based on the Pearson correlation coefficient,
one of the most simple and widely utilized measures of functional
connectivity (Allen et al., 2011). Temporal correlation between two
areas of brain is measured in relatively long time periods of approxi-
mately 5min or more. One limitation of this method is that sFNC re-
presents a summary of the connectivity over the considered time in-
terval, but excludes temporal dynamics from the analysis (Hutchison
et al., 2013). In spite of assuming static connectivity, sFNC achieved
high classification performance, 84% area under the curve (AUC), using
a group of 96 samples (48 mTBI and 48 matched healthy controls).

The study of temporal changes of functional connectivity among
spatially separated areas of the brain has been hypothesized to provide
important information for the understanding of neurodegenerative
diseases that might not be accessible through static connectivity
(Sakoğlu et al., 2010). The dynamic connectivity analysis of resting
state data has revealed the existence of short lived coactivation patterns
occurring in temporal succession (Allen et al., 2014). While sFNC could
be seen as an aggregation of occurring dynamic changes, a mapping
from observed dynamic coactivations to the pattern observed in sFNC is
not easy to define. One of the critical reasons for this difficulty is that
methods for the estimation of dynamic connectivity may include non-
linear operations such as clustering (Hutchison et al., 2013). Thus, re-
sults from both techniques might be different and must be compared to
determine differences in their performance as biomarkers.

Here we have reanalyzed the resting state data from our previous
study (Vergara et al., 2017) using a dynamic functional network con-
nectivity (dFNC) approach (Allen et al., 2014; Hutchison et al., 2013;
Yaesoubi et al., 2015). Whole brain connectivity was separated into
dynamic states (a finite set of coactivation patterns), each carrying
different connectivity characteristics. We hypothesize that some states
might be better biomarker candidates than others. The final objective of
the current analysis is to identify dFNC states strongly affected by mTBI
and utilize these effects as biomarkers. In order to discriminate mTBI
subjects from healthy controls we applied a support vector machine and
cross-validated the results.

2. Material and methods

2.1. Subjects

The sample cohort has been utilized previously to study different
sets of brain data modalities (Ling et al., 2012; Mayer et al., 2015b)
including analyses of static and dynamic connectivity (Mayer et al.,
2015a; Vergara et al., 2017). Data from one hundred subjects were
available. Four subjects were excluded due to high movement variance
for a total of 96 subjects. In this cohort, a total of 48 mTBI patients and
48 healthy controls (HC) were matched by sex, age (up to 3 years) and
years of education with no significant group difference (p > 0.05). The
Wechsler Test of Adult Reading (WTAR) was included as clinical vari-
able with significant differences between HC and mTBI subjects.
Table 1 displays more complete information about these demographics.

The mTBI patients went through clinical (mean day post-in-
jury= 13.9 ± 4.9 days) and brain imaging (mean day post-

injury=14.0 ± 5.3 days) evaluations within 21 days of injury. The
maximum time between clinical and imaging sessions was 6 days (mean
interval between sessions= 1.3 ± 1.6 for the mTBI group).Patients
were recruited from local emergency rooms with inclusion criteria
based on the American Congress of Rehabilitation Medicine. Subjects
classified as mTBI had a Glasgow Coma Scale (Teasdale and Jennett,
1974) between 13 and 15, a maximum of 30min loss of consciousness
(if present), and a maximum of 24 h post-traumatic amnesia (if pre-
sent). Subjects were excluded if there was a history of neurological
disease, major psychiatric disturbance, and additional closed head in-
juries with>5min of lost consciousness, additional closed head injury
within the past year, learning disorder, ADHD, or a recent history of
substance abuse/dependence including alcohol. All participants pro-
vided informed consent according to the Declaration of Helsinki and the
institutional guidelines at the University of New Mexico.

2.2. Imaging protocol

All images were collected on a 3 Tesla Siemens Trio scanner. Each
participant completed a 5-minute resting state run using a single-shot,
gradient-echo echo planar pulse sequence (TR=2000ms; TE= 29ms;
flip angle= 75°; FOV=240mm; matrix size= 64×64). Foam pad-
ding and paper tape were used to restrict motion within the scanner.
Thirty-three contiguous, axial 4.55-mm thick slices were selected to
provide whole-brain coverage (voxel size: 3.75×3.75×4.55mm)
during the resting state scan. The first five images were eliminated to
account for T1 equilibrium effects; 145 images were selected for further
analysis. Presentation software (Neurobehavioral Systems) was used for
stimulus presentation and synchronization of stimuli with the MRI
scanners. Subjects were instructed to passively stare at a foveally pre-
sented fixation cross (visual angle= 1.02°) for approximately 5min
and to keep head movement to a minimum.

2.3. fMRI pre-processing

Preprocessing and other analyses were similar to our previous
publication and are therefore only briefly presented here (Vergara
et al., 2017). Data were pre-processed using statistical parametric
mapping (Friston, 2003) (SPM v5: http://www.fil.ion.ucl.ac.uk/spm)
including slice-timing correction, realignment, co-registration, and
spatial normalization and then transformed to the Montreal Neurolo-
gical Institute standard space. For despiking we utilized the command
3dDespike from the software Analysis of Functional NeuroImages (AFNI
v17.1.03). The time courses were also orthogonalized with respect to
the following: i) linear, quadratic, and cubic trends; ii) the six rea-
lignment parameters; and iii) realignment parameters derivatives. A full
width at half maximum Gaussian kernel of 6mm was then used for
smoothing. Data from all subjects were subject to a gICA (Calhoun
et al., 2001; Calhoun and Adali, 2012) using the GIFT software (GIFT
v4: http://mialab.mrn.org/software/gift/) to obtain a set of function-
ally independent components. Each independent component delimits a
network of brain regions that may be either adjacent or spatially se-
parated. Given the resting state nature of the fMRI data the components
are designated as resting state networks (RSNs) (Calhoun et al., 2008).
The data of each RSN consists of a spatial map of involved brain regions
and one associated time course characterizing temporal behavior. The
gICA technique find a set of independent RSNs, but it is not designed to
estimate how many RSNs should be considered. RSNs should be in-
dependent of each other as well as replicable, but the number of RSNs
requested from gICA may change these characteristics. The software
package ICASSO (Himberg and Hyvarinen, 2003; Himberg et al., 2004),
currently integrated in GIFT, was utilized to assess the quality of the
RSNs. In addition, ICASSO runs gICA multiple times (10 times in our
case) to pick the centroid result, thus mitigating the issue of multiple
answers for each random starting point. ICASSO supply an R-index as a
measure of compactness and separation among RSNs, with lower
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magnitude indicating better features. In addition, ICASSO calculate a
quality index per RSN in the range [0 1] with higher values indicating
better components. The number of components was determined to be
70 using the version of ICASSO implemented in the GIFT package
(Himberg et al., 2004; Ma et al., 2011) such that the overall R-index is
close to the minimum and the quality index of any given RSN is above
0.7. The minimum R-index is an indicator of the best number of com-
ponents as suggested by Himberg et al. (Himberg et al., 2004). How-
ever, the same author recommends high RSN quality indexes (Himberg
and Hyvarinen, 2003). The procedure consisted of running gICA with
different numbers of components and selecting the lowest R- and the
highest RSN quality indexes. This setup provided good consistency
trade-off between RSN quality and number of components considering.
A fifth-order Butterworth band-pass filter [0.01 0.15] Hz was applied to
the time courses of each component as it has been previously proposed
in the literature (Allen et al., 2014; Allen et al., 2011; Miller et al.,
2016).

Artifactual components were detected and discarded based on their
frequency power spectrum content following the procedure in (Allen
et al., 2011). RSNs were also manually inspected and classified into
broader categories or discarded if their main activation occurs in areas
of white matter or cerebrospinal fluid. A subset of 48 RSNs was se-
lected. Spatial maps and MNI coordinates for the selected RSNs are
displayed in Supplementary Fig. 1. These RSNs were organized in nine
groups: subcortical (SBC), cerebellum (CER), auditory (AUD), sensor-
imotor (SEN), visual (VIS), salience (SAL), default mode (DMN), ex-
ecutive control (ECN) and language (LAN).

A dFNC analysis was performed using the dynamic FNC Toolbox
(dFNC v1.0a) available in the GIFT package. The dFNC sliding window
size was set to 15 TRs (30 s) of a rectangular window convolved with a
Gaussian (σ=3 TRs). To find dFNC states we utilized k-means clus-
tering. The number of clusters was selected by running k-means for
values of k from 2 to 9 and using the elbow criteria. The clustering
index results for different k-values used to determine the number of
states can be found in Supplementary Fig. 2. The number of states was
determined to be 4. For each subject, the k-means algorithm provided a
match between cluster membership and moments in time. We separated
the time intervals belonging to each state for each subject. A

representative dFNC matrix for each state was calculated on each
subject by averaging dFNC matrices of the same state. Information on
temporal state membership by subject can be found in Supplementary
Fig. 3. Subsets of subjects were separated for each state based on the
temporal membership and used for further analysis. Not all subjects
visited all states, thus the total number of subjects on each state varies
and is less than the 96 available subjects. Distribution of subjects among
dFNC states, as well as state-wise demographic information, is dis-
played in Table 1. Years of education in State 4 exhibited significant
group difference. All dFNC states had significant WTAR differences
between HC and mTBI.

2.4. Diagnosis performance

We seek dFNC differences between mTBI and HC on each state se-
parately. A two sample t-test was used for each dFNC, i.e. each element
on the dFNC matrix, within a given state. As previously explained, each
subject has a representative dFNC matrix for each state visited. Since
not all subjects visited all states, we utilized the available subject re-
presentative dFNC matrices to perform 1128 (since there are 48 RSNs
there are 48 ∗ 47/2=1128 dFNC connectivity values) t-tests in each
state. The p-values were corrected using the false discovery rate (FDR)
and significant group differences assessed at p < 0.05. The set of 1128
t-values in each state were saved for later use. A linear support vector
machine (LSVM) was utilized to classify subjects into mTBIs and HCs on
each of the dFNC states. The least square method was used to solve the
LSVM with a soft margin parameters C= 0.1. Classification accuracy
was assessed using the area under the curve (AUC) measure.

Since not all subjects visited all states, only the subset of subjects
within a given state was used for classification. The set of subjects for
each state was the same as that used for the t-test group analysis. The
first analysis applied an LSVM for each state. We utilized the whole set
of 1128 correlations as classification features. Since the total number of
samples is low (96 samples), and state subsets have fewer subjects, we
used a leave one out cross validation (LOOCV) to measure one AUC per
state. Each iteration consisted of separating the 1128 dFNC values from
one subject to be used as testing data and using the remaining data to
train a LSVM. Classification was performed by feeding the testing data

Table 1
Demographics per dFNC States. The * symbol indicates significant difference. Differences of sex were evaluated using Fisher's exact test (Routledge, 2005).

HC mean HC std mTBI mean mTBI std t-Value (mTBI-HC) p-Value

All subjects
Sex Males= 23 Females= 25 Males= 23 Females= 25 1.00
Age 27.40 8.96 27.79 9.18 0.21 0.83
Edu 13.92 2.13 13.13 2.25 −1.77 0.08
WTAR 55.50 7.40 50.10 8.74 −3.30 *0.0014

State 1
Sex Males= 21 Females= 22 Males= 16 Females= 21 0.66
Age 27.84 9.31 28.03 9.23 0.09 0.93
Edu 14.05 1.96 13.14 2.34 −1.90 0.06
WTAR 56.13 7.31 50.50 8.23 −3.26 *0.0016

State 2
Sex Males= 22 Females= 21 Males= 23 Females= 23 1.00
Age 27.77 9.37 27.98 9.28 0.11 0.92
Edu 13.79 2.05 13.17 2.24 −1.35 0.18
WTAR 55.56 7.28 50.24 8.83 −3.09 *0.0027

State 3
Sex Males= 10 Females= 10 Males= 15 Females= 11 0.77
Age 28.40 10.94 27.04 8.35 −0.48 0.63
Edu 13.35 2.41 12.65 2.35 −0.99 0.33
WTAR 57.70 6.51 47.65 9.76 −3.97 *0.0003

State 4
Sex Males= 12 Females= 14 Males= 13 Females= 11 0.78
Age 27.73 9.66 27.92 10.64 0.06 0.95
Edu 13.92 2.17 12.58 2.39 −2.08 *0.04
WTAR 55.50 7.39 48.95 8.33 −2.94 *0.0050

V.M. Vergara et al. NeuroImage: Clinical 19 (2018) 30–37

32



to the trained LSVM. This procedure was applied to all subsets of sub-
jects corresponding to each state. These results will allow us to de-
termine the LSVM performance expected from each state.

A more complete analysis was implemented performing feature and
state selection on the training sample of each of the LOOCV iterations.
After leaving one testing sample out, an optimization algorithm was
applied to the set of training samples in a secondary nested LOOCV
loop, as it has been previously utilized (Hahn et al., 2015; Vergara
et al., 2017; Whelan et al., 2014), to each combination of feature set
and state. If the left out sample was not found in a given state then this
state was not included in the nested optimization loop. Feature selec-
tion was driven by the t-values previously obtained. In this case t-values
larger than a t-threshold were chosen. Six different t-thresholds were
tested in the training set resulting in different number of features for
each LOOCV loop. The combination of dFNC state and t-threshold with
the largest AUC of all nested LOOCV loops was then selected to classify
the left out sample. This way, a final classification performance was
obtained along with the parameter stability. This stability is based on
how consistent a given parameter (t-threshold and dFNC state) was
chosen in the LOOCV.

3. Results

Centroids for each of the four dFNC states are displayed in
Fig. 1(a–d). The figure includes the occupancy rates (Fig. 1e) expressed
in percentage with State 1 having the largest occupancy. Fig. 1f in-
cludes the sFNC matrix for visual comparison with the dFNC states. For
each subject, a representative dFNC state was calculated by averaging
all dFNC windows belonging to the same state. However, not all dFNC
states were detected in all subjects. The number of subjects entering
each state was counted and included in Fig. 1e. In this case most of the
subjects (89 out of 96) visited State 2 and State 1 (80 out of 96), which
are also the states with largest occupancy rates. A total of 46 subjects
visited State 3 and 50 visited State 4. The number of controls and mTBI
subjects are similar in each state indicating that although having a re-
duced number of subjects, both groups are equally represented.

Two sample t-tests were performed on each of the 1128 mean dFNC
correlations (48 ∗ 47/2) from each of the 4 states. Mean dFNC matrices
for each group (HC and mTBI) along with t-value matrices are included
in Supplementary Fig. 4. The p-values were corrected using false dis-
covery rate (FDR). Only two group differences were found in State 2
where mTBI exhibited stronger dFNC compared to controls. The t-test
results are illustrated in Fig. 2 displaying the location of RSN peaks. In
addition, a regression model with sex, age, education and WTAR as
independent variables was performed. The sex regressor was significant
in both cases and education only for the RSN pair R Lob.VIIa Crus I –
SMA/Paracentral. More information is provided in Table 2 where MNI
coordinates for peaks, t- and p- values are provided. Although there was
difference between HC and mTBI, the clinical variable WTAR had no
significant result in the regression model. This might be linked to the
lack of cognitive or language brain areas involved in the regression test.
These two group differences were found in similar areas previously
reported in static FNC (Vergara et al., 2017), but in these dFNC results
the effect size is larger. Finding these outcomes is important because it
points to the source of the effect as a strong dysfunction in State 2.
Although being strongly related, there is no guarantee that static and
dynamic connectivity will be sensible to the same dysfunctions. One
can consider dFNC to be more specific than static FNC since it is un-
packing temporal features otherwise averaged in static FNC measures.
Similarly, static FNC exploits information from all dFNC states by ag-
gregating features which together exhibit different properties than dy-
namic features. This can explain why the dynamic analysis replicated
only two out of five effects previously found in the static analysis
(Vergara et al., 2017), but with a higher effect size since the features
might be specific to State 2. Note also that individual state connectivity
is only one dimension of dFNC, for example, occupancy rate is a

parameter that is not possible to estimate in static FNC but which re-
presents a natural parameter to study when analyzing resting fMRI
data. Fig. 2 also displays a matrix with all the t-values obtained in-
dicating the FDR significant ones with circles. The t-value matrix por-
trays a trend of increased connectivity between cerebellum and cere-
brum, but also an uncorrected trend including connectivity differences
in DMN with SEN; LAN with SEN and VIS; ECN with SAL, VIS and SEN.

We performed an initial classification on dFNC without feature se-
lection separately for each state to get an idea of the predictive power
for each state. Classification accuracy for each state was: State 1 (52%),
State 2 (92%), State 3 (58%), and State 4 (52%). Because State 2 ex-
hibited the largest AUC as well as significant group differences, we
included the mean LSVM weights matrix in Fig. 2. Since one set of 1128
LSVM weights was obtained from training the classifier on each LOOCV
loop, each weight was averaged over the 89 iteration outcomes. Each
weight represents the importance of a feature in the classification
performance. As expected, the two significant dFNC differences had
also high LSVM weights. Another similarity is that dFNC and LSVM
weights among RSNs in SEN and VIS groups are overall not significant
and weak contributing little with the classification. Although State 2
exhibits the largest AUC and largest number of subjects (89), it is ne-
cessary to cross validate such selection. In addition, we would not be
able to classify all 96 samples using only State 2. Similar to our previous
report (Vergara et al., 2017), we applied a nested leave-one-out cross
validation (LOOCV) loop (2 loops) to optimize the choice of the best
state to classify the left out sample. We also added a feature selection
step implemented using t-value thresholds. In this implementation,
dFNC cells with absolute t-values (2 sample t-tests for group difference
in the training set) larger than a threshold were selected. Six different
[0.0 0.25 0.50 0.75 1.0 2.0] thresholds were tested. The inclusion of the
0.0 threshold allows comparing the selection of all features against
selecting a fewer number of features. After leaving one sample out,
twenty four different configurations (4 states and 6 t-thresholds) were
tested using additional and nested LOOCV loops. The nested LOOCV is
illustrated in Fig. 3.

Fig. 4 displays a histogram of choices from the nested LOOCV in
Fig. 3. Only State 1 and State 2 were chosen for classification. These two
states have lower dFNC strength than State 3 and State 4. State 2 has
the largest group differences, as detected by the significant t-tests,
providing evidence to prefer this state for classification. State 1 fol-
lowed State 2. However, significant differences were not detected in
State 1, similar to what happened in State 3 and State 4. The total AUC
considering all samples, states and thresholds was 87.5% with State 2
driving the performance as the preferred state. For comparison, we
applied nested LOOCV and LSVM to the static FNC matrix. Nested
LOOCV was used to select the appropriate t-threshold used in feature
selection. Although this result has been previously reported in (Vergara
et al., 2017) with an AUC of 84%, it was necessary to recalculate this
value because the preprocessing was different for the current analysis.
Specifically, despiking was performed by interpolation instead of cen-
soring spiky time courses. In addition, the number of components is not
the same. Nevertheless, the sFNC classification was 82% which is very
similar to the value previously reported. We utilized ten thousand
bootstrap iterations for both sFNC and dFNC and compared the results
utilizing a t-test resulting in a significant performance difference. A
histogram of the bootstrap outcome is presented in Supplementary
Fig. 5.

4. Discussion

We have previously determined that FNC contains important in-
formation useful for identifying subjects with mTBI during the semi-
acute stage (Vergara et al., 2017). However, the FNC in that study was
static, i.e. calculated over a period of 5min. Static connectivity de-
monstrated higher classification accuracy when compared to other
modalities on the same cohort, but it does not consider temporal
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is also displayed where similarities with the t-value matrix can be observed.
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variations of connectivity. This static assumption ignores the dynamic
properties of the brain. In contrast, the results presented in this current
work include brain dynamics in an attempt to improve classification
performance. The result was a significantly higher performance for the
dFNC (87.5%) as compared to the sFNC (82.0%). The better perfor-
mance achieved by dFNC was likely due to identification and separate
analysis of each state. Numerical results indicated the existence of op-
timal dFNC states for classification. When the LSVM was applied within
State 2, the performance was higher (92%) compared to classification
utilizing all available states. Furthermore, State 2 not only was the sole
state with significant group differences in connectivity, but was also
consistently chosen to classify the testing samples when possible. These
outcomes lead us to believe that State 1, State 3 and State 4 were not
particularly useful for classification. The main characteristic of State 3
and State 4 was their low number of samples. Little can be done against
this sample deficiency since the dFNC analysis is data driven having an
unpredictable number of samples on each state. However, State 1 did
not suffer from the curse of sample deficiency indicating a dFNC state
with little information useful for classification. Arguably, the use of
dFNC analysis might have worked as a way to separate useful features
(in this case State 2 features) from less useful features (specifically those
in State 1).

Classification features were selected based on correlation values
requiring two RSNs to be defined thus hampering feature selection
based on RSNs. Since the features were estimated from correlations,
each requiring a pair of RSNs, there was no RSN that could be discarded
without eliminating a chosen correlation (or selected feature) with
another RSN. This is in line with the idea that functional connectivity
effects in mTBI patients can be spread across many parts of the brain

(Iraji et al., 2016; Stevens et al., 2012). On the other hand, our data
suggests that not all connectivity pairs are necessarily important for
classification. The most consistently selected t-threshold removed about
half of the available features. The t-thresholds 0.75 and 1.00 were the
preferred ones indicating that many dFNCs in State 2 might have added

Table 2
Significant group differences of dFNC in State 2. The two t-test results assed FDR correction. The table displays the original (uncorrected) p-values.

RSN X Y Z RSN X Y Z t-Value p-Value

R Lob.VIIa Crus I 34 −77 −31 SMA/paracentral (BA6) 10 −26 66 5.04 2.5e-6
Regression results Sex Age Edu WTAR

Betas 0.12 0.004 −0.04 0.0003
p-Values 0.07 0.26 0.03 0.94

Lobule VI 10 −61 −25 SMA/paracentral (BA6) 10 −26 66 4.23 5.8e-5
Regression results Sex Age Edu WTAR

Betas 0.19 0.003 −0.01 0.0006
p-Values 0.01 0.40 0.47 0.91

Leave nth

Subject Out 

State 1 
t > 0.0 

State 2 
t > 0.0 

State 3 
t >0.0 

State 4 
t > 0.0 

Test 

Remaining 
95 Subjects 

Choose the dFNC state 
and t-value threshold 
with best AUC. Train 

… … … 

… …

… …
Nth Subject 

M
odel Selec�

on 
24 M

odels in Total 

Fig. 3. Schematic of the nested LOOCV loop used to
identify the optimal state and feature selection threshold.
Displayed matrices consist of t-values for each state.
Features were selected using the t-values from two sample
t-tests that were larger than one of the six thresholds [0.0
0.25 0.50 0.75 1.0 2.0]. In total there were 24 classifi-
cation models (6 t-thresholds times 4 dFNC states). In this
figure, the three dots between models indicate the ex-
istence of the other models.
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Fig. 4. Histogram of classification performance (AUC) obtained using the
nested loop of Fig. 3. State 3 and State 4 were never selected to classify the left
out sample. State 2 was selected 88 times with the t-threshold of 0.75 as the
preferred choice. State 1 was the second choice, which in most cases replaced
missing subject data in State 2. The number of features is displayed in par-
enthesis below the number of times selected.
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noise rather than predictive information. Not surprisingly, feature se-
lection tended to select the states and cells with higher group differ-
ences. Furthermore, Fig. 2 illustrates the existing match between t-va-
lues and feature weights revealing similarities between the two
patterns. Both measures point to connectivity values between sensor-
imotor and cerebellum areas as providing large group differences (t-
values) and important classification features (large weights). Another
common characteristic is that connectivity values between sensor-
imotor and visual RSNs provided weaker and fewer features than sen-
sorimotor with cerebellum RSNs. In contrasts, many features in the
executive control network scoring higher than the feature selection
threshold (t-values > 1.00) exhibited relatively weak LSVM weights.
The simplest way of explaining this difference is the lack of significant t-
values across the ECN group also detected by the LSVM algorithm.
Another view is that LSVM does not assume Gaussian distributed va-
lues. The particular objective of LSVM is to find a hyper-plane that
separates HC from mTBI samples disregarding of its distribution (Cortes
and Vapnik, 1995). This objective imprints differences from regular t-
statistics including a natural way of coping with outliers thanks to
LSVM's soft margin parameter (Ben-Hur et al., 2001). We note that
State 1 was selected some few times with t-threshold larger than 2.00.
The LSVM algorithm likely preferred State 1 over State 3 or State 4
because of a number of samples comparable with State 2.

As explained earlier, dFNC and its static counterpart may yield very
different results. The separation of dynamic states, out of their in-
tegrated sFNC condition, involves non-linear processes such as the use
of clustering algorithms that complicates a mathematical one-to-one
mapping. Current dFNC outcomes do not include a significant differ-
ence between angular gyrus and precuneus as formerly found in static
FNC (Vergara et al., 2017). Likely, the effect previously found was di-
luted and distributed among the dynamic states weakening its sig-
nificance. The significant changes of dFNC strength in our analysis in-
volved cerebellum and sensorimotor areas. In addition, there was a
non-significant trend (after FDR correction) of increased connectivity
between cerebellum and almost all cortical areas, as displayed in Fig. 2.
In contrast to the angular-precuneus case, effects found in State 2 agree
with the static FNC results confirming its importance in differentiating
HC and mTBI samples. These high t-values associated to cerebellum,
considering they are higher than the maximum feature selection
threshold of 2.0, were critical for the classification performance ob-
tained. Some studies have reported a similar increase in connectivity
between these two areas for patients. Early studies report altered de-
activations in the cerebellum and sensorimotor areas (Kasahara et al.,
2010) consistent with our observations. Nathan et al. found increased
connectivity between cerebellum and SMA (Nathan et al., 2015). Ste-
vens et al. found correlation between the connectivity of the cerebellum
and post concussive complaints (Stevens et al., 2012). Unfortunately,
the cerebellum has not been included in several studies looking at
functional connectivity. For example, Iraji et al. explored the whole
brain without looking at the cerebellum (Iraji et al., 2016). A similar
outcome was reported by Vakhtin et al. where many functional con-
nectivity differences were found, but the cerebellum was omitted
(Vakhtin et al., 2013). At this point, it seems that a closer look at the
cerebellum in more recent studies reveals its effects in TBI patients
(Palacios et al., 2017). Slobounov et al. reported an increased cerebellar
activation in mTBI patients (Slobounov et al., 2010). This atypical
cerebellar activation along with the increases in functional connectivity
found between cerebellum and SMA (Nathan et al., 2015; Vergara et al.,
2017) seems to coincide with abnormal anatomical connectivity in the
cerebellar peduncle (Mac Donald et al., 2011; Sidaros et al., 2009).
Observed functional changes are likely a reaction to anatomical insults
in the white matter linking cerebellum with cortical areas. This should
be evaluated in future work. However, results presented here indicate a
dynamic effect that might explain to some degree differences in ob-
served outcomes. First, significant group differences were only ob-
served in State 2 between cerebellum and sensorimotor areas. Second,

the number of subjects in State 2 was larger than in any other state.
These two characteristics of the sample, only observed after dFNC
analysis, can explain why the cerebellar-sensorimotor is predominant in
dFNC, but also in a static FNC analysis previously reported (Vergara
et al., 2017). We argue that if State 2 were detected in very few subjects
then the final classification performance (87.5% AUC) would have not
achieved the performance observed. Following our previous discussion,
if State 2 were observed in all subjects then the performance would
have reached a similar performance as that observed in State 2 alone
(92% AUC). Our conclusion is that State 2 drives both the observed
group differences and the classification performance.

One limitation of this work is the difficulty of measuring all dFNC
states in a given subject. As displayed in Supplementary Fig. 3, some
subjects spent most of the time in a single state (not necessary State 2)
for the duration of the scan. Since State 2 drives the classification
performance, the absence of this state in the fMRI scan can substantially
limit its probability of correct mTBI detection. Whether dFNC ab-
normalities in State 2 might be a temporary disturbance remains an
open question. Future work using longitudinal data should address this
possibility. An important topic to be addressed in the future is to de-
termine if State 2 is always present during the semi-acute state. In our
cohort, five minutes collection time could have been too short to ob-
serve State 2 in all participants. If that is the case, a longer fMRI col-
lection time, possibly 10 or 15min, could help solve the issue. Another
solution would be to collect data until dFNC State 2 is detected and
measured. This would require the development of real time techniques
useful in practical applications. Another possibility is to develop tech-
niques that favor the detection of certain dynamic states. A first attempt
is the use of mental training which increases dwelling in a dFNC state of
focused attention (Gonzalez-Castillo and Bandettini, 2017; Mooneyham
et al., 2017). This evidence suggests that future development could
facilitate the application of dFNC state specific methods.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.nicl.2018.03.017.
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