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Abstract

Brain networks can be explored by delivering brief pulses of electrical current in one area

while measuring voltage responses in other areas. We propose a convergent paradigm to

study brain dynamics, focusing on a single brain site to observe the average effect of stimu-

lating each of many other brain sites. Viewed in this manner, visually-apparent motifs in the

temporal response shape emerge from adjacent stimulation sites. This work constructs and

illustrates a data-driven approach to determine characteristic spatiotemporal structure in

these response shapes, summarized by a set of unique “basis profile curves” (BPCs). Each

BPC may be mapped back to underlying anatomy in a natural way, quantifying projection

strength from each stimulation site using simple metrics. Our technique is demonstrated for

an array of implanted brain surface electrodes in a human patient. This framework enables

straightforward interpretation of single-pulse brain stimulation data, and can be applied

generically to explore the diverse milieu of interactions that comprise the connectome.

Author summary

We present a new machine learning framework to probe how brain regions interact using

single-pulse electrical stimulation. Unlike previous studies, this approach does not assume

a form for how one brain area will respond to stimulation in another area, but rather dis-

covers the shape of the response in time from the data. We call the set of characteristic dis-

covered response shapes “basis profile curves” (BPCs), and show how these can be

mapped back onto the brain quantitatively. An illustrative example is included from one

of our human patients to characterize inputs to the parahippocampal gyrus. A code pack-

age is downloadable from https://purl.stanford.edu/rc201dv0636 so the reader may

explore the technique with their own data, or study sample data provided to reproduce

the illustrative case presented in the manuscript.
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Introduction

Brain networks have been explored electrophysiologically with a variety of techniques, span-

ning a variety of spatial scales, such as electroencephalography (EEG), magnetoencephalogra-

phy (MEG), intracranial EEG (iEEG), and microelectrode local field potentials (LFPs). Efforts

to infer connectivity between brain regions may search for correlated signals in response to

supervised perturbation by a behavioral task, or in an unsupervised state (“resting” awake, or

sleeping). Alternately, it has been shown that interactions between brain regions may be stud-

ied by applying or inducing pulses of electrical stimulation to a particular site, while measuring

the electrophysiological response elsewhere [1–3]. In recent years, a sub-field of neuroscience

has matured around systematic stimulation and measurement through implanted (iEEG)

arrays of brain surface (electrocorticography, ECoG) or deeply-penetrating (stereoelectroence-

phalography, SEEG) electrodes, typically called “cortico-cortical evoked potentials” (CCEPs)

or, for the special case of short pulses separated by several seconds, “single-pulse electrical

stimulation” (SPES) [4–6]. The more general term, “CCEP” will be used to refer to both in this

text.

For an array of N total electrodes, there are a potential set of order N2 CCEP interactions

that may be explored (for bipolar stimulation, the exact number will depend on how neighbor-

ing electrode pairs are chosen for stimulation). We organize the approach to CCEP data into a

few different network paradigms, illustrated in Fig 1. In the “all-to-all” case where one wishes

to examine the full set of N2 interactions (incorporating the temporal property of each

response), the limited number of stimulation events possible to record in the clinical environ-

ment (where these measurements are made) does not allow for a well-defined exploration of

the network. Therefore, scientists have imposed a type of constraint, or a hybridization of sev-

eral constraints. One such constraint is to reduce the problem by beginning the data explora-

tion with a pre-defined interaction based on location, and then to study the temporal

dynamics within that paired framework (“hypothesis preselected”—Fig 1D) [4].

A “divergent” paradigm is commonly adopted, where the effect of stimulating a chosen site

on all of the other sites is used to infer motifs of connectivity. However, the underlying cortical

laminar architecture of each recipient (measured from) site is very different, and therefore the

voltage timecourse of each CCEP cannot be interpreted in a common “physiological language”

to distinguish different types of interactions [7]. Nonetheless, many studies have found it use-

ful to impose a constraint by assuming a canonical form (temporal structure) and then param-

eterize within this assumed form (e.g. voltage at fixed delay time from stimulus). The most

common of these is a negative deflection between *10–100 ms (or “N1”) and a later second

negative deflection (“N2”) to characterize which brain regions are connected [4]. That

approach forces each response into a fixed interpretation where the form being fit may not

actually be present. Notably, we have found that the N1/N2 response shape is not a universal

phenomenon: when observed, this shape is only one of a wide variety of responses at any given

brain site.

A different, “convergent”, paradigm is to focus on measurement from a single site, and

examine the effect of stimulating in the remainder of the array [8]. The convergent approach

is, in principle, more tractable than other paradigms. When one measures from a single site

and stimulates many, there is only one “physiological language” that evoked responses must be

interpreted in, because the underlying anatomy is unchanged. In this context, different shaped

temporal responses must imply a fundamentally different nature of interaction between brain

areas.

With the convergent paradigm as our initial framework, we made the visual observation

that inputs to primary motor cortex had very different shaped CCEPs from one another, but
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with a compelling spatial clustering [9]. This finding was again observed in the present illustra-

tive dataset, but for responses in the parahippocampal gyrus (PHG) of a different patient, and

are shown in Fig 2. While anatomical clustering of stimulation sites that produce similar volt-

age responses can be observed anecdotally by visual inspection, there is no generally-available

quantitative tool for organizing these physiological measurements [7]. Furthermore, we could

not find an applicable technique from a different setting that could be translated for the pres-

ent brain data. Our work aims to close this gap and develop a novel tool to uncover and cluster

these temporal motifs in CCEPs and enable systematic exploration of connectivity. We name

the resulting canonical voltage response shapes “basis profile curves” (BPC) and detail a frame-

work to identify them.

Within the convergent CCEP paradigm, several criteria constrain the BPC framework.

First, there ought to be no assumption of the form of BPCs—they should emerge from the data

naturally. Second, they should be able to be mapped into the original data, and onto the brain

anatomy in an intuitive way. Third, each stimulation response trial should be able to be param-

eterized by a single BPC (rather than a superposition of BPCs). Fourth, there should be no

orthogonality constraint in BPC shapes in case features (such as the N1 or N2) are shared

between BPCs.

Technically, this framework amounts to a hierarchical clustering problem, where the sub-

group of single-stimulation events from each stimulation site are known, but how the stimula-

tion site subgroups cluster into the larger group of characteristic stimulation response shapes

Fig 1. Cortico-cortical evoked potential analysis paradigms. A: Convergent—Evoked responses at one chosen site (gray circle) are compared with the effect of

stimulating all other sites (yellow circles with lightning bolt). ForN electrodes, this characterizes N interactions. B:Divergent—The temporal response of all sites are

examined and compared in response to stimulation of a chosen site (N interactions). C: All-to-all—AllN2 interactions between sites are characterized. D:Hypothesis
preselected—Two sites are chosen based upon a pre-defined anatomical or functional hypothesis, and a 1-way or 2-way interaction between them is characterized. E: In

the convergent paradigm, all measured responses from a brain surface electrode are associated with the same underlying laminar architecture, so each response shape

measured implies a distinct type of input. F: In the divergent paradigm, different shaped responses may be measured from different sites, in response to stimulation at

a single site. This creates ambiguity because different shaped responses cannot distinguish between 1) the same type of output arriving at cortical sites with different

underlying laminar architecture and 2) different types of inputs to sites with similar laminar architecture.

https://doi.org/10.1371/journal.pcbi.1008710.g001
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Fig 2. Single-pulse cortico-cortical evoked potentials. A: An array of brain surface (ECoG) electrodes were surgically placed on the left hemisphere of a brain

tumor patient. B: The voltage (red trace) was measured at a parahippocampal gyrus (PHG) electrode site. C: Biphasic stimulation pulses were delivered between

adjacent electrodes throughout the array (gray shows all stimulation pulse trials for stimulation at each site, red shows average). D: Responses from each

stimulation pulse are aligned into a matrix Vk(t). E: Averaged subgroup responses Gn(t) (i.e. CCEPs, from the PHG measurement site) are shown between the two

electrode sites that were stimulated to produce them.

https://doi.org/10.1371/journal.pcbi.1008710.g002
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is to be discovered. In this manuscript, we describe a generic solution to this problem, and

showcase its potential to obtain novel insights for a representative dataset from implanted

ECoG electrodes in a human patient (Fig 2).

Materials and methods

Ethics statement

This research was performed in accordance with the Mayo Clinic Institutional Review Board,

under IRB# 15–006530, which also authorizes sharing of the data. The patient / representative

voluntarily provided independent written informed consent to participate in this study.

Clinical measurement of cortico-cortico evoked potentials

The patient shown for the illustrative example of this technique was a patient with a left tempo-

ral-occipital-parietal tumor (discovered to be a dysembryplastic neuroepithelial tumor) who

underwent placement of an electrocorticographic (ECoG) electrode array to localize their sei-

zures and map brain function (Fig 2). This array consisted of a 6x8 frontal-temporal-parietal

grid, a 2x8 anterior temporal grid, and 3 1x4 sub-temporal strips of platinum electrodes (Ad-

Tech, Racine, WI). The circular electrode contacts had 4 mm diameter (2.3 mm exposed), 1

cm inter-electrode distance, and were embedded in silastic. These arrays were surgically placed

on the sub-dural brain surface during staged surgical treatment for functional mapping and

seizure localization prior to tumor resection.

Voltage data V(t0) were recorded at 2048Hz on a Natus Quantum amplifier. Electrode pairs

were stimulated *10–12 times with a single biphasic pulse of 200 microseconds duration and

6mA amplitude every 3–7 seconds using a Nicolet Cortical Stimulator (Fig 2A–2C). Electrodes

were localized on the CT and coregistered to an MRI using the “CTMR” package [10], avail-

able in the “ctmr” folder of the ECoG library [11] or on github [12].

Data structure (Fig 2)

Data are first structured in a stimulation-evoked voltage matrix V: The time-by-1 matrix V(t0)

for the whole experiment, from the chosen electrode, was sorted into the matrix Vk(t), where t
denotes the time from the kth electrical stimulation, τk: (τk + t1)� t� (τk + t2). The dimensions

of V are T × K, with T total timepoints (over the interval t1� t� t2) by K total stimulation

events (trials). For this illustration, t1 was set to 0.050 sec and t2 to 2.000 sec, so as to begin

after the majority of the volume conducted & artifactural changes had passed [13], and to

extend until most responses had returned to baseline.

Within the matrix Vk(t), similar events were given a common subgroup label n: In the

example provided here, each subgroup corresponds to a pair of adjacent electrodes that are

stimulated between. The number of repeats is not the same in each electrode stimulation-pair

subgroup (typically 10–12). There are N total of these stimulation-pair subgroups. Although

we assume that stimulations within each subgroup are independent for the purpose of these

analyses, this is an approximation. An example of potential non-independence may be seen in

the non-zero offset of individual trials from the yellow site pair in Fig 2C, presumably due to

direct charging of the cortical lamina from the prior stimulation pulse due to proximity of the

stimulation-pair sites to the recording site.

Trials from the same pair of stimulation sites, n, can be combined to obtain the subgroup-

averaged evoked voltage change matrix G: For stimulation subgroup n, the average voltage

temporal profile is Gn(t) = hVk(t)ik2n. With this type of brain stimulation data, Gn(t) are com-

monly given the name “Cortico-cortical evoked potentials” (CCEPs).
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Single-trial cross-projections & significance matrix (Fig 3A–3D)

In order to understand shared structure between stimulation trials, we first obtain a matrix of

unit-normalized single trials: ~VkðtÞ ¼ VkðtÞ=jVkðtÞj. Each ~VkðtÞ is then projected into all other

trials, P ¼ ~V>V:

Pðk; lÞ ¼
X

t

~VkðtÞVlðtÞ

Note that P(k, l) 6¼ P(l, k). The full matrix P is subsequently sorted into an array of sets Sn,m

that characterize each cross-subgroup interaction (e.g. pairwise interaction between subgroups

n andm), such that:

Sn;m ¼ Pfk 2 n; l 2 mg

with k = l omitted.

We then construct a matrix of t-values whose elements X(n,m) are the t-values of the corre-

sponding distribution in Sn,m (each set’s mean divided by its standard error [14]). This matrix

is then subjected to a non-negativity constraint, setting negative t-values to zero (a property

that is needed for subsequent factorization): if X(n,m)< 0, then X(n,m) 7! 0. X is then scaled

to its maximum X 7! X/ max (X), making 0� X(n,m)� 1. This significance matrix plays a

role analagous to a cross-correlation matrix to help understand preserved structure of individ-

ual trials within, and between different, stimulation-pair subgroups.

Note that the diagonal elements of X can be very small. Interestingly, in some cases, off-

diagonal elements are larger than corresponding diagonal element from the same row

(Fig 3D). This occurs when there is reliable structure in the response, but, first, within-group

variation is larger than the cross-group variation, and, second, there is reliable across-group

temporal information across groups (for example, as result of sequence). A simple example of

this is when two subgroups produce nearly identical response shapes, but there is adaptation

in the response to repeated stimulation for each electrode-pair subgroup—a finding illustrated

in some superior temporal gyrus sites from our example (visually apparent in subgroups

11&23 of Fig 3A–3C, and the green in Fig 4C).

Non-negative matrix factorization (NNMF) for clustering (Fig 3E)

When clustering stimulation sites that produce similar measured responses, a non-negative

projection weight constraint must be applied. This is done because the problem is not a

source-localization—the same cluster cannot have both positive and negative contributions to

the recording site (i.e. trial-to-trial inverted overall sign). Physiologically, this follows because

laminar anatomy is not invertible, and when there is positive-negative flip in voltage in one

electrode, even if shape is similar, that points to a different biology we want separately segre-

gated into a different cluster (as illustrated in Fig 1E).

The process of non-negative matrix factorization is therefore applied to the matrix X, per-

forming a decomposition [15]:

Ξ �W H

Where X has dimensions N ×M, W has dimensions N × Q, and H has dimensions Q ×M. The

goal of NNMF in this context is to minimize η = |X − WH|2, with the non-negativity constraint

Wnq,Hqm� 0.

NNMF multiplicative update rules. Begin with randomly generated W and H, with ele-

ments between 0 and 1. The elements of W and H are then iteratively updated to better

PLOS COMPUTATIONAL BIOLOGY Basis profile curve identification to understand electrical brain stimulation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008710 September 2, 2021 6 / 20

https://doi.org/10.1371/journal.pcbi.1008710


Fig 3. Technique for identification of basis profile curves (BPCs). An illustration of the series of steps to extract BPCs from the voltage matrix V and

subgroup assignments k 2 n. A: Within stimulation-pair subgroup self-projections (all trials are projected into one another). B: Between-subgroup cross-

projections. C: An illustration of sets of cross- and self-projections for stimulation-pair subgroup 11, S11,m. D: The significance of each set Sn,m is determined

initially by t-value vs. zero. Negative t-values are set to zero. The matrix of these values is then scaled to 1, and labeled X. E: Non-negative matrix factorization

(NNMF) is performed to identify structure. F: The inner dimension of NNMF is iteratively reduced. G: BPCs are identified from the groups clustered in the

rows of H.

https://doi.org/10.1371/journal.pcbi.1008710.g003
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approximate X until convergence criteria are met. Using a multiplicative (rather than additive)

update rule preserves non-negativity in matrix weights [16].

1. First, elements of H are individually scaled according to:

Hqm 7!Hqm
ðW>ΞÞqm
ðW>WHÞqm

2. Second, the rows of H are unit normalized, maintaining the overall scale by multiplying the

columns of W by the the normalization factor:

Hðq;MÞ7!Hðq;MÞ=jHðq;MÞj; and

WðN; qÞ7!WðN; qÞ � jHðq;MÞj

3. Third, elements of W are individually scaled according to:

Wnq 7!Wnq

ðΞH>Þnq
ðWHH>Þnq

4. Fourth, the error is calculated as η = |X − WH|2 and is assessed for convergence, exiting the

update loop when the ratio of change in error between subsequent steps to the error is

below a set threshold: Δη/η< 10−5.

One could alternately choose NNMF with sparseness constraints built into the construction

of the factorization algorithm [17], though we defer this to future study. As the process begins

Fig 4. Projection of basis profile curves (BPCs). A: The contribution of each BPC Bq to a single trial from its cluster can be quantified according to a scalar multiplier

a
ðqÞ
k , and residual noise εk (trial 238 illustrated). B: The 3 BPCs for our example case. C: The spatial representation of BPCs, color-coded, with diameter and color

intensity indicating magnitude (group-averaged signal-to-noise ratio). White circles show actual electrode locations and BPC projection magnitudes are placed at the

the spatial average of the positions of the two stimulated electrodes. Each BPC distribution is individually scaled to maximum. Gray indicates sites discarded by

thresholding (Fig 3G).

https://doi.org/10.1371/journal.pcbi.1008710.g004
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with randomly generated initial W and H, we re-run the NNMF algorithm a number of times

to identify a reliable minimal error η between X and WH. Separately, one might perform an

algorithmic minimization with convergence rather than brute-force repetition, though we

found this impractical for two reasons. First, calculation times for re-running the algorithm

were quite short in our studies (<3 minutes), and second, approaches to re-parameterizing W

and H for iterative convergence would require significant methodological treatment of their

own.

Dimensionality reduction (Fig 3F). The output of NNMF can be highly degenerate, and

this degeneracy can be quantified by the off-diagonal elements of the matrix HH>. We define

the maximum of the upper-half off-diagonal elements as z (Fig 2F). Then, we iteratively reduce

the number of inner components Q by 1 and re-perform the NNMF until z< 0.5. This itera-

tive reduction performs our clustering, where the non-zero elements in each 1-by-N row ofH
define how stimulation-pair subgroups are clustered together. The goal of pruning is to con-

strain the amount of shared structure in any pairwise comparison of different response shape

motifs, and therefore lowering the convergence threshold for z can increase the number of dis-

covered BPCs. We might instead have chosen to constrain the global amount of shared struc-

ture by quantifying the sum of the off-diagonal elements of HH> (rather than maximum

element magnitude).

While we have chosen to start with the beginning number of potential clusters (internal

dimension Q in NNMF) to be the same as the number of stimulation-pairs for this example, it

is more expedient to start with a lower number of clusters (*10 appears appropriate). This is

sensible, since the number of basic motifs in laminar organization (at each brain site) might be

constrained by a limited number of cell types. One could alternately scan through many differ-

ent inner dimensions, and select the best in terms of explained variance (see S1 Fig).

Clustering of subgroups (Fig 3G). At the conclusion of this process, we perform a “win-

ner-take-all” operation on the columns of H such that one stimulation-pair subgroup can only

belong to one component (all but the largest elements of each column are set to zero).

For each row q of H, a set of stimulation-pair subgroups is assigned to each cluster by

thresholding: IfHqn > 1

2
ffiffiffi
N
p , then n 2 q. This threshold is set because if all subgroups contrib-

uted equally to a cluster, then the element weight of each would be 1=
ffiffiffiffi
N
p

(the tolerance factor

of 1/2 allows for variation).

This winner-take-all approach implies a process constructed for canonical responses rather

than superposition of contributing motifs. For the present work, this assumption is appropri-

ate, though it may not hold in situations where separate physiologic motifs contribute inde-

pendently, and each may superimpose in the measured response.

Furthermore, in the present example, there is not a significant penalty for inclusion of a

group since the significance of this inclusion is later reflected by the scoring of single events, as

described below in the subsection “Projecting basis profile curves back into data”.

Identification of basis profile curves using Linear Kernel PCA (Fig 3G)

Parsing the set of all single-stimulation responses from groups that are clustered together by

the NNMF process, we can identify characteristic “Basis Profile Curve” (BPC) shapes, Bq(t), in

the following manner:

The subset of single trial clustered responses are first concatenated as Vk2n2q(t)� V(q), to

reflect single trials belonging to stimulation-pair subgroups (k 2 n) that in turn belong to clus-

ter q (n 2 q), with a total of Kq such trials. We would like to identify a representative basis

curve, Bq(t), that represents the “principal direction” of Vk2q(t). However, the practical fact

that the number of timepoints, T, generally far exceeds the number of trials, K, in these data (T
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� Kq) prohibits a standard principal component decomposition (PCA, [18]), which would

require Kq> T2 to characterize the T-by-Tmatrix of interdependencies between timepoints.

We address this issue by inverting the decomposition using the “Linear Kernel PCA” tech-

nique [19–21]. This method allows for the interchange of an eigenvalue decomposition of the

matrix VðqÞV
>

ðqÞ (T2 elements) with V>
ðqÞVðqÞ (K2

q elements). Following this approach, we obtain a

matrix F, whose columns are the eigenvectors of V>
ðqÞVðqÞ, with associated eigenvalues con-

tained in the diagonal matrix ξ2, satisfying ðV>
ðqÞVðqÞÞF ¼ Fξ2. We can then solve for the eigen-

vectors of VðqÞV
>

ðqÞ, contained in the columns of X:

Xξ ¼ VðqÞF
>

We keep the first column of X as our basis curve Bq(t).
Note that, if we were to take the simple average of all candidate stimulation-pair subgroups

instead of the 1st principal component for this canonical shape, it could significantly dilute the

BPC form with noise. As illustrated in cluster 3 of our example, several low-relevance stimula-

tion-pair subgroups (i.e. very low average projection weight) are clustered along with a strong

and significant response subgroup. As we have constructed it, the kernel PCA approach cap-

tures the shape of this robust subgroup, without disruption from the uncorrelated noise that

dominates the low-relevance subgroups.

Projecting basis profile curves back into data

Utilizing the formalism from functional data analysis [22, 23], we can represent each individ-

ual trial as a projection of a basis profile curve Bq(t), scaled by a scalar a
ðqÞ
k , with residual error

εk(t):

VkðtÞ ¼ a
ðqÞ
k BqðtÞ þ εkðtÞ

We expect that E(ε) = 0 and Eðε2
kÞ � Eðε

2
l Þ, for all k and l. This allows us to estimate the projec-

tion of Bq(t) into each individual trial as follows. First, we expand our single-trial formalism

above by application of ∑t Bq(t) to both sides, i.e.:
X

t

BqðtÞVkðtÞ ¼
X

t

BqðtÞa
ðqÞ
k BqðtÞ þ

X

t

BqðtÞεkðtÞ

However, ∑t Bq(t)εk(t) = 0 since E(ε) = 0, and
P
tBqðtÞa

ðqÞ
k BqðtÞ ¼ a

ðqÞ
k

P
tBqðtÞBqðtÞ, which is

just a
ðqÞ
k , since ∑t Bq(t)Bq(t) = 1. This allows us to calculate a

ðqÞ
k for each trial:

a
ðqÞ
k ¼

X

t

BqðtÞVkðtÞ

Having a
ðqÞ
k determined, we can quantify the residual noise after regressing out the shape of

Bq(t):

εkðtÞ ¼ VkðtÞ � a
ðqÞ
k BqðtÞ

With the description VkðtÞ ¼ a
ðqÞ
k BqðtÞ þ εkðtÞ, several useful quantities for each trial Vk

can be described (omitting q for notational simplicity): a “projection weight” αk; a scalar

“noise” summary term
ffiffiffiffiffiffiffiffiffi
ε>k εk

p
; a “signal-to-noise” ak=

ffiffiffiffiffiffiffiffiffi
ε>k εk

p
; the “explained variance” by

application of the BPC is 1 �
ε>k εk
V>k Vk

(S2 Fig). For stimulation-pair subgroup n, we can estimate
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the presence of residual structure after application of Bq, by the remaining pair-wise correla-

tion in noise terms: hε>k εlik;l2n;k6¼l.

Code and data availability

Code written in MATLAB to reproduce all of the steps and illustrations contained in this man-

uscript is freely available along with the sample dataset at https://purl.stanford.edu/

rc201dv0636. The file “kjm_bpcmethod_readme.pdf” describes the code and dataset, along

with instructions for how to perform the analyses.

Results

Cortico-cortical and subcortical inputs converge in each brain region, and disentangling this

convergence will shed light on the networks that interconnect the brain. In order to explore

this idea, we stimulated pairs of intracranial electrodes implanted across many different brain

areas and measured voltage responses in a single site. We expect that biologically different

types of inputs will produce different characteristic shapes in the voltage timecourse, and that

these might be clustered into distinct groups based on the stimulation site.

Our framework, aiming to better understand brain connectivity, is grounded in a conver-
gent paradigm, examining a set of temporal voltage responses to stimulation, all measured

from the same site (Figs 1 and 2). Each response event is labeled by the site of stimulation.

Then, a novel algorithm is applied within this framework to identify canonical temporal

response motifs, which we call “basis profile curves” (BPCs). Each BPC clusters subgroups of

stimulation-pairs together into a larger group whose members induce a similar response pro-

file, and are likely the engaging same microcircuitry in their connectivity from the stimulated

brain site to the measured brain site.

Multiple different stimulation evoked voltage response motifs are

measured from one brain site

The BPC approach allowed us to extract a concise set of Basis Profile Curves that describes the

multitude of responses observed at a single site. As illustrated in Fig 3, the algorithmic

approach begins by obtaining a set of all projection magnitudes (correlations in response time-

course) between pairs of single trials within their own electrode stimulation-pair subgroups

and across different stimulation-pair subgroups. A matrix characterizing the significance of

each set of subgroup-subgroup projection magnitudes is generated from the t-values of these

sets, before setting negative values to 0 and scaling to 1. Then non-negative matrix factoriza-

tion (NNMF) is repeatedly performed to decompose this significance matrix into a pair of

other matrices, one of which characterizes correlated features within the matrix, and the other

of which characterizes the weight of each feature (and is normalized). NNMF is performed

many times, iteratively reducing the inner dimension of factorization until a cross-correlation

threshold between features is surpassed. The iterative reduction clusters electrode stimulation-

pair subgroups by their relative element sizes within the rows of the NNMF weight matrix H

(S3 Fig shows that the technique identifies the optimal number of clusters from the data for

portion of variance explained in our example case). For each cluster, linear kernel PCA is

applied to the concatenated larger group of single responses from all included stimulation-pair

subgroups, to extract the temporal shape of the BPC. In this way, a unique BPC is associated

with each cluster. The BPC technique produces an intuitive representation of the responses

measured at a single site in the convergent paradigm (S3 Fig). It is robust: Splitting the data in
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half yields two similar sets of BPCs, even though there are only 4–5 trials per stimulation-pair

subgroup (S4 Fig).

The algorithm, by construction, produces BPCs that have a set of desired properties (Fig 4):

Each BPC has a characteristic shape in time of “canonical” responses with simple visual formu-

lation where connectivity between areas is paired with a temporal BPC motif that can be a win-

dow into the nature of the interaction. Although the literature has predominantly supported a

canonical form for the timecourse of CCEPs (e.g. polyphasic with 2 characteristic “N1/N2”

negative deflections), this has not been the case in our measurements. We found instead that

the measured cortico-cortical evoked potentials could be described by three basis profile

curves, which are unique in shape (Fig 4B), only one of which (B3) is consistent with the

reported N1/N2 form.

Stimulation of adjacent anatomical sites produces similar voltage responses

that are clustered together

The initial step in examining these stimulation data from the convergent paradigm is to plot

the evoked response at the measurement site onto the brain surface at the site of stimulation

(Fig 2). Visual inspection of these plots suggests that the response shapes cluster along anatom-

ical boundaries.

Once BPCs have been identified, single stimulation events can be characterized with the

architecture from functional data analysis [22–24], which enables quantification of BPC pro-

jection weight (signal) and residual noise. These quantifications may be projected back to

brain anatomy in an intuitive way to visualize what sites are meaningfully connected to the

measured-from site. In our example case (Fig 4), the back projections reveal a relatively sparse

network interacting with the PHG originating from the superior temporal gyrus (STG, green

in Fig 4), the posterior portion of the inferior temporal gyrus (orange), and the fusiform gyrus

(yellow). However, rather than identifying this clustering by visual inspection, the clustering is

quantitative with summary weight and clear statistical description. The result is very similar

whether quantified by projection weight, signal-to-noise, or explained variance (S2 Fig). Note

that the most superior sites included in the STG-BPC (green in Fig 4) may not necessarily

result from projections above the Sylvian fissure (e.g. motor areas) to the PHG, but likely result

from one of the two electrodes in the included stimulation pair lying on or below the Sylvian

fissure.

If a different measurement site is selected in the example patient data, at the temporal pole

(TP), a very similar clustered region from the STG emerges (S5 Fig). Interestingly, the shape of

the associated BPC is very different. This is precisely the dilemma envisioned by the divergent
paradigm shown in Fig 1F. The interpretation of the difference in these shapes is ambiguous.

One cannot tease out whether the difference in BPC shape implies a different kind of connec-

tivity, or simply a reflection of the different microcircuitry of the TP and STG in response to a

similar type of input.

Discussion

This work begins with the general question of how electrical stimulation paired with voltage

measurement can be used to understand spatial and temporal structure in brain networks.

Our framework begins with a convergent approach, where one measurement site is selected,

and responses to sets of repeated stimulations in many other sites are quantified (Fig 1). Each

electrical stimulation pulse is brief (<1ms) and the time between pulses is long (>3s), allowing

for transient voltage changes to return to baseline. A relatively long time between pulses

means that mono-synaptic and polysynaptic effects can contribute to the temporal structure of
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the responses, and be captured during data analyses. This experimental paradigm where

enough time has passed between consecutive stimulations for transient effects to die out is typ-

ically called “single pulse electrical stimulation” [25], a subset of “cortico-cortical evoked

potential” (CCEP) measurement. In contrast to the frequently-reported N1/N2 response, our

initial observations of these types of data within the convergent paradigm did not suggest a

universal form to evoked voltage changes from the same brain site [9]. Therefore, the frame-

work we have developed does not assume what shape the measured responses should have.

We instead constructed a data-driven technique to naively extract motifs from all responses at

a single seed site that we call “basis profile curves” (BPCs), beginning with a natural set of sub-

groups defined by repeated stimulations at the same brain site.

The convergent approach to connectivity

A common approach to explore network structure in CCEP research is to examine every possi-

ble interaction within an array of electrodes. In this all-to-all approach, the large number (N2)

of all possible interactions between the N intracranial electrodes are studied (Fig 1), and each

response profile has hundreds-to-thousands of timepoints. The several seconds between each

electrical stimulation and the large set of electrode pairs to stimulate between severely limits

the number of repeated stimulations that may feasibly be performed in the clinical setting.

From a practical perspective, this means that if one does not approach the study of CCEPs

with clear constraints, then the problem becomes too high-dimensional to handle, given the

limited amount of data available. Many existing studies have attempted to address this by pre-

suming a specific temporal structure in the evoked response, such as the voltage at a pre-speci-

fied timepoint post-stimulation [26]. However, as illustrated in Fig 2 and S3 Fig and reported

by Kundu and colleagues [27], there is no single canonical CCEP response shape or feature,

even when measuring from a single electrode.

Our approach to this high-dimensional data dilemma is to first constrain our study to mea-

surements from a single electrode at a time, leveraging the convergent paradigm. The BPC

framework then enables one to naively extract a family of response shapes specific to that site.

Although there is no prior assumption about the forms the BPCs should have, they are con-

structed with the constraint that they should be reproducible within subgroups of repeated

stimulations at the same brain site.

Aside from computational convenience, the convergent paradigm is also useful because we

can reduce the plethora of potential interactions to a smaller, more tractable, set that may be

linked to physiological interpretation (i.e. a few different appearing motifs in interaction

between the stimulated and measured sites). For example, inputs to superficial or deeper layers

should produce different response motifs in the electric potential measured at the brain sur-

face, and be isolated as distinct BPCs (Fig 1).

Although a single site is selected for the convergent approach, one may iteratively uncover

the larger connectivity space: Projections between brain regions can be identified, beginning

with a known seed site and then using the proposed algorithm to find a strongly projecting site

within a BPC cluster which, in turn, becomes the new seed. This would allow one to trace pro-

jections in reverse to explore and model a network of previously unknown interactions.

Properties of the BPC algorithm

The BPC algorithmic framework is constructed to satisfy a pre-defined set of desired proper-

ties, each of which is a associated with distinct computations.

Simple assignment of each subgroup to a single BPC: We wanted to meaningfully decompose

brain responses to stimulation with a process that can be naturally mapped back on to the

PLOS COMPUTATIONAL BIOLOGY Basis profile curve identification to understand electrical brain stimulation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008710 September 2, 2021 13 / 20

https://doi.org/10.1371/journal.pcbi.1008710


underlying anatomy. This means that stimulated electrode pairs that evoke the same response

motif should be grouped together in a way that can be plainly viewed on a brain rendering. In

our BPC responses, this means that positive voltage deflections of a particular shape will not be

clustered with negative deflections of a similar shape (and vice-versa). Ensuring this is very

important when interpreting the signals physiologically. For example, sign flips could reflect

inputs at superficial vs deep lamina or at different classes of synapses, and so should be clus-

tered independently [28]. Mathematically, this decomposition can be formulated as a cluster-

ing problem with preservation of sub-group structure and inclusion of a non-negativity

constraint. Commonly applied techniques such as independent/principal component analyses

(ICA/PCA) may not be productive in this setting (even with non-negativity constraints [29]).

They assume linear superposition of motifs with arbitrary sign and weight rather than the

identification of distinct, unique motifs. In addition, ICA/PCA have different loss functions

than the BPC framework, emphasizing different decomposition targets and are unable to

reveal the subgroup structure of stimulation-pair sites necessary for our analysis. Specifically,

they are specialized to generate components with minimum independency, rather than to clus-

ter motifs by similarity (which is our goal). Canonical correlation analysis (CCA) or variants

thereof [30, 31], which might allow for some labeling subgroup structure, do not easily allow

one to incorporate necessary constraints and so are of limited help for our purpose.

Allowance of limited overlap in BPC shape: Although two different responses may reflect dif-

ferent types of inputs, a limited sub-interval of time may have transient similarity. Therefore, it

can be useful to allow for some limited shared structure in the timecourses of different BPCs.

In our example, this is illustrated in the negative deflections seen in the initial * 500ms of B2

and B3, Fig 4B. We implement this allowance of limited overlap by using a winner-take-all

approach rather than enforcing orthogonality in the rows of H (e.g. HH> = I). The amount of

overlap allowed can be adapted by setting the maximum value of individual off-diagonal ele-

ments of HH> (z).

Disregarding of meaningless subgroups: Another physiologically meaningful constraint for

the BPC framework is that existing sub-group structure, where responses to stimulation come

from the same pair of electrodes should either be reliable on a trial-by-trial basis or not con-

tribute to the clustering. In the BPC approach, a correlation-significance matrix quantifying

similarity in single-trial pairwise correlations organized between sub-groups (stimulation-pair

sites) can be obtained. Unlike many common decomposition techniques which construct

covariance or correlation matrices (ICA/PCA/CCA), the significance matrix generated by this

process can have very small diagonal elements, and, in some cases, off-diagonal elements are

larger than corresponding diagonal elements from the same row (Fig 3D, see description in

Materials and methods subsection “Single-trial cross-projections & Significance matrix”).

These small diagonal elements, coupled with the thresholding of the elements of factor matrix

H excludes stimulation-pair subgroups that do not produce reliable responses in measurement

from the identification of BPCs. Once BPCs have been extracted, more explicit quantification

of significance for each stimulation-pair subgroup may be evaluated simply, by testing the

magnitudes αk,k2n (for subgroup n) versus zero.

Simple metric to describe single trials: At the beginning of our data exploration, each single

trial k is described by its timecourse Vk(t), and the stimulation-pair, k 2 n, that produced it (its

subgroup). At the conclusion of the BPC extraction, each trial is assigned to a single BPC (q)
with a scalar projection weight (a

ðqÞ
k ), and a residual noise timecourse (εk(t)). The parameteri-

zation of single-trial stimulation responses takes the form VkðtÞ ¼ a
ðqÞ
k BqðtÞ þ εkðtÞ, which is a

formalism borrowed from the field of functional data analysis [24]. One might use the tools

developed in that discipline for a larger exploration of these data when generalizing across
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different patients, tasks, stimulation paradigms, and recording settings. This formalism allows

for straightforward characterization of signal and uncorrelated noise in each stimulation sin-

gle-trial, with comparisons of these across stimulation-pair subgroups and also across BPCs.

As noted in the Materials and methods subsection “Projecting basis profile curves back into

data”, one may quantify a scalar values of signal, noise, and variance explained by the form of

the BPC for each single-trial response. These quantities may be useful to plot versus one

another (S2 Fig), and allow one to easily scale distributions independently or globally (as seen

in S5(D) and S5(E) Fig). The advantage of this formalism moves well beyond that of notational

convenience. Namely, the magnitudes of response to stimulation in different brain areas can

be directly compared versus one another to quantify how much the local microcircuitry is

being influenced, even though the shape of the response timeseries may be very different. Such

quantification is typically difficult for timeseries analysis in these types of data, where tem-

plate-projection or other similar approaches are otherwise necessary [32].

Response motifs and underlying physiology

At the macroscale that is measured by ECoG or SEEG electrode contact size, an entire popula-

tion of about half of a million neurons is being averaged over [11]. As such, we expect that

only a few BPCs will explain variance from a measurement site. Each region is defined by a

unique laminar architecture (defined histologically as a unique Brodmann area [33], or by

multi-modal imaging as a unique parcel [34]), so we expect that the pro-dromic (reflecting

inputs) or the anti-dromic (reflecting outputs) will be constrained to a few unique motifs, and

reflected by relatively few BPCs. Therefore our BPC technique allows for visual inspection of

temporal motifs that are well-defined in measurement space (see Fig 4) but raises important

questions about the neurophysiology they reflect. Potentially typical shapes may reveal connec-

tion to microcircuitry in intuitive way, where surface positive deflections may be tied to deep

positive ion influx or superficial ion efflux from specific synapse types in the large pyramidal

cells beneath [28]. Alternately, they may reveal projections from the stimulation site directly to

different classes of cells within the laminar architecture of cortex (e.g. interneurons vs pyrami-

dal neurons). Some BPC morphologies might reveal different motifs in connectivity at the

macroscale, between different brain regions. One might speculate about different types of con-

nectivity within the temporal lobe that may be inferred from examination of Fig 4 and S5 Fig:

The preliminary finding of similar spatial distribution in a BPC from the STG, but reflected

with a different temporal shape in the TP than the PHG suggests different kinds of projections

emanating from a well-defined STG region. For example, direct connections from intracortical

axonal projects within gray matter (via lateral projections) might be differentiated from those

relayed subcortically through white matter tracts. Note that indirect projections relayed

through a third cortical site or a set of subcortical nuclei might each be revealed in characteris-

tic BPC shapes, and this possibility will be explored in future studies.

Potential future applications

The key elements of our approach are to generate a significance matrix that characterizes

group-group similarity, to reduce this matrix by factorization (& thereby perform clustering),

and then to recapture the structure that explained this similarity. This framework is novel

because it clusters group-labelled measurements into meta-groups, discovering a hierarchical

structure in the data. We have explicitly streamlined the framework in order to make the prin-

ciples clear, and this process has been robust in all of the data we have analyzed. However,

future opportunities may also be explored in other settings, adding complexity at each step or

introducing bootstrapping/resampling procedural steps [35, 36].
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Some examples of what might be attempted are as follows: We implemented linear kernel

PCA to identify the BPC underlying a clustered set of trials—this is the simplest strategy other

than the simplest average trace, which can add a lot of noise from weakly contributing sub-

groups. One could instead implement a dictionary learning approach and use the atom that

explains the most variance of the included trials [37]. The sequential approach that we use for

methodological clarity might instead be expanded into a recursive approach. In a recursive set-

ting, discovered BPCs would be used to re-parameterize the initial trials, these parameteriza-

tions would then be clustered, and a new set of BPCs would be found, iterating the process

until convergence criteria are met. Alternate approaches to achieve a similar hierarchical clus-

tering with known subgroup labels might begin with a common technique applied to all trials

(e.g. k-means, Gaussean mixture model, etc), and then associate these clusters with stimula-

tion-pair subgroups. We have deferred presentation and elaboration of these types of alternate

analyses because each would involve a study of the same scope as the present one and distract

from the key core elements of the BPC framework.

We believe that initial explorations with our BPC technique would be best framed in a well-

controlled setting with connection to simple functional studies from primary motor, auditory,

or visual regions to look for commonality in BPC shapes. In this manner, existing understand-

ing from other types of measurement might serve to validate BPC interpretation. From our

initial studies, natural branching out from the single seed site of the convergent paradigm will

lead researchers to examine the generalization of BPC shapes discovered at adjacent measure-

ment sites within a brain region, and may also lead them to explore whether they are conserved

at homologous brain sites across different patients. Such “second-level” studies of BPC shape

across contexts would employ more traditional clustering approaches than the present strat-

egy. For example, measurements of the brain’s depths with stereoelectroencephalography

should allow for sign flips when comparing BPCs from adjacent electrodes spanning superfi-

cial vs deep cortical layers.

Future work will also examine whether specific BPC shapes are associated with similar bio-

logical motifs convergent on different brain regions (e.g. thalamocortical relays, U-fiber pro-

jections, or a common interneuron-projection neuron structure). While this work does not

explicitly address biomarkers of disease state, one might hypothesize that seizure networks and

onset zones will have altered dynamics reflecting epileptogenicity, with corresponding abnor-

mality in BPC shape.

Subsequent studies might vary experimental conditions with a task, medication, or property

of the stimulation (current magnitude and temporal profile, or timing between pulses), and

quantify signal, noise, and residual structure in the responses. For example, one could examine

the effect of focusing on a pair of brain locations (i.e. in the hypothesis preselected paradigm)

and simply changing the amplitude of stimulation. It has been demonstrated that different

stimulation magnitudes can elicit very different morphologies [27], and one could study this

by labeling each stimulation amplitude as a different subgroup, and then examining the distri-

bution of BPCs that emerge.

Inspecting recordings from a single site, our novel framework could be applied to behav-

ioral, rather than electrical stimulation. For example, one could study higher order visual

areas, like the fusiform gyrus, and examine responses to presented images of different semantic

types [38, 39]. In such a study, one would replace stimulation pair groups with semantic stimu-

lus groups (pictures of faces, houses, tools, etc.) to see how different semantic groups cluster

together in production of the fusiform electrophysiological response.

This “winner-take-all” approach (Fig 3G) detailed in this BPC framework implies a process

constructed for canonical responses rather than superposition of contributing motifs. In other

words, each stimulation response is assigned to a single BPC, rather than as a combination of
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multiple BPCs. For the present work, this assumption is appropriate, though it may not hold

in situations where separate physiologies contribute independently and may superimpose in

the measured response. One example of this would be where evoked responses to electrical

stimulation may vary based upon changes in region-specific ongoing fluctuations in neuronal

excitability. If threshold levels must be met before specific components of a composite

response are elicited (e.g. a delayed second voltage deflection), then this method (which forces

a unitized shape) would be sub-optimal, and another strategy should be employed. There may

be future approaches where initial voltage changes (1st order projections) and later (2nd &

higher order projections) are assessed independently and allowed to superimpose, particularly

when attempting to detect/discover potential higher-order responses. Such a strategy could be

performed by picking multiple sets of t1 and t2, and re-performing analyses for isolated time

windows.

Lastly, a feature of this functional data analysis formalism which might be explored in

future work is that candidate structures not correlated to initial subgroup labeling could be

tested for by looking at correlations of hε>k εlik6¼l, where k and l would be of a candidate differ-

ent type of subgroup (for example, the third stimulation pulse from each set of stimulations).

In this case, after a full exploration of that residual structure, the error term ε for a given trial

would split out into a second order set of BPCs, Cp, with coefficients b
ðpÞ
k , where

ε!bðpÞCp þ ε0, and VkðtÞ ¼ a
ðqÞ
k BqðtÞ þ b

ðpÞ
k CpðtÞ þ ε

0
kðtÞ.

Conclusion

We have detailed a new data-driven framework for uncovering motifs in epoch-based time-

series data belonging to labeled subgroups. These motifs are called “basis profile curves”

(BPCs), and they determine characteristic spatiotemporal structure. Each timeseries epoch is

assigned to a unique BPC, with motif projection strength and residual noise simply parameter-

ized. This framework is applied to understand the effect of electrical stimulation in the human

brain using arrays of implanted electrodes, where the labeled subgroups are repeated stimula-

tions at the same site. We introduce a set of paradigms for interpreting these measurements, of

which the convergent one allows application of the BPC framework. In our illustrative example

of measurements from the surface of the parahippocampal gyrus, we find that identified BPCs

clearly uncover several connected regions and allow them to be viewed and interpreted

intuitively.

Supporting information

S1 Fig. Explained variance as a function of number of inner dimensions, Q. We can quan-

tify the total variance explained by the fitting of resulting BPCs, Bq(t), across all included stim-

ulation-pair trials: hV>k Vk � ε
>
k εkik2n2q. When we normalize this by the total variance,

hV>k Vkik 2 all n, we have the portion of total variance explained (blue circles). However, the goal

of the decomposition is to identify motifs, explained by BPCs, from the full set of stimulations.

For example, if one were to perform stimulations at a site that has no effect on the measure-

ment site, it should not undermine our confidence in the decomposition. Therefore, a more

appropriate normalization is to instead divide the explained variance by the variance of the tri-

als included in the clustering, hV>k Vkik2n2q. For our example case, this immediately validates

the dimensionality Q = 3, selected by the algorithm (Fig 3).

(TIF)

S2 Fig. Alternate metrics for projection weights of BPC curves. As in Fig 4, but using alter-

nate scoring metrics for each stimulation-pair subgroup, shown in inset rectangles overlying
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each cortical rendering.

(TIF)

S3 Fig. Side-by-side illustration of CCEP shapes (from Fig 2E) and BPC projection weights

(from Fig 4B and 4C), to plainly illustrate the correspondence.

(TIF)

S4 Fig. An illustration of the BPC method applied to sub-segmentation of trials. On the

top row, BPCs are identified from only odd trials. On the bottom row, BPCs are identified

from only even trials. After the split, each stimulation-pair subgroup is represented by 4–5

individual stimulation trials. Despite this small amount of individual stimulation trials for

each stimulation-pair subgroup, the process is remarkably stable. For each row, the panels

from left-to-right are matrices of the CCEPs, extracted BPC shapes, projection weights (group-

averaged signal-to-noise ratio), and projection weights plotted on the brain surface.

(TIF)

S5 Fig. Illustration from a different site. Stimulation responses from a site in the temporal

pole are shown. A: Responses from each stimulation pulse are aligned into a matrix Vk(t). B:

Averaged responses Gn(t) are shown at the site of each stimulation pair that produced them. C:

BPCs produced by the algorithm. D: Weights (group-averaged signal-to-noise ratio) associated

with each BPC (color-coded), and non-included sites (gray). E: Spatial representation of BPCs,

color-coded, with diameter and color intensity indicating magnitude. All values are scaled to

the global maximum across all BPCs. F: As in (E), but with each BPC distribution individually

scaled to its own maximum. Note the similarity in the spatial distribution of the stimulation-

site cluster labeled in green to Fig 3), but the completely different shape of the BPC (likely

reflecting the different laminar architecture of the two recipient measurement sites).

(TIF)
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