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Abstract: Living systems are open systems, where the laws of nonequilibrium thermodynamics play
the important role. Therefore, studying living systems from a nonequilibrium thermodynamic aspect
is interesting and useful. In this review, we briefly introduce the history and current development
of nonequilibrium thermodynamics, especially that in biochemical systems. We first introduce
historically how people realized the importance to study biological systems in the thermodynamic
point of view. We then introduce the development of stochastic thermodynamics, especially three
landmarks: Jarzynski equality, Crooks’ fluctuation theorem and thermodynamic uncertainty relation.
We also summarize the current theoretical framework for stochastic thermodynamics in biochemical
reaction networks, especially the thermodynamic concepts and instruments at nonequilibrium steady
state. Finally, we show two applications and research paradigms for thermodynamic study in
biological systems.

Keywords: nonequilibrium thermodynamics; biophysics; stochastic thermodynamics; nonlinear
physics; chemical reaction network

1. Introduction

How should a living system, e.g., a cell, be described from a physical aspect? In 1943,
Erwin Schrödinger provided a systematic point of view in his speech, which explained the
basic physical logic of cellular activities. The content, which was quite novel and interesting
to people especially those with physical background, was later summarized into a book
named What is life [1] and became famous worldwide. In this book, he proposed that,
the key difference between a living cell and a “dead” system is its ORDER. In a living
cell, countless biochemical reactions occur regularly, orderly and endlessly, which would
not happen in a non-living system. For a system without living activity, for example,
a box of gas mixture, when put into a fixed environment its intrinsic reactions will soon
enter the inactive, stable, orderless, dead thermodynamic equilibrium state where all the
ordered intrinsic activities will stop and the entropy of the system reaches maximum,
whereas living system maintains an ordered and relatively steady state and never reaches
equilibrium. Why could this ordered steady state for living systems be maintained?
According to the 2nd law of thermodynamics, the entropy of an isolated system would
never decrease. Hence, as Schrödinger pointed out, the key reason is that living cells
exchange energy and materials with external environment, absorb necessary energy and
nutrients for biochemical reactions and expel waste and heat from the reactions. In terms
of statistical physics, the system is maintained at a low entropy state to make a living,
by absorbing “negative entropy” from environment to nullify the entropy production from
its necessary biological activities.

Schrödinger’s point of view had great impact on biology and physics. It has been
widely accepted now that metabolism, which describes how a living system continuously
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consumes necessary nutrients and energy taken from environment for life-sustaining, is the
essence of living activities. On the other hand, this point of view first explicitly connected
biological phenomenon with the theory of statistical physics, hence drew a large group
of statistical physicists’ attention to systems far from equilibrium, i.e., nonequilibrium
systems. Despite the success in explaining various non-living phenomena, the traditional
equilibrium and near-equilibrium statistical physics had long been difficult to use in
living system. After Schrödinger proposed his idea, physicists started to realize that open
nonequilibrium systems (represented by living systems) are quite complicated and a new
angle was needed.

Another succeeding revolutionary idea comes from the Brussels School. During 1950s,
the founder of Brussels School Prigogine and some other researchers discovered the
so-called “minimal entropy production principle” [2–4] for systems near equilibrium. This
principle declares that for systems near equilibrium where the response to thermodynamic
force is linear, the steady state (under a certain thermodynamic force) would be the state
where entropy production rate takes minimum. However, this principle cannot be used
to explain some complicated nonequilibrium phenomena, for example, Rayleigh-Bénard
convection [5–8] and Belousov–Zhabotinsky reaction oscillation [9–13]. These systems are
maintained at a highly ordered state, so the entropy production in these systems must
be high and should not be at minimum. One common characteristic in these systems is
that the response to thermodynamic force is highly nonlinear, and this nonlinearity is why
minimal entropy production principle does not apply and ordered patterns arise.

Since Prigogine and colleges found that it’s impossible to apply the minimal entropy
production principle to systems arbitrarily far from equilibrium, they proposed the famous
dissipative structure theory [14,15]: for systems that are far from equilibrium, the response
functions to various thermodynamic forces go beyond linear regime described by linear
response theory and arrive at the nonlinear regime. In this regime, the system may be
maintained at a relatively steady state (the nonequilibrium steady state) by dissipating free
energy and producing entropy, which can exhibit complex and ordered dynamics.

Dissipative structure theory, combined with Schrödinger’s novel idea, pointed out
several fundamental requirements for ordered systems including living systems in terms
of statistical physics:

1. The system must be open. By exchanging energy with external environment, a sys-
tem’s ordered steady state is maintained with free energy dissipated and entropy
(produced by nonequilibrium activities) expelled. In living systems and other chemi-
cal reaction systems, mass exchange is also needed in form of chemical reactants

2. The system must be driven far enough from equilibrium. If the system is at or near
equilibrium, it would be described by minimal entropy production principle and not
be available for a steady ordered state.

3. The nonlinearity in the system must be strong enough. Week nonlinearity would not
lead to a complex and non-trivial dynamics.

When the above requirements are satisfied, self-organized steady ordered structure,
i.e., dissipative structure, may arise.

Prigogine’s theory shed light on the research on thermodynamics for system far from
equilibrium and its relation with complex nonlinear systems including living systems.
With a series of proceeding work since 1980s on nonequilibrium thermodynamics, it’s now
possible to explore the thermodynamic rules within living systems.

2. The Development of Nonequilibrium Statistical Physics and Stochastic Thermodynamics

Modern statistical mechanics is based on stochastic theory, where the dynamics of a
system is described by stochastic process [16,17]. When the system is near equilibrium,
its dynamics is simple fluctuation near the equilibrium state. As introduced above, it has
been quite clear for long to physicsts how to describe such fluctuation. However, it was
hard for physicists to discover the universal rules applicable to systems arbitrarily far from
equilibrium, until recent several decades. The landmark results are the so-called Jarzynski
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equality [18,19], a series of fluctuation theorems [20–23] among which the most famous one
is Crooks’ fluctuation theorem [21], and the so-called thermodynamic uncertainty relation
(TUR) [24–27] .

Jarzynski equality describes the relation between the work done and the free energy
change during a general isothermal process. When the system is at a unique certain
macroscopic state A, its Hamiltonian HA is also fixed. When put into a heat bath with
temperature T, according to equilibrium statistical physics, it corresponds to one certain
equilibrium state whose probability of each microscopic state follows Boltzmann distri-
bution, pA

s = Z−1
A exp [−βHA(s)], with HA(s) the Hamiltonian for the microscopic state

s, ZA = ∑s exp[−βHA(s)] the partition function, and β = (kBT)−1. The free energy at
equilibrium state FA = kBT ln ZA is also fixed. When the macroscopic state is changed
to another macroscopic state B by doing work, e.g., pulling a spring, pushing a piston,
or changing the conformation of a protein complex, the Hamiltonian would be changed to
HB. Same as above, macroscopic state B also corresponds to a unique certain equilibrium
state with free energy FB = kBT ln ZB. According to the 2nd law, in thermodynamic limit,
the work done during this process should no smaller than their free energy difference
∆F = FB − FA. However, thermodynamic limit only applies in ensemble sense. For each
single realization of this stochastic process, the initial state of the system follows the Boltz-
mann distribution, and is affected by noise from heat bath. Hence during this process,
the system would not always follow the same trajectory in phase space, and the work done
in each single realization W may also be different. Previous study including the 2nd law
actually just stated that the average work done 〈W〉 ≥ ∆F. Jarzynski pointed out that, we
should focus not only the average work done 〈W〉, but also the work distribution for each
realization, and he found the following equality:

〈e−βW〉 = e−β∆F. (1)

It could also be easily checked with Jensen’s inequality that Equation (1) simply implies
the 2nd law 〈W〉 ≥ ∆F.

Jarzynski equality is a great breakthrough to 2nd law, and was confirmed by experi-
ments in 2000s [28–30]. For hundreds of years, Jarzynski equality for the first time shows
how the 2nd law rules thermodynamic processes in the form of equality and beyond its
previous inequality form, and is applicable to systems arbitrarily far from equilibrium.

Crooks’ fluctuation theorem describes the relation between the probability of a trajec-
tory in phase space and the corresponding entropy production [21]. Suppose there is an
amount of entropy production ω along one trajectory (forward trajectory), then the corre-
sponding reverse process (reverse trajectory) would naturally produce −ω entropy (absorb
ω entropy). Denote the probability of the forward trajectory as PF(ω) and the probability
of reverse trajectory as PR(−ω). When ω > 0, according to the 2nd law, in thermodynamic
limit PR(−ω)/PF(ω)→ 0, i.e., the process that decreases the overall entropy would never
occur. However, in small systems where stochasticity is not negligible, it’s possible to occur
with a small probability. This stochasticity is described by Crooks’ fluctuation theorem,
which declares that in small systems the ratio PR(−ω)/PF(ω) is exponentially suppressed
by ω, i.e.,

PR(−ω)

PF(ω)
= e−ω/kB . (2)

According to this formula, the larger ω is, the more impossible would the reverse process
be. This is compatible with the 2nd law, since ω is an extensive quantity and is propor-
tional to the particle number. For a “macroscopic” trajectory, where the particle involved
in is around ∼1 mol, the entropy production is in the order of ∼1 mol× NAkB∼1023kB,
so ω/kB is very large. In this sense, e−ω/kB ≈ 0, and the probability of the reverse process
is almost impossible. For a small system, ω is finite, so the process that “seemingly violate”
the 2nd law would occur more frequently. Such fluctuation resulted from stochasticity
is why “fluctuation theorem” gets its name. This quantitative relation between the fluc-
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tuation probability and the corresponding entropy production has been confirmed by
experiments [31–33].

Crooks’ fluctuation theorem, just like Jarzynski equality, is also a breakthrough to the
2nd law. Actually, by considering Jarzynski equality, Crooks’ fluctuation theorem can be
expressed in a simpler form:

〈e−ω/kB〉 = 1. (3)

These theories are the most breakthrough in recent 30 years. For the first time, physicists
could be able to explore laws in statistical physics far away from equilibrium with these
theoretical instruments. They also indicate that, only the statistical laws in mesoscopic
systems, where system are small so fluctuation is not negligible but not too small for
statistical physics to fail, are fundamental.

Seifert and some proceeding researchers extend these theories together with definition
of some other thermodynamic variables to the motion of single particle. They calculated the
entropy production rate in this case and proved the corresponding fluctuation theorem [34]:

〈e−∆stot/kB〉 = 1, (4)

where ∆stot is the entropy production for single particle along a trajectory. This is the same
with Crooks’ fluctuation theorem. Meanwhile, there are some other forms of fluctuation
theorems, which are catalogued in a review from Seifert [23].

After these work, statistical physics can be applied to a much wider range of studies.
Researchers now are able to discuss the systems not only at or near equilibrium, but also
the systems arbitrarily far from equilibrium and systems even small to single particle
with external stochastic force, in terms of thermodynamics. Thus, a new branch named
stochastic thermodynamics [23,34–40] is established and soon becomes a research hotspot
in statistical physics and some related fields.

With the branch established, recently an inequality named “thermodynamic uncer-
tainty relation” (TUR) was proposed [24–27] which shows the relation between the fluc-
tuation and the entropy production at nonequlibrium steady state, and this relation is
one of the most important and impacting theoretical results in the last years. Generally,
the microstates of the system could form lots of cycles. At nonequilibrium steady state,
there would be cyclic fluxes on these cycles (see Section 3.3 below for more details on
cycle theory). Quantitatively, denoting the stochastic net cyclic flux on a cycle as j and the
corresponding entropy production rate on this cycle as es

p, a relation will hold:

σ2
j

〈j〉2 · e
s
p ≥ 2kB, (5)

where σ2
j is the variance of j and 〈j〉 is the average of j. It’s clear that if the entropy

production rate es
p is increased, the lower bound of the relative fluctuation σ2

j /〈j〉2 of the
cyclic flux could be suppressed. This relation can also be written in the integral form in a
finite time interval τ:

σ2
jτ

〈jτ〉2
· Στ ≥ 2kB, (6)

where 〈jτ〉 = 〈j〉 × τ is on average how many times the cycle is completed in the time inter-
val τ and Στ is the entropy produced in τ. These relations are the called thermodynamic
uncertainty relations (TURs).

TUR shows how the stochastic dynamic quantities (fluctuations) are related to ther-
modynamic quantities (entropy production rates). By increasing entropy production rate,
the noise of the dynamics may be suppressed, and vice versa. It also reveals that, it’s im-
possible to reduce the fluctuation and entropy production rate simultaneously to infinitely
small. This relation is attracting more and more attention, and is one of the most important
theoretical results in this field in the past years.



Entropy 2021, 23, 271 5 of 18

3. Nonequilibrium Steady State in Chemical Reaction Networks and Its Thermodynamics

As introduced above, self-organized dissipative structure will maintain its ordered
state for relatively long time, although far from equilibrium. Therefore, thermodynamic
rules and properties in such steady states, i.e., nonequilibrium steady states (NESSs), are
quite interesting to physicists especially biophysicists. The thermodynamic laws and
methodologies in NESS, especially those in biochemical NESS, are of great importance
to study the thermodynamic properties of living systems. Here we introduce the current
thermodynamic theories in chemical reaction networks.

3.1. Description of Chemical Reactions with Stochastic Process

In the framework of stochastic process, chemical reactions are considered as a series
of Markov processes described by chemical master equations (CMEs) [41,42]. Consider a
general chemical reaction:

J

∑
i=1

siXi
k+

GGGGGGBFGGGGGG

k−

J

∑
i=1

riXi, (7)

where Xi, i = 1, 2, . . . , J is the i-th component and si, ri, i = 1, 2, . . . , J the corresponding
stoichiometric coefficient. Denoting ni as the molecule number of Xi, the microscopic
state of the system can be represented by ~n = (n1, n2, . . . , nJ). For the forward reaction,
after the reaction happens, ni will be changed to ni + (ri − si) with the reaction frequency
proportional to probability that the reactant molecules collide, which is also proportional to

J

∏
i=1

ni!
(ni − si)!

.

Similar for the reverse reaction, after the reverse reaction happens ni will be changed
to ni − (ri − si) the reaction frequency proportional to

J

∏
i=1

ni!
(ni − ri)!

.

Hence, considering other effects such as volume, the corresponding CME describing
the evolution of the system’s probability density P(~n, t) can be written as [41]

dP(~n, t)
dt

=

{
k+V

(
J

∏
i=1

Esi−ri − 1

)
J

∏
j=1

[
nj!

(nj − sj)!V
sj

]

+k−V

(
J

∏
i=1

Eri−si − 1

)
J

∏
j=1

[
nj!

(nj − rj)!V
rj

]}
P, (8)

where V is the volume and E is the “step operator” defined by its effect on arbitrary
function f (n): E f (n) = f (n + 1).

If the system consists of m reactions (m > 1) forming a chemical reaction net-
work (CRN),

J

∑
i=1

sρ
i Xi

kρ
+

GGGGGGBFGGGGGG

kρ
−

J

∑
i=1

rρ
i Xi, ρ = 1, 2, . . . , m, (9)

the CME that describes this CRN should add up all the terms corresponding to each
reaction, i.e.,
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dP(~n, t)
dt

=
m

∑
ρ=1

kρ
+V

(
J

∏
i=1

Esρ
i −rρ

i − 1

)
J

∏
j=1

 nj!

(nj − sρ
j )!V

sρ
j


+kρ
−V

(
J

∏
i=1

Erρ
i −sρ

i − 1

)
J

∏
j=1

 nj!

(nj − rρ
j )!V

rρ
j

P. (10)

This is how to describe a general CRN. Sometimes this can be simplified. If the
reaction system only consists of a series of unimolecular reactions (for example, a CRN that
describes the decoration or allosteric transition of a single protein complex), a simplified
framework can be applied [36]. As is shown in Figure 1, suppose there is a system consisting
of three components X1, X2, X3 which can be transferred to each other by unimolecular
reactions, i.e.,

X1
k12

GGGGGGGBFGGGGGGG

k21

X2
k23

GGGGGGGBFGGGGGGG

k32

X3
k31

GGGGGGGBFGGGGGGG

k13

X1.

The dynamics of this system can be regarded as a single molecule jumping between
the three states X1, X2, X3, with the probability stopping at each state pi equals to the
concentration of each component at steady state. Thus the evolution of pi is governed by
the following master equation:

dpi
dt

= ∑
j 6=i

(k ji pj − kij pi), (11)

which has a much simpler form than the general Equation (10).

X
1

k
12

k
21

k
31

k
13

k
23

k
32

X
2

X
3

Figure 1. A simple 3-component unimolecular CRN.

In summary, generally the dynamics of a CRN can be regarded the system jump
between different microscopic states via Markov processes and can be described by a
CME. Actually, such description in terms of stochastic process is proposed much earlier
than the research on NESS or stochastic thermodynamics and had already brought in
many important applications. For example, the precise simulation of chemical reactions—
Gillespie algorithm [43].

3.2. Thermodynamic Quantities in Chemical Reaction Networks Out of Equilibrium

How to define the thermodynamic quantities in chemical reaction systems? Although
they are well defined in equilibrium statistical mechanics, these definitions are traditionally
only proved to hold at equilibrium state. Luckily, some of the definitions can be extend to
nonequilibrium systems. The extension is strictly established by Ge and Qian [44], which
is partly reported below. Their original work ignored the cases where different microstates
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can be connected by multiple reactions, so the content below is slightly modified. It should
be noted that the extension naturally converges to standard equilibrium definitions in
thermodynamics, similarly to what happens in other literature [45].

Consider a general CRN, where any two microscopic states i and j are connected by
σij reactions. The dynamics of this CRN is governed by the following CME:

dpi
dt

= ∑
j

σij

∑
α=1

(qα
ji pj − qα

ij pi), i = 1, 2, . . . (12)

with pi the probability at state i and qα
ji the reaction rate resulted from α-th reaction that

switch the system from state i to j. Mathematically, it can be proved that for a quite wide
range of CRN, there exists a unique steady state distribution ps

i . Hence the internal energy
for microstates can be defined with self-consistency:

ui ≡ −kBT ln ps
i , (13)

and total internal energy is U = ∑i piui. The entropy can be defined by Gibbs entropy:

S ≡ −kB ∑
i

pi ln pi, (14)

thus the free energy is

F ≡ U − TS = −kBT ∑
i

pi ln
pi
ps

i
. (15)

By taking time derivatives to F and S, it can be determined how free energy and entropy
vary over time:

dF
dt

= −1
2

kBT ∑
i,j

σij

∑
α=1

(piqα
ij − pjqα

ji) ln

[
pj(t)ps

i
pi(t)ps

j

]
, (16)

and
dS
dt

= ep −
hd(t)

T
, (17)

where

ep =
1
2

kB ∑
i,j

σij

∑
α=1

(piqα
ij − pjqα

ji) ln
piqα

ij

pjqα
ji

, (18)

hd =
kBT

2 ∑
i,j

σij

∑
α=1

(piqα
ij − pjqα

ji) ln
qα

ij

qα
ji

. (19)

ep is the entropy production rate of the chemical reactions, and is never negative. hd is the
heat dissipation rate describing how much heat is dissipated and expelled to
external environment.

At steady state pi = ps
i , it’s clear that dF/dt = dS/dt = 0, es

p = hs
d/T. This indicates

that, when es
p = 0, system is at equilibrium and there is no heat exchange with external

environment. When es
p > 0, system is driven to a NESS, continuously dissipating energy

with a rate es
p and expelling these entropy to external environment with a rate hs

d/T in the
form of heat. Therefore, considering energy conservation law, the free energy dissipation
rate of the system is

Ẇ = Tes
p =

1
2

kBT ∑
i,j

σij

∑
α=1

(ps
i qα

ij − ps
j q

α
ji) ln

ps
i qα

ij

ps
j q

α
ji

. (20)



Entropy 2021, 23, 271 8 of 18

In some literature, it’s also called “housekeeping heat” Qhk [44], with the name suggesting
it’s the necessary energy input to maintain such a NESS. In addition, Qhk > 0 for NESS,
which is in accordance with Schrödinger and Prigogine’s theory.

When the system’s microscopic states are so close that can be described by some
continuous variables ~x = (x1, x2, . . .) (for example, in thermodynamic limit where the total
molecular number goes to infinity, the system is described by its concentration), the CME
can be approximated by a Fokker-Planck equation [41,46]:

∂P(~x, t)
∂t

= −∑
α

∂Jα

∂xα
, (21)

with α the reaction index and the sum runs over all the possible chemical reactions.
Jα = FαP−Dα∂xα P is the chemical flux resulted from α-th reaction, with xα the generalized
coordinate corresponding to the direction of this reaction, Fα and Dα the corresponding
probability drift force and diffusion constant. Note that xα may be different from x1, x2, . . .,
because the direction of the reaction may not be parallel to any of x1, x2, . . . For example,
a system consisting of n components can be described by the concentration of each compo-
nent ci, i = 1, 2, . . . , n, thus ~x = (c1, c2, . . . , cn). Suppose there is a reaction X1 
 X2, whose
forward reaction would equally increase c2 and decrease c1. The generalized coordinate of
this reaction is c2 − c1, which is not parallel to any of c1, c2, . . . , cn.

Similar to Equation (20), it can be proved that the free energy dissipation rate at steady
state Ps(~x) is [47]

Ẇ = kBT ∑
α

∫ J2
α

DαPs
d~x. (22)

Equation (22) can also be obtained by taking Equation (20) in the limit of state distance
going to zero, indicating the two cases are essentially the same.

3.3. Cycle Theory and the Break of Detailed Balance

As stated above, generally there would be a steady state in a CRN. However, in differ-
ent cases these steady states have different physical meanings. If the reaction rates in the
CRN satisfies the so-called detailed balance condition, i.e., each forward probability flux
from a reaction is nullified by the reverse probability flux from the corresponding reverse
reaction, the steady state is the equilibrium state and there is no net probability flux in the
system. If the detailed balance condition is not satisfied, net probability flux would arise
and entropy would continuously be produced. For the system that doesn’t have a source
or a sink, such net flux must be a cyclic flux. There are many work on the such cyclic flux
since Hill [48], and it has been widely accepted that the existence of cyclic flux in a system
is one of the most important signature for the system to be nonequilibrium.

The system shown in Figure 1 is a simple case to illustrate this concept. By definition,
the probability flux of each reaction is Jij = kij pi − k ji pj, and the thermodynamic force
is [48]

Xij = kBT ln
kij

k ji
+ kBT ln

pi
pj

= kBT ln
kij pi

k ji pj
.

According to Equation (18), the entropy production rate of each chemical reaction is
ep,ij = T−1 Jij ×Xij ≥ 0. Denoting the steady state by ps

i , i = 1, 2, 3, at steady state the fluxes
should satisfy J12 = J23 = J31 ≡ Js. Hence the total free energy dissipation rate at steady
state is

Ẇ = Tes
p = kBTJs ln

k12k23k31

k13k32k21
= kBTJs ln γ ≥ 0, (23)

with γ ≡ (k12k23k31)/(k13k32k21).
Each factor in Equation (23) has a quite clear physical meaning. Js is the net cyclic

flux in the cycle. When Js > 0 there will be a clockwise net flux X1 → X2 → X3 →
X1, and when Js < 0 there will be a counter-clockwise net flux X1 → X3 → X2 →
X1. γ is the ratio of the clockwise rate product and the counter-clockwise rate product,
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and ln γ is the thermodynamic force of the cycle. When detailed balance is satisfied and
kij ps

i = k ji ps
j holds for every reaction, Js = 0, ln γ = 0, suggesting both the net cyclic

flux and the thermodynamic force are 0, thus the entropy production rate is 0 and the
system is at equilibrium state. When detailed balance is broken, both the net cyclic flux
and the thermodynamic force will arise, γ 6= 1, with a positive entropy production rate
indicating the system is at nonequilibrium state. Hence, γ 6= 1 is equivalent to the break of
detailed balance.

How is the thermodynamic force introduced and detailed balance broken in a realistic
systems? Qian illustrated the answer to this question with a simple example in a review [36].
In short, when detailed balance is broken, this network must be coupled with some
reactions that involve molecules whose amount is under controlled by external constraints
or regulations. For example, in the system shown in Figure 1, suppose the reaction X1 
 X2
is actually coupled with an ATP hydrolysis reaction and the real elementary reaction is

X1 + ATP
k0

12
GGGGGGGBFGGGGGGG

k0
21

X2 + ADP,

where inorganic phosphate Pi can be considered as a constant and is ignored. The reaction
rates and the original rates are related by k12 = k0

12[ATP], k0
21 = k21[ADP]. By definition,

the reaction potential of each reaction is ∆µji = −kBT ln(kij/k ji), and it’s easy to show that
the thermodynamic force over a cycle ∆µcycle ≡ ∆µ12 +∆µ23 +∆µ31 = kBT ln γ. In absence
of external regulation, the system is closed and naturally should satisfy detailed balance,
thus ∆µcycle = 0 and

γeq =
k0

12k23k31[ATP]eq

k13k32k0
21[ADP]eq =

keq
12k23k31

k13k32keq
21

= exp
(∆µcycle

kBT

)
= 1. (24)

when the external regulation takes place and fixes the concentration ratio [ATP]/[ADP] to
a constant value different from [ATP]eq/[ADP]eq, the rate ratio k12/k21 will be effectively
tuned, thus

γ =
k12k23k31

k13k32k21
=

k0
12k23k31[ATP]eq

k13k32k0
21[ADP]eq ·

[ATP][ADP]eq

[ADP][ATP]eq =
[ATP][ADP]eq

[ADP][ATP]eq 6= 1, (25)

and ∆µcycle 6= 0. Therefore, for a general reaction coupled with ATP hydrolysis, e.g., phos-
phorylation, by tuning the concentration ratio between ATP and ADP, the thermodynamic
force on a cycle ∆µcycle could be tuned and detailed balance can be broken. In addition,
it can be checked that

ln γ = ln
[ATP][ADP]eq

[ADP][ATP]eq =
∆µATP,0

kBT
+ ln

[ATP]
[ADP]

=
∆µATP

kBT
, (26)

where ∆µATP,0 is the ATP hydrolysis energy under standard condition. Therefore, ∆µcycle
is exactly the free energy that one ATP molecule can produce by hydrolysis at the condition.
This result explicitly shows how external energy source is pumped in to drive the system,
and is interesting and quite important.

The above discussion can be extended to arbitrary CRNs without sink or source.
If there is no cycle in the network, detailed balance will never be broken and the steady
state is always equilibrium state. If there are more than one cycle, these cycles can be
decomposed to a series of linear independent basis cycles Ci, whose ratio of the rate
products in clockwise reactions and counter-clockwise reactions γi determines whether
detailed balance is broken on the basis cycle and the corresponding thermodynamic force.
The net flux in the system at steady state can also be decomposed into a series of cyclic
fluxes Js

ci
, and the total free energy dissipation rate is adding up all the dissipation on each

basis cycle, i.e., kBT ∑i Js
ci

ln γi. More details about the cycle decomposition can be found
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in a review by Schnakenberg and some proceeding literature [49–52]. From their work,
it turns out that such decomposition of thermodynamic observables into cycles might be
even more fundamental than transition themselves.

At the end of this section, we note that it’s also possible to study the CRN by de-
terministic thermodynamics and don’t need to concern stochastic theory. For example,
the above cycle theory can be obtained merely by deterministic methods, as is shown in
the work done by Rao and Esposito [52]. In the framework of mean-field thermodynam-
ics, by analyzing the stoichiometric matrix of the CRN with method from linear algebra,
the conservation law and basis cycles can be calculated. And by calculating the chemical
potential difference ∆µ = kBT ln γ on each basis cycle, the thermodynamic force can be
determined. The dynamics of the system is governed by law of mass action, so the steady
state flux can also be determined. Hence, the total dissipation rate can be calculated just like
above, which is in accordance with stochastic theory. In addition, such methodologies from
mean-field thermodynamics are also capable to determine whether the detailed balance is
broken in a CRN with irreversible reactions, for example the work done by Gorban and col-
laborators [53,54]. Their results pointed out that irreversible reactions cannot be involved
in any cycles to prevent divergence of entropy production, and are also in accordance with
stochastic theory. Some other notable results are obtained in the last decades following
similar methodology [55–62]. This mean-field methodology to study thermodynamics is
traditionally Brussels School would use.

The advantage to adopt the stochastic theory is that we can calculate not only the
thermodynamic quantities themselves such as entropy production rate but also their
uncertainties and errors. This is critical in living systems, since the system size is usu-
ally small and fluctuation or noise may play an important role in various biological
mechanisms [63–65]. And such fluctuation is deeply related to entropy production rate
with TUR Equations (5) and (6) mentioned above. It shows that, no matter how to design
the parameters in a CRN, it’s impossible to suppress the relative fluctuation and entropy
production rate to infinitely small at the same time.

4. Thermodynamics for Information Processing in Living Systems

In realistic systems, the form of maintaining the steady state by dissipation free energy
is to fulfill various biological functions by burning molecular fuels. Some functions directly
transfer the chemical energy in the fuel to mechanical energy, for example the famous
molecular motor [66–71] which plays an important role in translocation in cells and motion
of bacteria. Some functions involve the synthesis of complex molecules [72–76], e.g., DNA
and protien complex.

Except these functions where the energy have clear physical or chemical purposes,
there are another large group of functions that only involve in the signal transduction
processes. These functions are called information processing functions. The signal is
usually transduced by a series of pathways and networks, where the allosteric transition
and modification (methylation, phosphorylation, ubiquitination, etc.) to the signal molecule
play the important role. For example, the key step in the chemotaxis network in E.coli is
the methylation and demethylation of the chemoreceptor dimer [77]. Such modification
processes are usually accompanied by hydrolysis of the energy molecules (ATP, GTP, etc.),
hence free energy will be dissipated when the information is processed.

A natural question is, from the physics point of view, why free energy dissipation
is needed during information processing? The hint comes from the development of in-
formation theory in modern statistical physics, especially a branch called “information
thermodynamics” [55,78–81] which studies the thermodynamic cost to manipulate infor-
mation or vise versa. Hence, an intuitive understanding is that the free energy dissipation
is the necessary cost to process the information, or could be used to improve the processing
accuracy. Actually, there has been some pioneer works revealing the cost for different
information processing functions, suggesting this understanding should generally be right.
Here we show some typical results for examples.
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4.1. The Accuracy of Specificity and Kinetic Proofreading

The study on the accuracy of specificity and kinetic proofreading is one of the earliest
study that applies nonequilibrium thermodynamic concepts to information processing in
living systems. This study could trace back to Hopfield’s work in 1974 [82], which has
already become a classical research paradigm in this area.

This problem arises from the synthesis of complex molecules, such as DNA replication.
As is widely known, successful DNA replication is achieved through base paring. For a
certain site in the template DNA strand, the affinity of the “correct” base that should be
paired to this site is much larger than the “wrong” base. This property that the specific
ligand could bind to specific substrate or receptor is the so-called specificity. However,
although small, the probability of a wrong base pair is not exactly zero. By calculating
the free energy difference between correct and wrong base pairs, researchers found that,
if the affinity difference is the only reason leading to specificity, the error rate during DNA
replication is around 10−4∼10−5. This error rate is too large for gene to maintain its relative
invariance. But actually, in realistic cases, for eukaryotes the error rate is only around
10−9 [82], much smaller than the estimation by affinity. Hence there must be some other
mechanism to reduce the error, which is interesting to researchers for long.

Under this circumstance, Hopfield proposed a so-called kinetic proofreading
model [82]. This model supposes that there are one receptor and two ligands in the
model, one “correct” and one “wrong”. The affinity difference between the two ligands at
equilibrium leads to a basic binding error rate f0. On top of that, if an irreversible “proof-
reading reaction” is introduced, dissociating the ligand from the receptor and allowing the
receptor to choose the ligand again, the error rate could be further reduced. In this case,
the system is driven out of equilibrium because the “proofreading reaction” breaks detailed
balance. The error rate could be even reduced to f 2

0 under some specific conditions, which
well explains the small error rate during DNA replication.

In Hopfield’s work, due to the limitation of the development of thermodynamic theory
at that time, he didn’t carefully discuss the relation between the error rate reduction and
how far the system is driven out of equilibrium. In a more recent work in 2006, Qian
discussed the same question with more details [83]. As is shown in Figure 2A, Hong
presented Hopfield’s model in a more rigorous way with nonequilibrium thermodynamics
and cycle theory. Ligand L can bind with receptor R forming the complex RL, and RL
could be activated to RL∗ by hydrolyzing ATP. The activated RL∗ could then dissociate to
free ligand L and receptor R. Denoting the ligand concentration by [L], the rate product
ratio is

γ =
k0

1[L]k2k3

k−1k−2k0
−3[L]

=
k1k2k3

k−1k−2k−3
, (27)

with k1 = k0
1[L], k−3 = k0

−3[L]. As discussed in previous section, it can be proved that
kBT ln γ is exactly the energy to hydrolyze one ATP molecule. When the concentration
ration of ATP and ADP [T]/[D] is large enough, γ > 1, ATP can be effectively hydrolyzed,
and the system is driven out of equilibrium.
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Figure 2. Thermodynamic limitation of specificity and kinetic proofreading, adopted from Ref. [77].
(A) The cycle for the reactions between receptor R and ligand L. R could bind with L forming the
complex RL, and RL could be activated to RL∗. The activated RL∗ could dissociate to free ligand L
and receptor R. The activation of RL is usually achieved by modification such as phosphorylation,
and phosphorylation is usually coupled with ATP hydrolysis, so this reaction arrow is colored
red indicating it’s where the external energy is put in. T stands for ATP and D stands for ADP
in the panel, with Pi not presented. (B) The accuracy of specificity is limited by energy from ATP
hydrolysis. The solid lines show the relation between the minimal error rate fmin with different
number of proofreading cycles and the energy parameter γ. It shows that, when the energy of ATP
hydrolysis ∆µATP = kBT ln γ is fixed, no matter how to design the structure of the proofreading
reaction networks, the thermodynamic limitation Equation (33) illustrated by dotted lines cannot
be broken.

On top of that, suppose there are two ligands L′ (the correct ligand) and L (the wrong
ligand) in the system with the same concentration. Their structures are similar (so have
the same k1, k2, k−2, k−3) but L′ has a much larger affinity than L. This leads to a smaller
dissociation rate than L:

k′−1
k−1

=
k′3
k3
≡ θ < 1.

The error rate can be defined by the affinity ratio for the two ligands at activated state,

f =
[RL∗]/([R][L])
[RL′∗]/([R][L′])

, (28)

It can be proved that, at equilibrium state f = θ. When the system is driven out of
equilibrium, γ > 1, f can be smaller than θ. It can be calculated that, for a fixed γ,
the minimal error rate by tuning other parameters is

fmin(γ) = θ

(
1 +
√

γθ
√

γ +
√

θ

)2

. (29)

It can be checked that fmin(γ) monotonically decreases with γ, and when γ→ ∞, fmin →
θ2, which is exactly Hopfield’s result.

In this paper, Hong also proposed that γ gives a universal thermodynamic limitation
to the error rate fmin, which would not be violated no matter what structure the reaction
network has. The essence of the specificity is the competitive binding between the two
ligands and one receptor, which can be represented by a single reaction:

L + RL′∗ 
 L′ + RL∗, (30)
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with the equilibrium constant equals to θ. The error rate can be defined as

f =
[RL∗]
[RL′∗]

. (31)

Given that the concentration of L and L′ are equal, the free energy difference between RL∗

and RL′∗ at steady state is

∆µ = −kBT ln θ + kBT ln
[RL∗]
[RL′∗]

= kBT ln
f
θ

. (32)

when at equilibrium, ∆µ should be zero and f = θ. If this reaction is coupled to a ATP
hydrolysis reaction and driven out of equilibrium so that ∆µ = −∆µATP = −kBT ln γ,
γ 6= 1, we have the following relation

f =
[RL∗]
[RL′∗]

=
θ

γ
. (33)

This is the thermodynamic limit given by γ.
As is shown in Figure 2A, different solid lines illustrate the relation between the

minimal error rate fmin with different number of proofreading cycles and the energy param-
eter γ. The solid lines all lie above the dotted line representing the thermodynamic limit
Equation (33), confirming that the accuracy of specificity is limited by the thermody-
namic cost.

4.2. The Accuracy of Oscillators and the Energy Cost

Oscillatory behaviors exist in many biological systems and are crucial in controlling
the timing of various living activities. However, due to noise, any oscillator cannot keep
its high accuracy forever. The time that the oscillator takes to complete one cycle is never
exactly equal to the mean period. Affected by noise, it would be slightly longer or shorter.
With more cycle completed, the error will accumulate more and more, and finally lost the
function of timing. In terms of physics, after a long time, the phase of the oscillator will
lost its coherence to initial phase. How to overcome the noise and maintain coherence in a
relatively long time, is an important question.

In Ref. [84], researchers thoroughly studied this problem. As is shown in Figure 3A,
researchers enumerated all the possible motifs that could generate oscillation in three-node
networks, including activator-inhibitor model, repressilator and substrate-depletion model.
Researchers provided three realistic examples for each of the three motifs, along with
a famous Brusselator model (which actually belongs to substrate-depletion model) and
studied the oscillation accuracy and the energy cost for the respective cases.

As is shown in Figure 3B, researchers defined a phase diffusion constant D to describe
the coherence of the oscillatory network. The results reveal that all the four models
can oscillate only when far from equilibrium, and the dimensionless phase diffusion
constant D/T (T is the oscillation period) inversely depends on the energy dissipation in a
period ∆W:

V × D
T
≈ C +

W0

∆W −Wc
, (34)

with Wc a critical energy, V the system volume, C and W0 two constants. This equation
shows that the accuracy of the oscillators inversely depends on the additional energy to
the minimal requirement for oscillation, and is used to fit the simulation of the 4 models,
as is shown in Figure 3C–E. From the fitting, it turns out that Equation (34) is applicable for
all the four models.
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A B

EDC

Figure 3. The relation between the coherence in the accurate oscillation network and its energy cost, adopted from Ref. [84].
(A) Three motifs that could generate oscillation. Left panel: activator-inhibitor model. Middle panel: repressilator model.
Right panel: substrate-depletion model. In Ref. [84], both Brusselator and glycolysis are classified to substrate-depletion
model. (B) Definition of phase diffusion constant D. The black crosses label the variance of the peak time which grows
linearly, and the slope is D. (C) The relation between D in activator-inhibitor model and the energy dissipation in a period
∆W. The black dashed line corresponds to the energy of one ATP molecule hydrolysis ∆µATP ≈ 12kBT. (D) is (C) in log
scale after normalized by volume V. The black solid line is the fitting result from Equation (34). (E) The fitting result for
all the for models after normalized by volume V. All the simulation results collapse to the same fitting line (black solid
line). Different marks represent results from different models: red circle for activator-inhibitor model, cyan square for
repressilator, blue triangle for Brusselator, green triangle for glycolysis.

To understand the origin of this inverse dependence, researchers consider the noisy
Stuart-Landau equation that describes a general system near Hopf bifurcation:

dr
dt

= ar− cr3 + ηr,
dθ

dt
= b + dr2 + ηθ , (35)

where ηr, ηθ are noise terms satisfying

〈ηr(t)ηr(t′)〉 = 2∆δ(t− t′), 〈ηθ(t)ηθ(t′)〉 =
2∆δ

r2 (t− t′).
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In this system, by calculating the energy dissipation and phase diffusion constant with
parameters a, b, c, d, ∆ in Equation (35), Equation (34) can be analytically obtained when
a� bc/d, and C, W0, Wc can be expressed by:

C = 0, Wc =
8πd

c
> 0, W0 =

(
d2

2c
+ 2c

)(
2πb
c∆

+
2πd2

bc2

)
∆,

hence the inverse relation Equation (34) holds in a quite large range and is relatively general.
In some biological systems, timing function is accomplished by the collective oscilla-

tion phase of a group of oscillating molecules. For such systems, synchronization among
different molecular oscillators is of great importance to generate and maintain the correla-
tion of the collective phase, which is critical for macroscopic oscillation accuracy. A recent
work shows that the maximal achievable synchrony among a group of identical molecular
oscillators is also inversely dependent on the additional energy cost [85].This result, along
with Equation (34), shows that oscillation accuracy can be improved by additional energy
both in single oscillator level and collective level.

5. Outlook

In this review, we summarize the history and current research status of biological
thermodynamics. It’s still a new research branch and hotspot to study the thermodynamics
in living systems, which could lead to great fundamental improvement in both physics
and biology.

In terms of physics, living systems are realistic systems far from equilibrium, which is
a good research object for nonequilibrium statistical physics. By studying the biological
functions and their thermodynamic cost, as the examples we show above, the availability
of the theories from nonequilibrium statistical physics can be examined by realistic cases.
Furthermore, with such applications in realistic systems, physicists could accumulate
intuitive feelings that which concepts are of more importance, so that they are able to
develop more realistic and useful thermodynamic theories and instruments. It’s also
possible to adopt experimental tools from biological systems to test physical theoretical
results, just like the test for Jarzynski equality [28–30] and fluctuation theorems [31–33].

In terms of biology, theoretical tools from thermodynamics and statistical physics
could provide another new angle to understand the general, fundamental laws in living
systems. New paradigms can also be established with the new theoretical tools to study
quantitative behavior in living systems, such as spatial positioning by self-organization [86],
understanding fluctuation in cell growth [87] and characterizing enzymes as active mat-
ter [88]. In addition, laws from thermodynamics could also help answer the design princi-
ples of biological systems, which might be useful to synthetic biology [89–92] and other
biological engineering with in silico design.
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