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Abstract: A new dicoumarin, jusan coumarin, (1), has been isolated from Artemisia glauca aerial
parts. The chemical structure of jusan coumarin was estimated, by 1D, 2D NMR as well as HR-Ms
spectroscopic methods, to be 7-hydroxy-6-methoxy-3-[(2-oxo-2H-chromen-6-yl)oxy]-2H-chromen-2-
one. As the first time to be introduced in nature, its potential against SARS-CoV-2 has been estimated
using various in silico methods. Molecular similarity and fingerprints experiments have been utilized
for 1 against nine co-crystallized ligands of COVID-19 vital proteins. The results declared a great
similarity between Jusan Coumarin and X77, the ligand of COVID-19 main protease (PDB ID: 6W63),
Mpro. To authenticate the obtained outputs, a DFT experiment was achieved to confirm the similarity
of X77 and 1. Consequently, 1 was docked against Mpro. The results clarified that 1 bonded in a correct
way inside Mpro active site, with a binding energy of −18.45 kcal/mol. Furthermore, the ADMET and
toxicity profiles of 1 were evaluated and showed the safety of 1 and its likeness to be a drug. Finally,
to confirm the binding and understand the thermodynamic characters between 1 and Mpro, several
molecular dynamics (MD) simulations studies have been administered. Additionally, the known
coumarin derivative, 7-isopentenyloxycoumarin (2), has been isolated as well as β-sitosterol (3).

Keywords: Artemisia glauca; jusan coumarin; new dicoumarin; COVID-19 main protease; molecular
similarity; structure fingerprint; DFT; ADMET; toxicity; molecular dynamics
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1. Introduction

Natural products as a base for human treatment were and still are the most productive
source [1,2]. Several plants [3,4] and microorganisms [5,6] have been deeply investigated
for their healing potential. The curative effect of natural products has been associated
with the existence of secondary metabolites such as flavonoids [7,8], isochromenes [9],
α-pyrones [10], diterpenes [11], sesquiterpenes [12–14], steroids [15], alkaloids [16], and
saponins [17,18].

The chemical composition of several plants of the genus Artemisia L. was studied and
proved the presence of interesting metabolites such as epi-ashantin in Artemisia sieversiana [19],
hydroaustricin in Artemisia albida [20], matricarin in Artemisia austriaca [21], and cubreva lac-
tone and cirsineol in Artemisia umbrosa [22]. Additionally, sesquiterpene lactones have been
isolated from various species as Artemisia tschernieviana and Artemisia sublessingiana [23].
Further, flavonoids were recorded in Artemisia albida [24] and Artemisia santolinifolia [25],
as well as some Artemisia species growing in the Altai Republic and Republic of Khakas-
sia [26]. Likely, the composition and bioactivities of essential oils were discussed for diverse
species such as Artemisia kasakorum [27], Artemisia lercheana, Artemisia sieversiana [28,29],
Artemisia umbrosa [30], five different Artemisia species [31], Artemisia gurganica [32], Artemisia
proceriformis [33], Artemisia terrae-albae [34], A. keiskeana [35], Artemisia littoricola, and
Artemisia mandshurica [36]. Artemisia commutata from Mongolia was investigated earlier [37].

Artemisia glauca Pall. ex Willd [38] is a perennial herb up to 70 cm high; the shoots
are numerous, straight, or rising. The whole plant is felt-pubescent and grayish. Its
flower baskets are spherical, on short stems, 1.5–2 mm wide, and collected in a panicled
inflorescence. It grows in the steppe zone, in saline wet meadows, in birch forests, along
the meadow and rocky slopes of mountains, and along riverbanks, less often as weeds.
The general distribution is Europe, eastern and western Siberia, Mongolia, and North
America. In Kazakhstan, the area of this species includes the territory of northern and
eastern Kazakhstan [39].

Earlier, aromatic acetylenes [40], coumarins [41], heptadeca-1,8 (cis), and 16-trien-11,13-diin-
15-ol [42] were isolated from A. glauca. Similarly, the composition of essential oils of A. glauca
that grows in Mongolia and Siberia was studied by the GC/MS methods [43–45]. On the other
hand, the study of the biological activity and chemical composition of Artemisia glauca that
grows in Kazakhstan was not conducted yet. Various dicoumarin drevatives have been
isolated from Artemisia L. and exhibited promising bioactivities, such as Arteminorin, the
dicoumarin of Artemisia minor that showed promising in vitro cytotoxicity against HepG2
cell lines [46]. Additionally, some other dicoumarines of Artemisia L. inhibited xanthine
oxidase and protein tyrosine phosphatase 1B effectively [47]. Interestingly, the antiviral
properties of dicoumarines were reported before [48,49].

Computational (in silico, or cheminformatics) chemistry is a widely applied approach
in the field of the pharmaceutical industry and drug discovery that explores the molecular
properties of a drug and can expect the interaction of that molecule with a specific pro-
tein [50]. The computational chemistry was applied vastly and favorably in several reports
that targeted COVID-19 [51–55].

Computational (in silico) tools are essential tools to find lead compounds early in the
drug discovery process. Similarity measuring methods are of the most beneficial tools
in this particular. The effectiveness of similarity methods vary highly from a bioactivity
to another, in a way making it is hard to predict surely. Moreover, any two similarity
methods mostly select unlike subsets of actives from a database. Accordingly, it is highly
recommended to use more than one similarity method where possible to confirm your
results [56,57]. On the other hand, the supposition that compounds that are similar in chemi-
cal structure should display alike biological effect is valid in general [57,58]. The best phrase
to describe this supposition is that compounds have ‘neighborhood behavior’ [57]. Al-
though, several shocking structure-activity relationships demonstrated significant different
biological activities for chemically very similar molecules. Sometimes, optical enantiomers
exhibit different biological effects. The difference and similarity of compounds depend
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on the 3D chemical structure as well as the properties of the binding site in the biological
target, not on any unnatural factors [59].

The literature survey indicated that coumarin and bicoumarin scaffolds have promising
antiviral activities different types of viruses. For example, several furanocoumarins, namely
psoralen, bergapten, imperatorin, heraclenin, heraclenol, saxalin, and oxepeucedanin, in-
hibited HIV with EC50 values of 0.1, 0.354, <0.10, 2.37, 0.115, 2.25, and 1.0 µg/mL, re-
spectively [60–62]. In addition, angelicin a furanocoumarin derivative, was reported to
inhibit influenza viruses A and B [63]. Furthermore, aesculetin, a dihydroxy coumarin,
inhibited HIV with an ED50 value of 2.51 µg/mL [64]. Accordingly, we examined the
potential inhibitory of 1 against SARS CoV-2. The outcomes of this study will open new
insight to reach a promising anti-SARS CoV-2 candidate after deep biological testing at the
molecular level.

We here in this research report the isolation as well as the structure elucidation of the
new dicoumarin, jusan coumarin (jusan is derived from the Kazak name of the source plant),
from A. glauca aerial parts collected from the east region of Kazakhstan (the Altai Mountains)
in addition to two other known metabolites. Since jusan coumarin is introduced for the
first time in nature, its anti-COVID-19 potential was estimated. Furthermore, ADMET,
and toxicity profiles of jusan coumarin have been examined. Finally, molecular dynamics
simulations studies auspicated the accurate binding and interaction of jusan coumarin
against Mpro.

2. Results and Discussion
2.1. Phytochemistry
2.1.1. Extraction and Isolation

To study finely, the raw material of A. glauca (above-ground part, 1.04 kg) was extracted
with the chloroform 3 times at boiling temperature. The extracts were combined and made
up of 70% ethanol. The ethanol extract was evaporated, and 20 g of extract was obtained.
The total extract was subjected to chromatographic separation on a silica gel column (1:20)
and eluted from 100% heptane to 100% ethyl acetate and, then, to 100% of MeOH. Fractions
of 359 mL were collected and evaporated on a rotary evaporator. The total number of
fractions was 89.

Fractions were monitored by thin-layer chromatography, with visual control using an
ultraviolet lamp and spraying with anisaldehyde. At elution with heptane-ethyl acetate
(7:3) led to the isolation of compound 3. Further elution with a heptane-ethyl acetate system
(5:1), a 265 mg of compound 2 was obtained. Upon further elution with a heptane-ethyl
acetate system (1:1) followed by the purification using Sephadex LH-20, 27 mg of a yellow
crystalline solid, 1, was isolated.

2.1.2. Compounds Identification

Compound 1 (Figure 1) showed an m.p. of 235–237 ◦C. The 1H NMR spectrum of 1
showed eight different aromatic signals, three of them were singlets at δH 6.86 (H-4), δH
7.87 (H-5), and δH 7.20 (H-8). Protons 13 and 14 appeared as two doublet signals with
J = 9.6 Hz at δH 6.37 and 8.03, respectively. Furthermore, Protons 15, 17, and 18 resonated
as an ABX spin system at δH7.18 d (J = 2.8 Hz), 7.11 dd (J = 2.8 and 8.4 Hz), and 7.70 d
(J = 8.4 Hz), respectively.
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Figure 1. Chemical structure of jusan coumarin.

Finally, a methoxy and a hydroxy group were detected as singlet peaks at δH 3.88
and 10.3, respectively. The 13C spectrum (Table 1) demonstrated 19 carbon signals, all of
them were detected in the aromatic region apart from one methoxy at δC 55.98 and two
conjugated carbonyls at δC 156.95 and 159.95 that assigned for C-2 and 12, respectively.
The two carbonyls were found to be highly up fielded due to the strong resonance effect
that counteracts the carbonyls’ anisotropic effect. The HSQC and HMBC (Table 1 and
Figure 2) spectra assigned every proton to its carbon. The HMBC spectral data confirmed
the proposed structure and indicated the attachment of the methoxy group to the carbon
atom C-6 (δC147.39). The molecular formula C19H12O7 was determined using HR-ESI-MS
experiment, (-ve mode), that showed a pseudo molecular ion peak [M - H]− at m/z 351.0511
(calcd. for C19H11O7, 351.0504). Compound 1 was verified as a dicoumarin because of
two reasons. Firstly, the exact 1H NMR integration values of the protons on each side.
Secondly, the presence of only one hydroxyl group at δH 10.3.

Table 1. 1H and 13C spectral data of jusan coumarin, 1, (DMSO, δ).

Position δH (J = Hz) δC HMBC

2 - 156.95
3 - 135.68
4 7.87 s 130.62 110.16, 135.68, 156.95, 147.39
5 7.2 s 109.09 110.16, 145.64, 130.62, 147.39
6 - 145.64
7 - 150.32
8 6.86 s 102.48 147.39, 150.32, 109.09, 145.64
9 147.39
10 110.16
12 159.95
13 6.37 (J = 9.6 Hz) 113.61 114.36, 159.95
14 8.03 d (J = 9.6 Hz) 143.77 114.36, 103.72, 159.95, 154.98
15 7.18 d (J = 2.8Hz) 103.72 114.36, 159.64, 154.98
16 - 159.64
17 7.11 dd (J = 2.8 and 8.4 Hz) 113.15 103.72, 114.36, 159.64
18 7.70 d (J = 8.4Hz) 129.62 113.61, 143.77, 154.98, 159.64
19 - 154.98
20 - 114.36
21 3.78 s 55.98 145.64

7-OH 10.3 s -
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Figure 2. Key HMBC correlations of jusan coumarin.

Compound 2 was obtained as white crystals with m.p. 67–71 ◦C, ion [M - H] with
m/z 234. Its structure was determined by 1H and 13C NMR spectroscopy (Table S1).
Following the data obtained, compound 2 was identified as 7-isopentenyloxycoumarin
(Figure 3), which was previously isolated from Isocoma pluriflora [65], Ferula species [66],
Notopterygium incisum, and Notopterygium franchetii [67]. Compound 3 was identified as
β-sitosterol depending on its m.p., mass, and 1H NMR spectral data compared to the
published data [68].

Figure 3. Chemical structures of compounds 2 and 3.

2.2. Molecular Similarity Study

To figure out the basics of the molecular similarity study, we must refer to the con-
cept that the activity of a molecule resulted from well-studied interactions with certain
enzyme target. These enzyme-ligand interactions take place through chemical and physical
interactions as hydrophobic and hydrogen bonds interactions. Accordingly, the likeness
in the structures of two molecules is expected to cause a likeness in the configuration
of H-bond acceptors, donors, and hydrophobic moieties besides the steric configuration.
Consequently, a likeness in biological activity is expected too [69].

The chemical structure of jusan coumarin was examined against the chemical struc-
tures of the nine co-crystallized ligands of the nine SARS-CoV-2 proteins (Figure 4) in a
structural similarity experiment. This experiment aims to explore if jusan coumarin has an
inhibitory potential against COVID-19.
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Figure 4. The chemical structures of the examined SARS-CoV-2 proteins ligands and jusan coumarin.

The Discovery Studio software investigated the subsequent molecular descriptors
in jusan coumarin and the examined ligands; the partition coefficient, ALog p, [70]; the
molecular weight, M. W, [71]; the number of atoms that act as H- bond donors (HBD) [72];
and H- bond acceptors (HBA) [73]; the rotatable bonds numbers [74]; the aromatic rings
numbers [75]; and the heterocyclic rings numbers [76] together with the molecular fractional
polar surface area (MFPSA) [77]. The outputs demonstrated the great degree of similarity
between jusan coumarin and the co-crystallized ligands (X77) of SARS-CoV-2 main protease
(PDB ID: 6W63) (Table 2 and Figure 5).

Table 2. Structural properties of jusan coumarin with X77.

Comp. ALog p M. Wt HBA HBD Rotatable
Bonds Rings Aromatic

Rings MFPSA Minimum
Distance

X77 2.622 403.477 4 2 6 4 3 0.22 0.644782
1 2.975 352.294 7 1 3 4 2 0.286 -
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Figure 5. The results of similarity analysis of the examined ligands of SARS-CoV-2 proteins and
jusan coumarin.

2.3. Fingerprint Study

The fingerprint is a second similarity approach that computes the structures of two
various molecules or more as 2D after converting to the binary format. The fingerprints
study examines the presence or deficiency of one or more of the subsequent features: the
charges [78], the hybridization [79], H-bond donors as well as acceptor [80], negative as
well as positive ionizables [81], halogens [82], aromatics [83], and the ALog p [84]. The
study was conducted employing Discovery Studio. The results confirmed the considerable
fingerprint similarity of jusan coumarin and X77 (Table 3).

Table 3. Fingerprint similarity between jusan coumarin and X77.

Comp. Similarity Factor S-A S-B S-C

1 1 361 0 0

X77 0.576402 298 156 63
S-A: the bits that are present in jusan coumarin and X77. S-B: the bits that are present in jusan coumarin but not
the X77. S-C: the bits that are present in X77 but not jusan coumarin.

2.4. Pharmacophore Study

The pharmacophore recognizes the key features in a ligand to interact with a pro-
tein target, resulting in elicitation or blockage of a certain biological activity. The 3D-
pharmacophore model determines the essential chemical feature of a molecule to be active
against a specific protein. Additionally, it specifies the 3D geometry of that essential fea-
tures [85]. The generated 3D model is an important key that can be used to predict definite
bioactivity based on the presence or absence of these features [86,87].

In the presented study, the key pharmacophoric features of the co-crystallized ligands
(X77) of SARS-CoV-2 main protease (PDB ID: 6W63) were determined using an auto-
generated pharmacophore protocol in Discovery Studio 4.0. Then, the jusan coumarin was
tested to fit with the generated pharmacophore model.

The generated 3D pharmacophore model consisted of three features: two H-bond
donors, one H-bond acceptor, one ring aromatic, and two hydrophobic centers (Figure 6A).
The generated model was used as a 3D search query to evaluate the jusan coumarin as
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a similar compound to X77. The fitting of X77 against the generated pharmacophore
model was illustrated in Figure 6B. X77 showed a Fit value of 2.08 against the generated
pharmacophore. The jusan coumarin was mapped on the generated 3D-pharmacophore
model. The results indicated that the jusan coumarin has the main essential features of
X77. The jusan coumarin showed a fit value of 1.98. This value almost equal to that of X77,
indicating the high similarity between the tested coumarin and X77 (Figure 6C).

Figure 6. (A) The generated 3D-pharmacophore geometry with six features; two H-bond donors
(pink), one H-bond acceptor (green), one ring aromatic (brown), and two hydrophobic centers (blue).
(B) Mapping of the co-crystallized ligand (X77) on the generated pharmacophore (fit value = 2.08).
(C) Mapping of the jusan coumarin on the generated pharmacophore (fit value = 1.98).

2.5. DFT Studies

DFT is an advanced computational technique that computes the molecular orbital
analysis as well as the molecular electrostatic potential maps of a molecule depending
on some parameters (HOMO, LUMO, gap energy, and total energy, besides a dipole
moment) [88,89].
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The used functional was the PWC of local density approximate (LDA) [90]. Addition-
ally, the quality was adapted as Coarse, which utilizes the DN bases set and SCF density
converge of 1.0 × 10−4, as employed from Acclrys in the DMl3 module of the Materials
Studio package [91,92].

The DFT experiment gives close sight of the degree and type of reactivity of a ligand.
Consequently, the DFT parameters of jusan coumarin and X77 were investigated using the
Discovery Studio software to discover the resemblance between them on this side. The
outputs were outlined in Table 4, as well as Figures 7 and 8.

Table 4. The spatial distribution of molecular orbitals for jusan coumarin and X77.

Comp. Total Energy
(Ha)

Energy of
Binding (Ha)

Energy of
HOMO (Ha)

Energy of
LUMO (Ha)

Dipole
Mag

Band Gap
Energy (Ha)

1 −1247.389 −8.247 −0.202 −0.119 4.116 0.083
X77 −1304.024 −10.798 −0.159 −0.065 3.061 0.094

Figure 7. Spatial distributions of molecular orbitals for (A) jusan coumarin and (B) X77.
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Figure 8. Molecular electrostatic potential map of (A) X77 and (B) jusan coumarin. The red zones
refer to the electronegative atoms that can participate as hydrogen acceptors; the blue zones refer to
the electron-poor atoms that can participate as hydrogen bonds donors; and the yellow and green
zones refer to the neutral atoms that can form hydrophobic interactions. X77 has four red zones, one
blue zone, and four yellow zones. Jusan coumarin has eight red zones, two blue zones, and three
yellow zones.

2.5.1. Molecular Orbital Analysis

Jusan coumarin and X77 exhibited total energy values of−1247.389 and−1304.024 hartree,
respectively. From these results, jusan coumarin has total energy almost equal to that of
X77. Jusan coumarin and X77 showed closely equal values of dipole moment (4.116 and
3.061). Furthermore, the gap energy of jusan coumarin (0.083 hartree) was lower than that
of X77 (0.094 hartree).

2.5.2. Molecular Electrostatic Potential Maps (MEP)

MEP is a computational technique that computes electronegativity, partial charges in
addition to the chemical reactivity to discover the electrostatic potential of a molecule in
the 3D form. [93]. MEP gives deep insight into the way that a certain drug interacts with
a receptor [94]. In MEP, the electronegative atoms that can participate as an acceptor in
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hydrogen-bonding interactions with the receptor, colored with red. On the other hand, the
electron-poor atoms that can form hydrogen bonds with the receptor as a donor colored
with blue. Finally, the neutral atoms that can form hydrophobic interactions colored with
green to yellow [95].

The MEP of jusan coumarin and X77 were described in Figures 8A and 8B, respectively.
The mentioned figures indicate that X77 has four red patches, which are suitable for H-
bond acceptors, and a blue patch, which is suitable for H-bond donors. In addition, there
are yellow patches on both aliphatic and aromatic moieties, indicating a high possibility
for hydrophobic interactions. For jusan coumarin, it has eight red patches, which are
suitable for bonding-bond acceptors, and two blue patches, which are suitable for H-bond
donors. Additionally, there is a yellow patch on the aromatic system giving a chance for
hydrophobic interaction. These outcomes indicate the high possibility of jusan coumarin
interacting with the target receptor in a similar way to X77.

2.6. Docking Studies

To verify the accomplished results, the interaction of jusan coumarin was investigated
through molecular docking studies against Mpro using the co-crystallized ligand, X77, as a
reference. Binding free energy (∆G) between jusan coumarin and Mpro, besides the binding
modes, were the basics of activity determination.

Firstly, a verification process of the utilized docking methods was carried out by re-
peating the docking for X77 against Mpro. The calculated RMSD value was 1.8 Å, indicating
the validness of the employed docking process (Figure 9).

Figure 9. 3D and 2D Superimpositions of X77 (pink) and the docking pose (dark green) of the
same molecule.
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The binding free energy of X77 against the active site of Mpro was −21.61 kcal/mol
(Table 5). The first pocket of Mpro was occupied by the pyridine nucleus, which formed
two hydrophobic contacts with Cys145 and Leu141. The second pocket was occupied by
the 1H-imidazole, which formed two hydrophobic contacts with the amino acids Cys145
and His41. The tert-butylbenzene moiety was found inside the third pocket, where it
was in close proximity to Arg188, Met49, and Leu167. With Cys145 and His41, it formed
two hydrophobic connections. The cyclohexyl moiety was found inside the fourth pocket,
adjacent to Pro168. With Glu166, the amide moiety created one hydrogen bond (Figure 10).

Figure 10. (A) 3D, (B) 2D, and (C) Surface mapping of X77 docked into the active site of Mpro The
binding mode of jusan coumarin showed a binding free energy of −18.45 kcal/mol. It occupied two
pockets. The 2H-chromen-2-one moiety was found inside the first pocket of the receptor to form two
hydrophobic interactions with Leu141 andCys145. The hydrophobic side of the 2H-chromen-2-one
moiety showed high contact with His163, His172, and Phe140. In addition, it formed a hydrogen
bond with Leu141. The 7-hydroxy-6-methoxy-2H-chromen-2-one moiety occupied the third pocket,
forming two hydrogen bonds with Gly143 and Ser144. Furthermore, it exhibited four hydrophobic
interactions with His41 and Cys145. The linker oxygen atom formed one hydrogen bond with Met165
(Figure 11).

Table 5. Binding free energies (∆G in kcal/mol) of jusan coumarin and the co-crystallized ligand
against Mpro.

Comp. ∆G [kcal/mol]

1 −18.45
X77 −21.61
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Figure 11. (A) 3D, (B) 2D, and (C) Surface mapping of jusan coumarin docked into the active site
of Mpro.

2.7. In Silico ADMET Studies

The in silico ADMET profiles were detected for jusan coumarin using the Discovery
Studio software. Simeprevir was exploited as a reference compound. The results were
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demonstrated in Figure 12. Jusan coumarin was found to have a low ability to penetrate the
BBB, which declares its safety against the CNS. Although the aqueous solubility was poor,
its intestinal absorption ability was good. Fortunately, jusan coumarin was anticipated to
be a CYP2D6 non-inhibitor and was foreboded to bind to the plasma protein by a ratio of
less than 90%.

Figure 12. The expected ADMET study.

2.8. In Silico Toxicity Studies

The in silico toxicity potentialities of jusan coumarin were tested using the Discovery
Studio software against seven toxicity models. Remdesivir was used as a reference drug.
The results were summarized in Table 6.

Table 6. Toxicity profiles of jusan coumarin.

Comp. TD50
a MTD b LD50

b LOAEL b Ocular
Irritancy

Skin
Irritancy

1 7.87553 0.117283 0.287784 0.0220943 Mild Mild
remdesivir 1.01218 0.234965 0.308859 0.0037911 Mild Mild

a Unit: mg/kg/day. b Unit: g/kg.

Jusan coumarin exhibited a high level of Median carcinogenic potency (TD50), maxi-
mum tolerated dose (MTD), rat oral lethal dose (LD50), and rat chronic lowest observed
adverse effect level (LOAEL). Similarly, the skin and ocular irritancy abilities of jusan
coumarin were computed to be mild.

2.9. Molecular Dynamics Simulations Studies

Molecular dynamics (MD) simulations were conducted to compare the binding stabil-
ity of the Mpro-jusan coumarin complex; after doing the molecular docking, ligand 4D show
more stability and binding by HB than other ligands. MD simulation has been done to
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ensure the stability of it, with ligand 4D showing a good RMSD value along 100 ns MD, and
the target protein shows a root-mean-square deviation (RMSD) value of 1.25 Å too, while
the Mpro-jusan coumarin complex exhibits an RMSD value of 2.25 Å (Figure 13), which
is below the acceptable range around 4 Å. It has proven Mpro-jusan coumarin complex is
stable in a 100 ns MD simulation.

Figure 13. RMSD value of jusan coumarin in MD runs. Red: jusan coumarin; blue: Mpro; black:
Mpro-jusan coumarin complex.

Root mean square fluctuation (RMSF) is an essential mean that describes the flexibility
differences among the Mpro-jusan coumarin complex during the MD simulation for 100 ns.
Figure 14 shows the root-mean-square fluctuation (RMSF) values of Mpro during the MD
run. The Root Mean Square Fluctuations (RMSF) of Mpro showed that Met49 residue has
high level of fluctuation. On the other hand, the residues Tyr54, Leu141, Met165, Glu166,
and His172 showed decreased levels of fluctuation. Accordingly, it can be said that the
residual fluctuation of Mpro was stable upon the binding of jusan coumarin, without major
variations. Such results indicate the stability of Mpro during the study.
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Figure 14. Per residue, RMSF for Mpro in the MD run.

The radius of gyration (Rg) gives a clear idea about the protein’s volume change
and hence its stability [96,97]. Consequently, the analysis of Rg of Mpro during the MD
simulation has been studied and suggested the tight packing of Mpro in the binding state to
jusan coumarin. Mpro-jusan coumarin complex reached a stable conformation with the Rg

fluctuating around 24.4 Å (Figure 15).

Figure 15. The radius of gyration of Mpro in the MD run.
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The solvent-accessible surface area (SASA) evaluation gives an idea about the confor-
mational changes in a protein after a ligand binding [98]. The average SASA values for Mpro

in the binding state with jusan coumarin were evaluated during the 100 ns MD simulations.
The outcomes showed no major changes indicating the stability of the examined complex
(Figure 16).

Figure 16. SASA of Mpro in the MD run.

The obtained MD out puts confirm the stability of Mpro-jusan coumarin complex that
exhibited low RMSD and RMSF values through 100 ns of the run. Additionally, the Mpro

was confirmed to be persistent showing no major fluctuations through the exhibition of
low Rg and SASA values. The achieved findings are consistent with the proved similarity
as well as the high binding affinity that was exhibited in the molecular docking.

3. Experimental
3.1. General Experimental Section

NMR were performed on (Bruker Avance 600 and 300 MHz), the chemical shifts
(δ) were provided in parts per million (ppm) regarding the reference, tetramethylsilane
(TMS), and (1H) or (13C) signals of deuterated solvents. Spin-spin coupling constants (J)
are displayed in hertz (Hz). The 13C NMR spectra signals were refined using the Distortion
less Enhancement by Polarization Transfer (Dept), the Heteronuclear Single Quantum Co-
herence (HSQC), and the Heteronuclear Multiple Bond Correlation (HMBC). Mass spectra
were achieved on an HP599A apparatus (EI and CI, ionization energy of 70 eV) employing
Apolo 300 data and on a Krotas MS0TC instrument for precise calculation (reaching by elec-
tric shock (ESI), solvent mixture: CH2Cl2-MeOH + NH4OAc) with MASLYNX system data.
The UV spectra were recorded on a Perken-Elmer Lambda 20 Spectrometr. The Melting
points were recorded on a Reichirt Thermavar. Regarding column chromatography, silica
gel with 0.06–0.2 mm (Acros) aswell as Sephadex LH-20 were utilized as stationary phases.
Additionally, silica gel with a mesh of 32–63 was utilized for flash column chromatography.
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3.2. Plant Material

The areal parts of Artemisia glauca Pall. ex Willd., (wormwood gray, family Asteraceae),
were collected from the east Kazakhstan region, the Altai Mountains.

Species were identified by employees of Altai Botanical Garden (Reader city, Kaza-
khstan). A sample (herbarium) was stored under the code of 2007.09.06.03.12 in the
International Scientific Research Holding “Phytochemistry” Fund.

3.3. Extraction and Isolation

Total wight of 1.04 kg of plant materials were extracted with chloroform and heated to
the boiling point of chloroform in the bottom flask, for three times. The collected solvents
were evaporated using a rotary evaporator a water-jet pump under a reduced pressure at
60 ◦C. The total extract weighed 20 g and was utilized for preparative chromatographic
separations by several columns on silica gel and Sephadex LH-20.

3.4. Molecular Similarity

The molecular similarity of jusan coumarin against nine essential co-crystallized
ligands of SARS-CoV-2 was investigated employing Discovery Studio 4.0 (See Supplemen-
tary Materials).

3.5. Fingerprint Study

A fingerprints study of jusan coumarin against nine essential co-crystallized ligands
of SARS-CoV-2 was investigated employing using Discovery Studio 4.0 (See Supplemen-
tary Materials).

3.6. DFT

The DFT parameters of jusan coumarin were investigated employing Discovery Stu-
dio [99] (See Supplementary Materials).

3.7. Docking Studies

The docking investigation was done for jusan coumarin employing MOE2014 software
and visualized using Discovery Studio 4.0 [100–102] (See Supplementary Materials).

3.8. ADMET

ADMET descriptors of jusan coumarin were investigated employing Discovery Stu-
dio 4.0. [103,104] (See Supplementary Materials).

3.9. Toxicity Studies

The toxicity profile of jusan coumarin was investigated employing Discovery Stu-
dio 4.0 [105–107] (See Supplementary Materials).

3.10. Molecular Dynamics Simulations

The system has been adjusted by the web-based CHARMM-GUI [108–110] interface
utilizing the CHARMM36 force field [111]. The conducted simulations were done utilizing
the NAMD 2.13 [112] package. The TIP3P explicit solvation model was applied [113] (See
Supplementary Materials).

4. Conclusions

A new dicoumarin, jusan coumarin, (1) was isolated from Artemisia glauca aerial parts.
Jusan coumarin demonstrated a high degree of similarity with X77, the co-crystallized lig-
and of Mpro. The similarity was confirmed by four ligand-based computational, molecular
similarity, fingerprints, DFT, and pharmacophore studies. The molecular docking studies
of 1 against Mpro verified the perfect binding of 1 inside the active site of Mpro, exhibiting a
binding energy of −18.45 kcal/mol. ADMET and toxicity profiles of 1 showed its overall
safety and its likeness to be used as a drug. The MD simulations studies authenticated the
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binding of 1 inside the Mpro. These findings give hope to find a cure for COVID-19 upon
further in vitro and in vivo studies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27072281/s1. The NMR aswell as HR-Ms spectral data
of jusan coumarin, the toxicity report of jusan coumarin, and the in silico methodology are available
online [114–123]. Table S1: 1H and 13C spectral data 2 (CDCl3, δ).
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